Chapter 17: Coppice V3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
View and Print This Publication
98 lPAClIJFlI([; §OllJTHWlEST ]fORlE§T & RANGlE lEXlPlERTIMlENT §TAl'TION 1.----- Be r k e ley , C a I i for n i a____ _ ____ 1966_ _ Pacific Madrone ..... a general bibliography for a promising species PHIL1P M.McDONALD and WILLIAM E.SUNDAHL ABSTRACT: Lis t s 60 references, 21 The supply of merchantable of which emphasize the desirable wood working characteristics of the species. hardwoods in California is esti mated at about 1.6 billion board feet (Int. 1/4 -inch log rule), ac cording to the 1963 Forest Survey. A significant portion of this total is Pacific madrone (Arbutus menziesii PurshJ, whose range extends along the Pacific Coast from southern British Columbia to southern california (fig.l). So far, the demand for this raw material has been rather small largely because no profitable market has existed. Recently, several operators - -both large and small- -have begun to manufacture hardwood products in 0 reg 0 nan d California. Their activities have created interest in the available knowledge on the species, particularly on its wood working charactenstics. This note b r in g s together most of the available references on Pacific madrone. Index Subject Reference Dendrology .4, 7, 14, 25, 32, 33, 53 Ecology... .44, 54 Biotic factor s. · 6, 29 Climatic factors · . 3 Exceptional size and longevity. 1, 2, 12 Forest types · . 50 Injuries Disease. 5,38,52,55 Insects . 28 Management 45 Mensuration Site quality 42 Surveys .. 34,40, 58, 59 Volume tables . .... 24 Forest Serv i ce -U . S . Department of Agriculture 0 0 0 0 0 ~ ~ . -
Agriculture, Forestry, and Other Human Activities
4 Agriculture, Forestry, and Other Human Activities CO-CHAIRS D. Kupfer (Germany, Fed. Rep.) R. Karimanzira (Zimbabwe) CONTENTS AGRICULTURE, FORESTRY, AND OTHER HUMAN ACTIVITIES EXECUTIVE SUMMARY 77 4.1 INTRODUCTION 85 4.2 FOREST RESPONSE STRATEGIES 87 4.2.1 Special Issues on Boreal Forests 90 4.2.1.1 Introduction 90 4.2.1.2 Carbon Sinks of the Boreal Region 90 4.2.1.3 Consequences of Climate Change on Emissions 90 4.2.1.4 Possibilities to Refix Carbon Dioxide: A Case Study 91 4.2.1.5 Measures and Policy Options 91 4.2.1.5.1 Forest Protection 92 4.2.1.5.2 Forest Management 92 4.2.1.5.3 End Uses and Biomass Conversion 92 4.2.2 Special Issues on Temperate Forests 92 4.2.2.1 Greenhouse Gas Emissions from Temperate Forests 92 4.2.2.2 Global Warming: Impacts and Effects on Temperate Forests 93 4.2.2.3 Costs of Forestry Countermeasures 93 4.2.2.4 Constraints on Forestry Measures 94 4.2.3 Special Issues on Tropical Forests 94 4.2.3.1 Introduction to Tropical Deforestation and Climatic Concerns 94 4.2.3.2 Forest Carbon Pools and Forest Cover Statistics 94 4.2.3.3 Estimates of Current Rates of Forest Loss 94 4.2.3.4 Patterns and Causes of Deforestation 95 4.2.3.5 Estimates of Current Emissions from Forest Land Clearing 97 4.2.3.6 Estimates of Future Forest Loss and Emissions 98 4.2.3.7 Strategies to Reduce Emissions: Types of Response Options 99 4.2.3.8 Policy Options 103 75 76 IPCC RESPONSE STRATEGIES WORKING GROUP REPORTS 4.3 AGRICULTURE RESPONSE STRATEGIES 105 4.3.1 Summary of Agricultural Emissions of Greenhouse Gases 105 4.3.2 Measures and -
Forest Protection Unifies, Silviculture Divides
Article Forest Protection Unifies, Silviculture Divides: A Sociological Analysis of Local Stakeholders’ Voices after Coppicing in the Marganai Forest (Sardinia, Italy) Giampiero Branca 1,2, Irene Piredda 2, Roberto Scotti 2 , Laura Chessa 3,4, Ilenia Murgia 2,5 , Antonio Ganga 2 , Sergio Francesco Campus 2, Raffaella Lovreglio 2 , Enrico Guastini 2, Massimiliano Schwarz 6 and Filippo Giadrossich 2,4,* 1 Department of Humanities and Social Sciences, University of Sassari, Piazza Conte di Moriana, 07100 Sassari, Italy; [email protected] 2 Nuoro Forestry School, Department of Agriculture, University of Sassari, 08100 Nuoro, Italy; [email protected] (I.P.); [email protected] (R.S.); [email protected] (I.M.); [email protected] (A.G.); [email protected] (S.F.C.); [email protected] (R.L.); [email protected] (E.G.) 3 AREA Science Park, Padriciano 99, 34149 Trieste, Italy; [email protected] 4 Desertification Research Center, University of Sassari, Viale Italia 39, 07100 Sassari, Italy 5 Department of Architecture, Design and Planning, University of Sassari, Piazza Duomo 6, 07041 Alghero, Italy 6 School of Agricultural Forest and Food Sciences, Bern University of Applied Sciences, Länggasse 85, 3052 Zollikofen, Switzerland; [email protected] * Correspondence: [email protected] Received: 28 May 2020; Accepted: 22 June 2020; Published: 25 June 2020 Abstract: Today, a forest is also understood as a real social actor with multiple-scale influences, capable of significantly conditioning the social, economic, and cultural system of a whole territory. The aim of this paper is to reconstruct and interpret the population’s perception of the silvicultural activities related to traditional use of forest resources of the southwestern Sardinian Marganai State Forest. -
Coppicing: Using a Forester's Tool on Range- Lands Linda Howell Hardesty
Rangelands 9(3), June 1987 129 Coppicing: Using A Forester's Tool on Range- lands Linda Howell Hardesty The phenomenon of coppicing, widelyused by foresters, ments. The coppicing stump uses the root system and can also bean important range managementtool. Coppice is reserves of the original plant, and under the influence of a defined as "all regeneration that is derived from vegetative chemical "contingency plan" reinitiates growth with proper- sprouting of dormant or adventitious buds." Range manag- ties very different from seedling growth. These properties ers talk about sprouting in conjunction with brush control, can affect forage production and quality. generally in a negative sense, as in: "mesquite's sprouting ability makes control almost impossible." While most people know what sprouting is, coppicingis only vaguely familiaras a managementtool. Foresters use coppice methods to insure a rapid, economical return to full stocking after wood is harvested, to maintain a desirable species and genetic composition, and to shorten rotation times. Following this more positive vein, what advantages might coppicinghave for the range manager interested in improving forage production? Coppiceregeneration and uncut caatinga woodlandsin northeast Brazil. The most familiar phenomenon is the speed with which coppice shoots emerge and grow. Most range managers have seen coppice shoots emerge from charred shrubs withindays ofa range fire, or have cut a tree in theyard only to have it begin almost immediately to fight back. The for- estry literature notes that coppice shoots may out-grow seed- lings for as long as 40 years (Daniel et al. 1979). Coppicing Cutting backcoppice growth of Auxemmaoncocalyx. stumps can provide browse in a hurry. -
Status and Development of Old-Growth Elements and Biodiversity During Secondary Succession of Unmanaged Temperate Forests
Status and development of old-growth elementsand biodiversity of old-growth and development Status during secondary succession of unmanaged temperate forests temperate unmanaged of succession secondary during Status and development of old-growth elements and biodiversity during secondary succession of unmanaged temperate forests Kris Vandekerkhove RESEARCH INSTITUTE NATURE AND FOREST Herman Teirlinckgebouw Havenlaan 88 bus 73 1000 Brussel RESEARCH INSTITUTE INBO.be NATURE AND FOREST Doctoraat KrisVDK.indd 1 29/08/2019 13:59 Auteurs: Vandekerkhove Kris Promotor: Prof. dr. ir. Kris Verheyen, Universiteit Gent, Faculteit Bio-ingenieurswetenschappen, Vakgroep Omgeving, Labo voor Bos en Natuur (ForNaLab) Uitgever: Instituut voor Natuur- en Bosonderzoek Herman Teirlinckgebouw Havenlaan 88 bus 73 1000 Brussel Het INBO is het onafhankelijk onderzoeksinstituut van de Vlaamse overheid dat via toegepast wetenschappelijk onderzoek, data- en kennisontsluiting het biodiversiteits-beleid en -beheer onderbouwt en evalueert. e-mail: [email protected] Wijze van citeren: Vandekerkhove, K. (2019). Status and development of old-growth elements and biodiversity during secondary succession of unmanaged temperate forests. Doctoraatsscriptie 2019(1). Instituut voor Natuur- en Bosonderzoek, Brussel. D/2019/3241/257 Doctoraatsscriptie 2019(1). ISBN: 978-90-403-0407-1 DOI: doi.org/10.21436/inbot.16854921 Verantwoordelijke uitgever: Maurice Hoffmann Foto cover: Grote hoeveelheden zwaar dood hout en monumentale bomen in het bosreservaat Joseph Zwaenepoel -
Non-Timber Forest Products and Their Contribution to Households Income
Suleiman et al. Ecological Processes (2017) 6:23 DOI 10.1186/s13717-017-0090-8 RESEARCH Open Access Non-timber forest products and their contribution to households income around Falgore Game Reserve in Kano, Nigeria Muhammad Sabiu Suleiman1*, Vivian Oliver Wasonga1, Judith Syombua Mbau1, Aminu Suleiman2 and Yazan Ahmed Elhadi1 Abstract Introduction: In the recent decades, there has been growing interest in the contribution of non-timber forest products (NTFPs) to livelihoods, development, and poverty alleviation among the rural populace. This has been prompted by the fact that communities living adjacent to forest reserves rely to a great extent on the NTFPs for their livelihoods, and therefore any effort to conserve such resources should as a prerequisite understand how the host communities interact with them. Methods: Multistage sampling technique was used for the study. A representative sample of 400 households was used to explore the utilization of NTFPs and their contribution to households’ income in communities proximate to Falgore Game Reserve (FGR) in Kano State, Nigeria. Descriptive statistics and logistic regression analysis were used to analyze and summarize the data collected. Results: The findings reveal that communities proximate to FGR mostly rely on the reserve for firewood, medicinal herbs, fodder, and fruit nuts for household use and sales. Income from NTFPs accounts for 20–60% of the total income of most (68%) of the sampled households. The utilization of NTFPs was significantly influenced by age, sex, household size, main occupation, distance to forest and market. Conclusions: The findings suggest that NTFPs play an important role in supporting livelihoods, and therefore provide an important safety net for households throughout the year particularly during periods of hardship occasioned by drought. -
Current Issues in Non-Timber Forest Products Research
New Cover 6/24/98 9:56 PM Page 1 Current Issues in Non-Timber Forest Products Research Edited by M. Ruiz Pérez and J.E.M. Arnold CIFOR CENTER FOR INTERNATIONAL FORESTRY RESEARCH Front pages 6/24/98 10:02 PM Page 1 CURRENT ISSUES IN NON-TIMBER FOREST PRODUCTS RESEARCH Front pages 6/24/98 10:02 PM Page 3 CURRENT ISSUES IN NON-TIMBER FOREST PRODUCTS RESEARCH Proceedings of the Workshop ÒResearch on NTFPÓ Hot Springs, Zimbabwe 28 August - 2 September 1995 Editors: M. Ruiz PŽrez and J.E.M. Arnold with the assistance of Yvonne Byron CIFOR CENTER FOR INTERNATIONAL FORESTRY RESEARCH Front pages 6/24/98 10:02 PM Page 4 © 1996 by Center for International Forestry Research All rights reserved. Published 1996. Printed in Indonesia Reprinted July 1997 ISBN: 979-8764-06-4 Cover: Children selling baobab fruits near Hot Springs, Zimbabwe (photo: Manuel Ruiz PŽrez) Center for International Forestry Research Bogor, Indonesia Mailing address: PO Box 6596 JKPWB, Jakarta 10065, Indonesia Front pages 6/24/98 10:02 PM Page 5 Contents Foreword vii Contributors ix Chapter 1: Framing the Issues Relating to Non-Timber Forest Products Research 1 J.E. Michael Arnold and Manuel Ruiz PŽrez Chapter 2: Observations on the Sustainable Exploitation of Non-Timber Tropical Forest Products An EcologistÕs Perspective Charles M. Peters 19 Chapter 3: Not Seeing the Animals for the Trees The Many Values of Wild Animals in Forest Ecosystems 41 Kent H. Redford Chapter 4: Modernisation and Technological Dualism in the Extractive Economy in Amazonia 59 Alfredo K.O. -
The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions As Compared to the Forest Reference Level
Article The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level 1,2, 1 3 1, 1 Mykola Gusti * , Fulvio Di Fulvio , Peter Biber , Anu Korosuo y and Nicklas Forsell 1 International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria; [email protected] (F.D.F.); [email protected] (A.K.); [email protected] (N.F.) 2 International Information Department of the Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine 3 Chair of Forest Growth and Yield Science, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; [email protected] * Correspondence: [email protected] Current affiliation: European Commission, Joint Research Centre, TP 261, Via E. Fermi 2749, y I-21027 Ispra, Italy. Received: 2 June 2020; Accepted: 21 July 2020; Published: 23 July 2020 Abstract: Background and Objectives: Under the Paris Agreement, the European Union (EU) sets rules for accounting the greenhouse gas emissions and removals from forest land (FL). According to these rules, the average FL emissions of each member state in 2021–2025 (compliance period 1, CP1) and in 2026–2030 (compliance period 2, CP2) will be compared to a projected forest reference level (FRL). The FRL is estimated by modelling forest development under fixed forest management practices, based on those observed in 2000–2009. In this context, the objective of this study was to estimate the effects of large-scale uptake of alternative forest management models (aFMMs), developed in the ALTERFOR project (Alternative models and robust decision-making for future forest management), on forest harvest and forest carbon sink, considering that the proposed aFMMs are expanded to most of the suitable areas in EU27+UK and Turkey. -
XIX DEVELOPMENT and CHARACTERISTICS of HIGH FOREST SYSTEMS I. DEVELOPMENT of SYSTEMS the Development of the Various Silvicultura
XIX DEVELOPMENT AND CHARACTERISTICS OF HIGH FOREST SYSTEMS I. DEVELOPMENT OF SYSTEMS THEdevelopment of the various silvicultural systems of the present day has been brought about by a combination of silvicultural con- siderations on the one hand and economic considerations on the other. The former relate to conditions of growth and regeneration, maintenance of soil-fertility, and protection against damage of various kinds; the latter take into account market or other demands, reduction of working costs, and other factors of an economic character. A study of the history of the various high forest systems affords interesting evidence as to how these systems have arisen. The selection system in its scientific form of to-day is of recent introduc- tion, although it arose from a primitive form of cutting dating from early times. Clear cutting has been practised for some centuries, at first with natural and later with artificial regeneration, but it was only in the beginning of last century that it was systematized in its present form by Cotta. The uniform system has been evolved during the last four centuries or more, although it was first applied in its present-day form by G. L. Hartig rather more than a century ago; there is little doubt that it arose from the now obsolete tire et aire system of France or from similar old systems of Germany. Group fellings were systematized by Gayer in the latter part of last century, although they had been practised many years before. The shelter-wood strip system, representing an important modern de- velopment, was adapted from the uniform system, while Wagner's BZendersaumschlag and the wedge system of Eberhard and Philipp are more recent modifications of the strip system. -
Creating a Forest Garden Working with Nature to Grow Edible Crops
Creating a Forest Garden Working with Nature to Grow Edible Crops Martin Crawford Contents Foreword by Rob Hopkins 15. Ground cover and herbaceous perennial species Introduction 16. Designing the ground cover / perennial layer 17. Annuals, biennials and climbers Part 1: How forest gardens work 18. Designing with annuals, biennials and climbers 1. Forest gardens Part 3: Extra design elements and maintenance 2. Forest garden features and products 3. The effects of climate change 19. Clearings 4. Natives and exotics 20. Paths 5. Emulating forest conditions 21. Fungi in forest gardens 6. Fertility in forest gardens 22. Harvesting and preserving 23. Maintenance Part 2: Designing your forest garden 24. Ongoing tasks 7. Ground preparation and planting Glossary 8. Growing your own plants 9. First design steps Appendix 1: Propagation tables 10. Designing wind protection Appendix 2: Species for windbreak hedges 11. Canopy species Appendix 3: Plants to attract beneficial insects and bees 12. Designing the canopy layer Appendix 4: Edible crops calendar 13. Shrub species 14. Designing the shrub layer Resources: Useful organisations, suppliers & publications Foreword In 1992, in the middle of my Permaculture Design Course, about 12 of us hopped on a bus for a day trip to Robert Hart’s forest garden, at Wenlock Edge in Shropshire. A forest garden tour with Robert Hart was like a tour of Willy Wonka’s chocolate factory with Mr Wonka himself. “Look at this!”, “Try one of these!”. There was something extraordinary about this garden. As you walked around it, an awareness dawned that what surrounded you was more than just a garden – it was like the garden that Alice in Alice in Wonderland can only see through the door she is too small to get through: a tangible taste of something altogether new and wonderful yet also instinctively familiar. -
Structure and Management of Beech (Fagus Sylvatica L.) Forests in Italy
Review Article - doi: 10.3832/ifor0499-002 ©iForest – Biogeosciences and Forestry Collection: COST Action E52 Meeting 2008 - Florence (Italy) over the country. Evaluation of beech genetic resources for sustainable forestry Economic and social changes in the last Guest Editors: Georg von Wühlisch, Raffaello Giannini decades have brought about changes in the forestry sector in Italy, which, in turn, have impacted forests and forest management. Structure and management of beech (Fagus Beech forests have not been immune to these changes and in some ways represent an inter- sylvatica L.) forests in Italy esting case study on the changing perspect- ives of forest management in the face of changing environmental and socio economic Nocentini S conditions. This paper analyses the relationship Beech forests characterise the landscape of many mountain areas in Italy, from between stand structure and the management the Alps to the southern regions. This paper analyses the relationship between history of beech forests in Italy. The aim is stand structure and the management history of beech in Italy. The aim is to to outline possible strategies for the sustain- outline possible strategies for the sustainable management of these forest able management of these forest formations. formations. The present structure of beech forests in Italy is the result of many interacting factors. According to the National Forest Inventory, more than half Distribution of beech forests in the total area covered by beech has a long history of coppicing. High forests Italy cover 34% of the total beech area and 13% have complex structures which Beech forests are present in all the regions have not been classified in regular types. -
Growth Performance of Teak ( Tectona Grandis Linn
CHOWDHURY, RASHID & AFRAD 245 Tropical Ecology 49 (2): 245-250, 2008 ISSN 0564-3295 © International Society for Tropical Ecology www.tropecol.com Growth performance of Teak ( Tectona grandis Linn. f.) coppice under different regimes of canopy opening MD. QUMRUZZAMAN CHOWDHURY 1* , A.Z.M. MANZOOR RASHID 1 & MD. MASUDUZZAMAN AFRAD 2 1Department of Forestry and Environmental Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh 2Bangladesh Forest Department, Bhan Bhaban, Dhaka-1212, Bangladesh Abstract: Growth performance of Tectona grandis coppice was investigated under different canopy openings which is an important reforestation tool. Removal of single tree was done for small canopy opening; two trees for medium, and clear felling for large canopy opening. It was observed that, canopy opening did not affect survival rate and number of sprouts. However, stump height affected the number of sprouts; the maximum number of sprouts was found in 10-20 cm stump height from the ground level. In addition, number of sprouts was correlated (p<0.05) with tree and stump diameter. Both diameter and height of sprouts did not differ significantly in the earlier stage (in 6 months) with the space available due to canopy opening, whereas diameter and height growth of sprouts significantly varied when sprouts were getting old (1 year old and onward). Results indicated the potential of coppice management to restore the gaps in the prevailing plantations. Resumen: El desempeño en el crecimiento de un bosquecillo formado por rebrote de Tectona grandis fue investigado bajo diferentes aperturas del dosel, las cuales son una herramienta importante de reforestación. Para una abertura pequeña se removió un solo árbol; se removieron dos árboles para una abertura mediana, y se realizó un aclareo total del rodal para la abertura grande del dosel.