A Relativistic One Pion Exchange Model of Proton-Neutron Electron-Positron Pair Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Pion and Kaon Structure at 12 Gev Jlab and EIC
Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real. -
1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials. -
Chapter 3 the Fundamentals of Nuclear Physics Outline Natural
Outline Chapter 3 The Fundamentals of Nuclear • Terms: activity, half life, average life • Nuclear disintegration schemes Physics • Parent-daughter relationships Radiation Dosimetry I • Activation of isotopes Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radther Natural radioactivity Activity • Activity – number of disintegrations per unit time; • Particles inside a nucleus are in constant motion; directly proportional to the number of atoms can escape if acquire enough energy present • Most lighter atoms with Z<82 (lead) have at least N Average one stable isotope t / ta A N N0e lifetime • All atoms with Z > 82 are radioactive and t disintegrate until a stable isotope is formed ta= 1.44 th • Artificial radioactivity: nucleus can be made A N e0.693t / th A 2t / th unstable upon bombardment with neutrons, high 0 0 Half-life energy protons, etc. • Units: Bq = 1/s, Ci=3.7x 1010 Bq Activity Activity Emitted radiation 1 Example 1 Example 1A • A prostate implant has a half-life of 17 days. • A prostate implant has a half-life of 17 days. If the What percent of the dose is delivered in the first initial dose rate is 10cGy/h, what is the total dose day? N N delivered? t /th t 2 or e Dtotal D0tavg N0 N0 A. 0.5 A. 9 0.693t 0.693t B. 2 t /th 1/17 t 2 2 0.96 B. 29 D D e th dt D h e th C. 4 total 0 0 0.693 0.693t /th 0.6931/17 C. -
Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at NN
Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at sNN = 62.4 GeV Ming Shao1,2 for the STAR Collaboration 1University of Science & Technology of China, Anhui 230027, China 2Brookhaven National Laboratory, Upton, New York 11973, USA PACS: 25.75.Dw, 12.38.Mh Abstract. We report on preliminary results of pion, kaon, and (anti-) proton trans- verse momentum spectra (−0.5 < y < 0) in Au+Au collisions at sNN = 62.4 GeV us- ing the STAR detector at RHIC. The particle identification (PID) is achieved by a combination of the STAR TPC and the new TOF detectors, which allow a PID cover- age in transverse momentum (pT) up to 7 GeV/c for pions, 3 GeV/c for kaons, and 5 GeV/c for (anti-) protons. 1. Introduction In 2004, a short run of Au+Au collisions at sNN = 62.4 GeV was accomplished, allowing to further study the many interesting topics in the field of relativistic heavy- ion physics. The measurements of the nuclear modification factors RAA and RCP [1][2] at 130 and 200 GeV Au+Au collisions at RHIC have shown strong hadron suppression at high pT for central collisions, suggesting strong final state interactions (in-medium) [3][4][5]. At 62.4 GeV, the initial system parameters, such as energy and parton den- sity, are quite different. The measurements of RAA and RCP up to intermediate pT and the azimuthal anisotropy dependence of identified particles at intermediate and high pT for different system sizes (or densities) may provide further understanding of the in-medium effects and further insight to the strongly interacting dense matter formed in such collisions [6][7][8][9]. -
Phenomenology Lecture 6: Higgs
Phenomenology Lecture 6: Higgs Daniel Maître IPPP, Durham Phenomenology - Daniel Maître The Higgs Mechanism ● Very schematic, you have seen/will see it in SM lectures ● The SM contains spin-1 gauge bosons and spin- 1/2 fermions. ● Massless fields ensure: – gauge invariance under SU(2)L × U(1)Y – renormalisability ● We could introduce mass terms “by hand” but this violates gauge invariance ● We add a complex doublet under SU(2) L Phenomenology - Daniel Maître Higgs Mechanism ● Couple it to the SM ● Add terms allowed by symmetry → potential ● We get a potential with infinitely many minima. ● If we expend around one of them we get – Vev which will give the mass to the fermions and massive gauge bosons – One radial and 3 circular modes – Circular modes become the longitudinal modes of the gauge bosons Phenomenology - Daniel Maître Higgs Mechanism ● From the new terms in the Lagrangian we get ● There are fixed relations between the mass and couplings to the Higgs scalar (the one component of it surviving) Phenomenology - Daniel Maître What if there is no Higgs boson? ● Consider W+W− → W+W− scattering. ● In the high energy limit ● So that we have Phenomenology - Daniel Maître Higgs mechanism ● This violate unitarity, so we need to do something ● If we add a scalar particle with coupling λ to the W ● We get a contribution ● Cancels the bad high energy behaviour if , i.e. the Higgs coupling. ● Repeat the argument for the Z boson and the fermions. Phenomenology - Daniel Maître Higgs mechanism ● Even if there was no Higgs boson we are forced to introduce a scalar interaction that couples to all particles proportional to their mass. -
Pion-Proton Correlation in Neutrino Interactions on Nuclei
PHYSICAL REVIEW D 100, 073010 (2019) Pion-proton correlation in neutrino interactions on nuclei Tejin Cai,1 Xianguo Lu ,2,* and Daniel Ruterbories1 1University of Rochester, Rochester, New York 14627, USA 2Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom (Received 25 July 2019; published 22 October 2019) In neutrino-nucleus interactions, a proton produced with a correlated pion might exhibit a left-right asymmetry relative to the lepton scattering plane even when the pion is absorbed. Absent in other proton production mechanisms, such an asymmetry measured in charged-current pionless production could reveal the details of the absorbed-pion events that are otherwise inaccessible. In this study, we demonstrate the idea of using final-state proton left-right asymmetries to quantify the absorbed-pion event fraction and underlying kinematics. This technique might provide critical information that helps constrain all underlying channels in neutrino-nucleus interactions in the GeV regime. DOI: 10.1103/PhysRevD.100.073010 I. INTRODUCTION Had there been no 2p2h contributions, details of absorbed- pion events could have been better determined. The lack In the GeV regime, neutrinos interact with nuclei via of experimental signature to identify either process [14,15] is neutrino-nucleon quasielastic scattering (QE), resonant one of the biggest challenges in the study of neutrino production (RES), and deeply inelastic scattering (DIS). interactions in the GeV regime. In this paper, we examine These primary interactions are embedded in the nucleus, the phenomenon of pion-proton correlation and discuss where nuclear effects can modify the event topology. the method of using final-state (i.e., post-FSI) protons to For example, in interactions where no pion is produced study absorbed-pion events. -
Pion Decay – Solution Note Background Particle Physics Research Institutes Are Trying to Simulate and Research the Behavior of Sub-Atomic Particles
Simulate, Stimulate, Test… Pion Decay – Solution Note Background Particle physics research institutes are trying to simulate and research the behavior of sub-atomic particles. 0 A Pion is any of three sub-atomic particles : 휋 , 휋−, 푎푛푑 휋+. Each Pion consists of a Quark and an Anti- quark and is therefore a Meson. Pions are the lightest Mesons, because they are composed of the lightest Quarks. Because Pions consists of a particle and an antiparticle, they are very unstable, with the Pions − + −8 휋 , 푎푛푑 휋 decaying with a mean lifetime of 26 nanoseconds (2.6×10 seconds), and the neutral 0 Pion 휋 decaying with a much shorter lifetime of 8.4×10−17 seconds. Figure 1: Nuclear force interaction Requirement The primary decay mode of a Pion, with probability 0.999877, is a purely Leptonic decay into an anti- Muon and a Muon Neutrino. + + 휋 → 휇 + 푣휇 − − 휋 → 휇 + 푣휇̅ The second most common decay mode of a Pion, with probability 0.000123, is also a Leptonic decay into an Electron and the corresponding Electron anti-Neutrino. This "electronic mode" was discovered at CERN in 1958. + + 휋 → 푒 + 푣푒 − − 휋 → 푒 + 푣푒̅ Also observed, for charged Pions only, is the very rare "Pion beta decay" (with probability of about 10−8) into a neutral Pion plus an Electron and Electron anti-Neutrino. 0 The 휋 Pion decays in an electromagnetic force process. The main decay mode, with a branching ratio BR=0.98823, is into two photons: Pion Decay - Solution Note No. 1 Simulate, Stimulate, Test… 휋0 → 2훾 The second most common decay mode is the “Dalitz decay” (BR=0.01174), which is a two-photon decay with an internal photon conversion resulting a photon and an electron-positron pair in the final state: 휋0 → 훾+푒− + 푒+ Also observed for neutral Pions only, are the very rare “double Dalitz decay” and the “loop-induced decay”. -
Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings
Date: April 19, 2018 Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings 14th - 15th February, 2018 Thomas Jefferson National Accelerator Facility, Newport News, VA, U.S.A. M. Amaryan, M. Baalouch, G. Colangelo, J. R. de Elvira, D. Epifanov, A. Filippi, B. Grube, V. Ivanov, B. Kubis, P. M. Lo, M. Mai, V. Mathieu, S. Maurizio, C. Morningstar, B. Moussallam, F. Niecknig, B. Pal, A. Palano, J. R. Pelaez, A. Pilloni, A. Rodas, A. Rusetsky, A. Szczepaniak, and J. Stevens Editors: M. Amaryan, Ulf-G. Meißner, C. Meyer, J. Ritman, and I. Strakovsky Abstract This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of π K interactions. The precise data on π interaction will − K have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop arXiv:1804.06528v1 [hep-ph] 18 Apr 2018 has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant to the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator. -
The W and Z at LEP
50YEARSOFCERN The W and Z at LEP 1954-2004 The Large Electron Positron collider made significant contributions to the process of establishing the Standard Model as the basis for matter and 5 forces, and also built a platform for physics scenarios beyond the model. The Standard Model of particle physics is arguably one of the greatest achievements in physics in the 20th century. Within this framework the electroweak interactions, as introduced by Sheldon Glashow, Abdus Salam and Steven Weinberg, are formulated as an SU(2)xll(l) gauge field theory with the masses of the fundamental particles generated by the Higgs mechanism. Both of the first two crucial steps in establishing experimentally the electroweak part of the Standard Model occurred at CERN. These were the discovery of neutral currents in neutrino scattering by the Gargamelle collab oration in 1973, and only a decade later the discovery by the UA1 and UA2 collaborations of the W and Z gauge bosons in proton- antiproton collisions at the converted Super Proton Synchrotron (CERN Courier May 2003 p26 and April 2004 pl3). Establishing the theory at the quantum level was the next logical step, following the pioneering theoretical work of Gerard 't Hooft Fig. 1. The cover page and Martinus Veltman. Such experimental proof is a necessary (left) of the seminal requirement for a theory describing phenomena in the microscopic CERN yellow report world. At the same time, performing experimental analyses with high 76-18 on the physics precision also opens windows to new physics phenomena at much potential of a 200 GeV higher energy scales, which can be accessed indirectly through e+e~ collider, and the virtual effects. -
Vector Mesons and an Interpretation of Seiberg Duality
Vector Mesons and an Interpretation of Seiberg Duality Zohar Komargodski School of Natural Sciences Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 We interpret the dynamics of Supersymmetric QCD (SQCD) in terms of ideas familiar from the hadronic world. Some mysterious properties of the supersymmetric theory, such as the emergent magnetic gauge symmetry, are shown to have analogs in QCD. On the other hand, several phenomenological concepts, such as “hidden local symmetry” and “vector meson dominance,” are shown to be rigorously realized in SQCD. These considerations suggest a relation between the flavor symmetry group and the emergent gauge fields in theories with a weakly coupled dual description. arXiv:1010.4105v2 [hep-th] 2 Dec 2010 10/2010 1. Introduction and Summary The physics of hadrons has been a topic of intense study for decades. Various theoret- ical insights have been instrumental in explaining some of the conundrums of the hadronic world. Perhaps the most prominent tool is the chiral limit of QCD. If the masses of the up, down, and strange quarks are set to zero, the underlying theory has an SU(3)L SU(3)R × global symmetry which is spontaneously broken to SU(3)diag in the QCD vacuum. Since in the real world the masses of these quarks are small compared to the strong coupling 1 scale, the SU(3)L SU(3)R SU(3)diag symmetry breaking pattern dictates the ex- × → istence of 8 light pseudo-scalars in the adjoint of SU(3)diag. These are identified with the familiar pions, kaons, and eta.2 The spontaneously broken symmetries are realized nonlinearly, fixing the interactions of these pseudo-scalars uniquely at the two derivative level. -
Neutrino Masses-How to Add Them to the Standard Model
he Oscillating Neutrino The Oscillating Neutrino of spatial coordinates) has the property of interchanging the two states eR and eL. Neutrino Masses What about the neutrino? The right-handed neutrino has never been observed, How to add them to the Standard Model and it is not known whether that particle state and the left-handed antineutrino c exist. In the Standard Model, the field ne , which would create those states, is not Stuart Raby and Richard Slansky included. Instead, the neutrino is associated with only two types of ripples (particle states) and is defined by a single field ne: n annihilates a left-handed electron neutrino n or creates a right-handed he Standard Model includes a set of particles—the quarks and leptons e eL electron antineutrino n . —and their interactions. The quarks and leptons are spin-1/2 particles, or weR fermions. They fall into three families that differ only in the masses of the T The left-handed electron neutrino has fermion number N = +1, and the right- member particles. The origin of those masses is one of the greatest unsolved handed electron antineutrino has fermion number N = 21. This description of the mysteries of particle physics. The greatest success of the Standard Model is the neutrino is not invariant under the parity operation. Parity interchanges left-handed description of the forces of nature in terms of local symmetries. The three families and right-handed particles, but we just said that, in the Standard Model, the right- of quarks and leptons transform identically under these local symmetries, and thus handed neutrino does not exist.