Description of an 8 MW Reference Wind Turbine

Total Page:16

File Type:pdf, Size:1020Kb

Description of an 8 MW Reference Wind Turbine Journal of Physics: Conference Series PAPER • OPEN ACCESS Recent citations Description of an 8 MW reference wind turbine - Cyclic flexural test and loading protocol for steel wind turbine tower columns To cite this article: Cian Desmond et al 2016 J. Phys.: Conf. Ser. 753 092013 Chung-Che Chou et al - Techno-economic system analysis of an offshore energy hub with an outlook on electrofuel applications Christian Thommessen et al View the article online for updates and enhancements. - Evaluating wind turbine power coefficient—An undergraduate experiment Edward W. K. Chan et al This content was downloaded from IP address 170.106.40.139 on 26/09/2021 at 05:57 The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing Journal of Physics: Conference Series 753 (2016) 092013 doi:10.1088/1742-6596/753/9/092013 Description of an 8 MW reference wind turbine Cian Desmond1, Jimmy Murphy1, Lindert Blonk2 and Wouter Haans2 1 MaREI, University College Cork, Ireland 2 DNV-GL, Turbine Engineering, Netherlands. E-mail: [email protected] Abstract. An 8 MW wind turbine is described in terms of mass distribution, dimensions, power curve, thrust curve, maximum design load and tower configuration. This turbine has been described as part of the EU FP7 project LEANWIND in order to facilitate research into logistics and naval architecture efficiencies for future offshore wind installations. The design of this 8 MW reference wind turbine has been checked and validated by the design consultancy DNV-GL. This turbine description is intended to bridge the gap between the NREL 5 MW and DTU 10 MW reference turbines and thus contribute to the standardisation of research and development activities in the offshore wind energy industry. 1. Introduction The LEANWIND project is focused on the application of lean principles to the offshore wind energy industry. It is anticipated that up to 14% cost reduction can be achieved by minimising waste and introducing innovative technical solutions to this rapidly developing industry [1]. An integral component of LEANWIND is the design of wind turbine support structures and service vessels for the installation, maintenance and decommissioning of offshore wind farms. In order to progress the project, it was necessary to select a reference wind turbine; data for which would be made available to all members of the consortium. Two viable options were identified, the 5 MW reference wind turbine devised by the National Renewable Energy Laboratory (NREL) [2] and the 10 MW turbine described by the Technical University of Denmark (DTU) [3]. Feedback from the LEANWIND project’s Industry Advisory Group (IAG) and consortium members indicated the need for a wind turbine sized between the NREL and the DTU in order to ensure the commercial relevance of the project at its conclusion in November 2017. To this end, a description of the LEANWIND 8 MW reference turbine (LW) was developed based primarily on published data relating to the Vestas V164 – 8 MW turbine [4]. Where data were not available, they were derived by scaling between the NREL and DTU turbines and by using engineering judgement. The LW turbine design has been validated by DNV-GL, a leading provider of independent wind turbine engineering services, using their internal conceptual turbine design tool Turbine.Architect (TA). TA is the product of over a decade of legacy Garrad Hassan experience in turbine design and comprises a suite of tools that enable accelerated design of turbine components and cost estimation. The tool operates by numerically optimizing a baseline turbine in accordance with engineering design principals and DNV-GL experience to produce a viable turbine design. The results from TA are continuously verified against available industry data to ensure the sub-models and assumptions remain relevant. An overview of the calculation process employed by TA is provided in Figure 1. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1 The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing Journal of Physics: Conference Series 753 (2016) 092013 doi:10.1088/1742-6596/753/9/092013 Figure 1. Turbine.Architect calculation overview. The description of the LW turbine does not offer the same high level of design detail as published elsewhere for the NREL and DTU turbines. However, the LW description will contribute to the standardisation of research and development activities focused on the short to medium term requirements of the offshore wind energy industry. Details of the LW 8 MW reference turbine are provided in Section 2 and details of the methodologies used to derive these data are given in Section 3. 2 The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing Journal of Physics: Conference Series 753 (2016) 092013 doi:10.1088/1742-6596/753/9/092013 2. Turbine Description 2.1 General overview A summary of the main characteristics of the LW reference wind turbine is given in Table 1. For reference, details are also provided for the NREL and DTU turbines. Table 1. Summary of NREL, LW and DTU wind turbine characteristics. Turbine NREL LW DTU Rating 5 MW 8 MW 10 MW Rotor Orientation, Upwind, 3 blades Upwind, 3 blades Upwind, 3 blades Configuration Rotor Diameter 126 m 164 m 178.3 m Hub height 90 m 110 m 119 m Cut-in, Rated, 3 m/s , 11.4 m/s, 4 m/s , 12.5 m/s, 4 m/s , 11.4 m/s, 25 m/s 25 m/s Cut-out wind speed 25 m/s Rotor speed range 6.9 – 12.1 rpm 6.3 - 10.5 rpm 6 – 9.6 rpm Hub mass 56,780kg 90,000 kg 105,520 kg Nacelle mass 240,000 kg 285,000 kg 446,036 kg Blade mass 17,740 kg 35,000 kg 41,716 kg Nacelle dimensions 20 m x 7.5 m x NA1 NA1 7.5 m (L x W x H) Tower Mass 347,460 kg 558,000 kg 605, 000 kg Tower Height 87.6 m 106.3 m 115.6 m Tower top thickness, 20 mm, 3.87 m 22 mm, 5 m 20 mm, 5.5 m diameter Tower bottom thickness, 27 mm, 6 m 36 mm, 7.7 m 38 mm, 8.3 m diameter -0.2 m , 0.0 m Overall Centre of Mass 0 m, 0 m, 77 m NA1 64.0 m Notes: 1 Data not available. 3 The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing Journal of Physics: Conference Series 753 (2016) 092013 doi:10.1088/1742-6596/753/9/092013 2.2 Power & thrust curves The power and thrust curves for the LW reference wind turbine are detailed in Figure 2 and Figure 3 respectively. Data are also provided for the NREL and the DTU turbines for reference. Figure 2. Power curves for the NREL, LW and DTU wind turbines. Figure 3. Thrust curves for the NREL, LW and DTU wind turbines. 4 The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing Journal of Physics: Conference Series 753 (2016) 092013 doi:10.1088/1742-6596/753/9/092013 Power production and thrust data for the LW 8 MW turbine are also presented in Table 2. Table 2. Summary of the LW 8 MW Power and Thrust Curves. Wind Power Cp Thrust Ct speed [m/s] [kW] [-] [kN] [-] 4 110 0.13 190 0.92 4.5 350 0.3 232 0.88 5 600 0.37 273 0.85 5.5 850 0.39 324 0.83 6 1140 0.41 381 0.82 6.5 1490 0.42 440 0.81 7 1900 0.43 505 0.8 7.5 2370 0.43 573 0.79 8 2900 0.44 648 0.78 8.5 3500 0.44 723 0.77 9 4155 0.44 800 0.76 9.5 4870 0.44 876 0.75 10 5630 0.44 945 0.73 10.5 6420 0.43 1014 0.71 11 7150 0.42 1052 0.67 11.5 7610 0.39 1028 0.6 12 7865 0.35 972 0.52 12.5 7940 0.31 905 0.45 13 7970 0.28 847 0.39 13.5 8000 0.25 801 0.34 14 8000 0.23 765 0.3 14.5 8000 0.2 730 0.27 15 8000 0.18 700 0.24 15.5 8000 0.17 668 0.22 16 8000 0.15 644 0.19 16.5 8000 0.14 624 0.18 17 8000 0.13 604 0.16 17.5 8000 0.12 587 0.15 18 8000 0.11 571 0.14 18.5 8000 0.1 557 0.13 19 8000 0.09 542 0.12 19.5 8000 0.08 528 0.11 20 8000 0.08 516 0.1 20.5 8000 0.07 505 0.09 21 8000 0.07 497 0.09 21.5 8000 0.06 486 0.08 22 8000 0.06 476 0.08 22.5 8000 0.05 472 0.07 23 8000 0.05 461 0.07 23.5 8000 0.05 454 0.06 24 8000 0.04 445 0.06 24.5 8000 0.04 442 0.06 25 8000 0.04 437 0.05 Note: Cp – Power coefficient. Ct – Thrust coefficeint. 5 The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing Journal of Physics: Conference Series 753 (2016) 092013 doi:10.1088/1742-6596/753/9/092013 2.3 Design frequencies The natural frequency of the support structure is an important design consideration as resonances with excitation forces will introduce significant fatigue loading.
Recommended publications
  • Wind Turbine Power Curves Based on the Weibull Cumulative Distribution Function
    applied sciences Article Wind Turbine Power Curves Based on the Weibull Cumulative Distribution Function Neeraj Bokde1,*,† , Andrés Feijóo 2,*,† and Daniel Villanueva 2,† 1 Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India 2 Departamento de Enxeñería Eléctrica-Universidade de Vigo, Campus de Lagoas-Marcosende, 36310 Vigo, Spain; [email protected] * Correspondence: [email protected] (N.B.); [email protected] (A.F.); Tel.: +91-90-2841-5974 (N.B.) † These authors contributed equally to this work. Received: 6 September 2018; Accepted: 26 September 2018; Published: 28 September 2018 Abstract: The representation of a wind turbine power curve by means of the cumulative distribution function of a Weibull distribution is investigated in this paper, after having observed the similarity between such a function and real WT power curves. The behavior of wind speed is generally accepted to be described by means of Weibull distributions, and this fact allows researchers to know the frequency of the different wind speeds. However, the proposal of this work consists of using these functions in a different way. The goal is to use Weibull functions for representing wind speed against wind power, and due to this, it must be clear that the interpretation is quite different. This way, the resulting functions cannot be considered as Weibull distributions, but only as Weibull functions used for the modeling of WT power curves. A comparison with simulations carried out by assuming logistic functions as power curves is presented. The reason for using logistic functions for this validation is that they are very good approximations, while the reasons for proposing the use of Weibull functions are that they are continuous, simpler than logistic functions and offer similar results.
    [Show full text]
  • Renewable Energy Systems Usa
    Renewable Energy Systems Usa Which Lamar impugns so motherly that Chevalier sleighs her guernseys? Behaviorist Hagen pagings histhat demagnetization! misfeature shrivel protectively and minimised alarmedly. Zirconic and diatonic Griffin never blahs Citizenship information on material in the financing and energy comes next time of backup capacity, for reward center. Energy Systems Engineering Rutgers University School of. Optimization algorithms are ways of computing maximum or minimum of mathematical functions. Please just a valid email. Renewable Energy Degrees FULL LIST & Green Energy Job. Payment options all while installing monitoring and maintaining your solar energy systems. Units can be provided by renewable systems could prevent automated spam filtering or system. Graduates with a Masters in Renewable Energy and Sustainable Systems Engineering and. Learn laugh about renewable resources such the solar, wind, geothermal, and hydroelectricity. Creating good decisions. The renewable systems can now to satisfy these can decrease. In recent years there that been high investment in solar PV, due to favourable subsidies and incentives. Renewable Energy Research developing the renewable carbon-free technologies required to mesh a sustainable future energy system where solar cell. Solar energy systems is renewable power system, and the grid rural electrification in cold water pumped uphill by. Apex Clean Energy develops constructs and operates utility-scale wire and medicine power facilities for the. International Renewable Energy Agency IRENA. The limitation of fossil fuels has challenged scientists and engineers to vocabulary for alternative energy resources that can represent future energy demand. Our solar panels are thus for capturing peak power without our winters, in shade, and, of cellar, full sun.
    [Show full text]
  • Design and Access Statement April 2015 FULBECK AIRFIELD WIND FARM DESIGN and ACCESS STATEMENT
    Energiekontor UK Ltd Design and Access Statement April 2015 FULBECK AIRFIELD WIND FARM DESIGN AND ACCESS STATEMENT Contents Section Page 1. Introduction 2 2. Site Selection 3 3. Design Influences 7 4. Design Evolution, Amount, Layout and Scale 9 5. Development Description, Appearance and Design 14 6. Access 16 Figures Page 2.1 Site Location 3 2.2 Landscape character areas 4 2.3 1945 RAF Fulbeck site plan 5 2.4 Site selection criteria 6 4.1 First Iteration 10 4.2 Second Iteration 11 4.3 Third Iteration 12 4.4 Fourth Iteration 13 5.1 First Iteration looking SW from the southern edge of Stragglethorpe 14 5.2 Fourth Iteration looking SW from the southern edge of 14 Stragglethorpe 5.3 First Iteration looking east from Sutton Road south of Rectory Lane 15 5.4 Fourth Iteration looking east from Sutton Road south of Rectory Lane 15 6.1 Details of temporary access for turbine deliveries 16 EnergieKontor UK Ltd 1 May 2015 FULBECK AIRFIELD WIND FARM DESIGN AND ACCESS STATEMENT 1 Introduction The Application 1.8 The Fulbeck Airfield Wind Farm planning application is Context 1.6 The Environmental Impact Assessment (EIA) process also submitted in full and in addition to this Design and Access exploits opportunities for positive design, rather than merely Statement is accompanied by the following documents 1.1 This Design and Access Statement has been prepared by seeking to avoid adverse environmental effects. The Design which should be read together: Energiekontor UK Ltd (“EK”) to accompany a planning and Access Statement is seen as having an important role application for the construction, 25 year operation and in contributing to the design process through the clear Environmental Statement Vol 1; subsequent decommissioning of a wind farm consisting of documentation of design evolution.
    [Show full text]
  • Suzlon Group: Fact Sheet
    Suzlon Group: Fact Sheet Suzlon Group Suzlon Group, consisting of Suzlon Energy Limited (SEL) and its global subsidiaries, is India’s largest renewable energy solutions provider with presence in 18 countries across six continents. Suzlon has a strong presence across the entire wind value chain with a comprehensive range of services to build and maintain the projects, which include design, supply, installation, commissioning of the project and dedicated life cycle asset management services. Suzlon Group is a market leader in India with over 11.9 GW of installed capacity and global installation of ~ 17.9 GW spread across 17 countries in Asia, Australia, Europe, Africa and Americas. Suzlon’s Global wind installations help in reducing ~38 million tonnes of CO2 emissions every year. The company has an installed manufacturing capacity of 4,200 MW wind turbine generators spread across three Nacelle units in India and one unit in China (Joint venture). Suzlon boasts of a wide range within its 2.1 MW suite of products with varying rotor blade and tower heights suitable for all wind regimes. o The S111-120m (120 meter hub height), lattice-tubular tower prototype turbine commissioned in Gujarat in March 2016 achieved ~42% plant load factor (PLF). It received Type Certification in June, 2016. o The S111-140m (140 meter hub height), is the tallest lattice-tubular tower in the country. The prototype set up in August 2017 at Kutch, Gujarat, has received its Type Certification. It is expected to deliver 44% plant load factor (PLF) than earlier products on the same site location and wind conditions.
    [Show full text]
  • Investigation of Different Airfoils on Outer Sections of Large Rotor Blades
    School of Innovation, Design and Engineering Bachelor Thesis in Aeronautical Engineering 15 credits, Basic level 300 Investigation of Different Airfoils on Outer Sections of Large Rotor Blades Authors: Torstein Hiorth Soland and Sebastian Thuné Report code: MDH.IDT.FLYG.0254.2012.GN300.15HP.Ae Sammanfattning Vindkraft står för ca 3 % av jordens produktion av elektricitet. I jakten på grönare kraft, så ligger mycket av uppmärksamheten på att få mer elektricitet från vindens kinetiska energi med hjälp av vindturbiner. Vindturbiner har använts för elektricitetsproduktion sedan 1887 och sedan dess så har turbinerna blivit signifikant större och med högre verkningsgrad. Driftsförhållandena förändras avsevärt över en rotors längd. Inre delen är oftast utsatt för mer komplexa driftsförhållanden än den yttre delen. Den yttre delen har emellertid mycket större inverkan på kraft och lastalstring. Här är efterfrågan på god aerodynamisk prestanda mycket stor. Vingprofiler för mitten/yttersektionen har undersökts för att passa till en 7.0 MW rotor med diametern 165 meter. Kriterier för bladprestanda ställdes upp och sensitivitetsanalys gjordes. Med hjälp av programmen XFLR5 (XFoil) och Qblade så sattes ett blad ihop av varierande vingprofiler som sedan testades med bladelement momentum teorin. Huvuduppgiften var att göra en simulering av rotorn med en aero-elastisk kod som gav information beträffande driftsbelastningar på rotorbladet för olika vingprofiler. Dessa resultat validerades i ett professionellt program för aeroelasticitet (Flex5) som simulerar steady state, turbulent och wind shear. De bästa vingprofilerna från denna rapportens profilkatalog är NACA 63-6XX och NACA 64-6XX. Genom att implementera dessa vingprofiler på blad design 2 och 3 så erhölls en mycket hög prestanda jämfört med stora kommersiella HAWT rotorer.
    [Show full text]
  • Stochastic Dynamic Response Analysis of a 10 MW Tension Leg Platform Floating Horizontal Axis Wind Turbine
    energies Article Stochastic Dynamic Response Analysis of a 10 MW Tension Leg Platform Floating Horizontal Axis Wind Turbine Tao Luo 1,*, De Tian 1, Ruoyu Wang 1 and Caicai Liao 2 1 State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; [email protected] (D.T.); [email protected] (R.W.) 2 CAS Key Laboratory of Wind Energy Utilization, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; [email protected] * Correspondence: [email protected]; Tel.: +10-6177-2682 Received: 2 October 2018; Accepted: 23 November 2018; Published: 30 November 2018 Abstract: The dynamic response of floating horizontal axis wind turbines (FHWATs) are affected by the viscous and inertia effects. In free decay motion, viscous drag reduces the amplitude of pitch and roll fluctuation, the quasi-static mooring system overestimates the resonant amplitude values of pitch and roll. In this paper, the quasi-static mooring system is modified by introducing linear damping and quadratic damping. The dynamic response characteristics of the FHAWT modified model of the DTU 10 MW tension leg platform (TLP) were studied. Dynamic response of the blade was mainly caused by wind load, while the wave increased the blade short-term damage equivalent load. The tower base bending moment was affected by inclination of the tower and the misaligned angle bwave between wind and wave. Except the yaw motion, other degrees of freedom motions of the TLP were substantially affected by bwave. Ultimate tension of the mooring system was related to the displacement caused by pitch and roll motions, and standard deviation of the tension was significantly affected by the wave frequency response.
    [Show full text]
  • Turbine Directory
    Turbine Directory Wind turbines are the one component that wind farms Ten turbine manufacturers were selected for this simply cannot do without. More than 100 wind turbine directory, based on U.S. wind energy capacity installed manufacturers exist globally, offering as many 1,000 during 2012* (Source: AWEA U.S. Wind Industry An- turbine models. No single turbine is the right fit for nual Market Report Year End 2012). Technical spec- every application. ifications were taken from manufacturers’ literature In the following pages, Wind Systems has compiled or otherwise provided by the manufacturers. Readers news, turbine models, and general specifications from should contact the turbine manufacturer directly for common utility-scale wind turbine manufacturers, in its complete specifications. inaugural Turbine Directory. * Companies with top-ten 2012 market share that have ceased manufacture of new wind turbines were not included in this directory. windsystemsmag.com 21 inFOCUS: Turbine Directory GE Energy General Electric’s onshore wind turbine portfolio consists of five models ranging from 1.7 to 3.2 MW, with various configurations to meet project requirements. GE is the top wind turbine manufacturer in the U.S., with 3,003 turbines (5,014 MW) installed during 2012, accounting for a 38.2 percent market share. GE turbines account for more than 24 GW of installed wind power capacity in the U.S. GE’s 2.5-120 turbine now operating commercially at German site Two months after the commercial operation in 8,000-megawatt hours a of the “Energiewende” on a completion of installation, Schnaittenbach, a town in year, which is equivalent regional level.
    [Show full text]
  • Engineering Challenges for Floating Offshore Wind Turbines
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Engineering Challenges for Conference Paper NREL/CP-500-38776 Floating Offshore Wind Turbines September 2007 S. Butterfield, W. Musial, and J. Jonkman National Renewable Energy Laboratory P. Sclavounos Massachusetts Institute of Technology Presented at the 2005 Copenhagen Offshore Wind Conference Copenhagen, Denmark October 26–28, 2005 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Résumé Non Technique ÉTUDE DE DANGERS
    Pièce numéro 5 bis Résumé Non Technique ÉTUDE DE DANGERS Ferme éolienne de la Besse SAS Communes de Cherves-Châtelars et Lésignac-Durand (16) Août 2018 Volkswind France SAS SAS au capital de 250 000 € R.C.S Paris 439 906 934 Centre Régional de Limoges Aéroport de Limoges Bellegarde 87100 LIMOGES Tél : 05.55.48.38.97 / Fax : 05.55.08.24.41 www.volkswind.fr Résumé Non Technique de l’Étude de Dangers Ferme éolienne de la Besse SAS - Août 2018 1 TABLE DES MATIERES TABLE DES MATIERES ....................................................................................................................................... 2 TABLE DES CARTES ........................................................................................................................................... 3 A. PRÉSENTATION DU PROJET ...................................................................................................................... 4 A.1 Le parc éolien ........................................................................................................................................... 4 A.2 L’éolienne ................................................................................................................................................. 5 A.3 L’environnement .................................................................................................................................... 13 B. Détermination des Enjeux ...................................................................................................................... 14 C.
    [Show full text]
  • Floating Offshore Wind 101 Webinar Q & A
    Floating Offshore Wind 101 Webinar Q & A This Q&A document is based on the webinar, Floating Offshore Wind Overview. Cost and Economics Questions Answers Can you comment on the recent report that characterizes offshore wind in the We are unaware of the report being referenced, but we can say recent cost declines in Europe have been United States as too expensive? Is the industry positioned to counter that verified by NREL’s analysis of the revenue generated from negotiated power purchase agreements for assertion? the first few U.S. offshore wind projects suggest offshore wind: 1. Is no more expensive in the United States than in Europe 2. May soon be competitive in many electric markets, especially in the Northeast 3. May be able to provide additional benefits to the utility system, especially in constrained energy markets. What are the most likely financing schemes for U.S. utility-scale projects For early commercial-scale floating wind projects (e.g., those in the mid-2020s), we expect project starting construction in the mid-2020s or later without the benefit of federal tax financing arrangements that are similar to today’s financing of fixed-bottom wind projects in the United credits? Is a single-owner power purchase agreement the most likely financing States. The benefits of the fading tax credits will have to be compensated through other means to make mechanism, absent the past tax benefits for flip structures? projects bankable. These other means include lower costs or technology-specific, state-mandated power purchase agreements or offshore wind renewable energy certificates, which are known as ORECs, and they may need to be used in combination with public financing.
    [Show full text]
  • IEA Wind Technology Collaboration Programme
    IEA Wind Technology Collaboration Programme 2017 Annual Report A MESSAGE FROM THE CHAIR Wind energy continued its strong forward momentum during the past term, with many countries setting records in cost reduction, deployment, and grid integration. In 2017, new records were set for hourly, daily, and annual wind–generated electricity, as well as share of energy from wind. For example, Portugal covered 110% of national consumption with wind-generated electricity during three hours while China’s wind energy production increased 26% to 305.7 TWh. In Denmark, wind achieved a 43% share of the energy mix—the largest share of any IEA Wind TCP member countries. From 2010-2017, land-based wind energy auction prices dropped an average of 25%, and levelized cost of energy (LCOE) fell by 21%. In fact, the average, globally-weighted LCOE for land-based wind was 60 USD/ MWh in 2017, second only to hydropower among renewable generation sources. As a result, new countries are adopting wind energy. Offshore wind energy costs have also significantly decreased during the last few years. In Germany and the Netherlands, offshore bids were awarded at a zero premium, while a Contract for Differences auction round in the United Kingdom included two offshore wind farms with record strike prices as low as 76 USD/MWh. On top of the previous achievements, repowering and life extension of wind farms are creating new opportunities in mature markets. However, other challenges still need to be addressed. Wind energy continues to suffer from long permitting procedures, which may hinder deployment in many countries. The rate of wind energy deployment is also uncertain after 2020 due to lack of policies; for example, only eight out of the 28 EU member states have wind power policies in place beyond 2020.
    [Show full text]
  • U.S. Offshore Wind Manufacturing and Supply Chain Development
    U.S. Offshore Wind Manufacturing and Supply Chain Development Prepared for: U.S. Department of Energy Navigant Consulting, Inc. 77 Bedford Street Suite 400 Burlington, MA 01803-5154 781.270.8314 www.navigant.com February 22, 2013 U.S. Offshore Wind Manufacturing and Supply Chain Development Document Number DE-EE0005364 Prepared for: U.S. Department of Energy Michael Hahn Cash Fitzpatrick Gary Norton Prepared by: Navigant Consulting, Inc. Bruce Hamilton, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Lisa Frantzis Aris Karcanias Birger Madsen Jay Paidipati Andy Wickless Feng Zhao Navigant Consortium member organizations Key Contributors American Wind Energy Association Jeff Anthony and Chris Long Great Lakes Wind Collaborative John Hummer and Victoria Pebbles Green Giraffe Energy Bankers Marie DeGraaf, Jérôme Guillet, and Niels Jongste National Renewable Energy Laboratory David Keyser and Eric Lantz Ocean & Coastal Consultants (a COWI company) Brent D. Cooper, P.E., Joe Marrone, P.E., and Stanley M. White, P.E., D.PE, D.CE Tetra Tech EC, Inc. Michael D. Ernst, Esq. Notice and Disclaimer This report was prepared by Navigant Consulting, Inc. for the use of the U.S. Department of Energy – who supported this effort under Award Number DE-EE0005364. The work presented in this report represents our best efforts and judgments based on the information available at the time this report was prepared. Navigant Consulting, Inc. is not responsible for the reader’s use of, or reliance upon, the report, nor any decisions based on the report. NAVIGANT CONSULTING, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED. Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report.
    [Show full text]