Phenomenology Lecture 6: Higgs

Total Page:16

File Type:pdf, Size:1020Kb

Phenomenology Lecture 6: Higgs Phenomenology Lecture 6: Higgs Daniel Maître IPPP, Durham Phenomenology - Daniel Maître The Higgs Mechanism ● Very schematic, you have seen/will see it in SM lectures ● The SM contains spin-1 gauge bosons and spin- 1/2 fermions. ● Massless fields ensure: – gauge invariance under SU(2)L × U(1)Y – renormalisability ● We could introduce mass terms “by hand” but this violates gauge invariance ● We add a complex doublet under SU(2) L Phenomenology - Daniel Maître Higgs Mechanism ● Couple it to the SM ● Add terms allowed by symmetry → potential ● We get a potential with infinitely many minima. ● If we expend around one of them we get – Vev which will give the mass to the fermions and massive gauge bosons – One radial and 3 circular modes – Circular modes become the longitudinal modes of the gauge bosons Phenomenology - Daniel Maître Higgs Mechanism ● From the new terms in the Lagrangian we get ● There are fixed relations between the mass and couplings to the Higgs scalar (the one component of it surviving) Phenomenology - Daniel Maître What if there is no Higgs boson? ● Consider W+W− → W+W− scattering. ● In the high energy limit ● So that we have Phenomenology - Daniel Maître Higgs mechanism ● This violate unitarity, so we need to do something ● If we add a scalar particle with coupling λ to the W ● We get a contribution ● Cancels the bad high energy behaviour if , i.e. the Higgs coupling. ● Repeat the argument for the Z boson and the fermions. Phenomenology - Daniel Maître Higgs mechanism ● Even if there was no Higgs boson we are forced to introduce a scalar interaction that couples to all particles proportional to their mass. ● There must be something Higgs-like in the theory! ● Now we know there is something that looks very much like the standard model Higgs, but we want to be sure! ● Width seem to be narrow → we can factorize production and decay Phenomenology - Daniel Maître Higgs signal ● The decay modes of the Higgs boson depends on its mass. ● It couples most to heavy particles (top,Z,W) ● This plot is mostly useful if you are looking for another Higgs... From the LHC Higgs cross section working group Phenomenology - Daniel Maître Higgs signal ● But now we know the mass of the Higgs boson ● So we know its (expected) branching ratios bb tautau – mumu B pair: 56% cc gg – gammagamma WW : 23% WW ZZ – Gg: 8.5% – τ τ : 6.25 – ZZ: 3% – Photon pair: 0.23% Phenomenology - Daniel Maître Higgs production channels ● Gluon Fusion ● Quark-associated 0.13pb 19pb ● Higgs Strahlung ● Weak Vector Boson Fusion (VBF) 0.69pb 0.41pb 1.57pb Phenomenology - Daniel Maître Higgs production channels ● The production channels also depend on the mass Phenomenology - Daniel Maître Higgs channels ● – Very good mass resolution – Small branching ratio – Challenges: resolution and pion rejection ● – Good resolution on mass peak ● – Larger cross section – No mass peak Phenomenology - Daniel Maître Higgs discovery ● The Higgs boson was discovered in the di-photon and ZZ channels, with some help from the WW channel Phenomenology - Daniel Maître Di-photon channel ● Looking for a bump ● Challenges are pion over a smooth conversion of photons background (use side- ● Diphoton mass bands subtraction) resolution: ~ 1GeV From arXiv:1307.1427 Phenomenology - Daniel Maître ZZ channel ● Very clean signal, ● Since all final state particles are observed, the mass resolution is very good ● But rate is low for a mass of 125 GeV From CMS Higgs Physics Results Phenomenology - Daniel Maître WW channel ● Provides a direct measurement of the coupling of the Higgs boson with the W ● No mass peak ● Consider transverse mass of leptons ● Lepton directions are correlated, which can be used to reduce the background Phenomenology - Daniel Maître From arXiv:1307.1427 ZH Strahlung ● It was long thought that this channel was hopeless because of the high background ● Consider highly boosted configuration ● The Higgs decay products (b pair) will be in a single “fat” jet ● Looking for a boosted Z and a fat jet ● Problem: the resolution was not good because of the underlying event contributions ● Need to use more information about the jet structure Phenomenology - Daniel Maître ZH Strahlung ● Undo the jet clustering until two jets remain with a small mass, we interpret these two jets as the jets from the b pair decay, and make sure their transverse momenta are not too different ● But the resolution is still poor due to Underlying event contribution ● Solution: filter the jet to keep only the hardest radiation. ● The two hardest jets have to be b-tagged Phenomenology - Daniel Maître ZH Strahlung ● reclustering with Cambridge-Aachen algorithm (only angle) From arXiv:0802.2470 Phenomenology - Daniel Maître Measuring the properties ● We define the signal strength as the ratio between the observed cross section and the standard model expectation ● One of the challenges is to separate VBF and gluon fusion channels Phenomenology - Daniel Maître Higgs signal strength Phenomenology - Daniel Maître Testing the coupling ● To test the coupling to the Higgs, introduce scaling factors for the coupling of the Higgs to the fermions and vector bosons From M. Duehrssen's YETI 2013 lecture Phenomenology - Daniel Maître Testing the coupling ● Try to fit the values of the scaling factors Phenomenology - Daniel Maître Testing the coupling ● Try to fit the values of the scaling factors Phenomenology - Daniel Maître Measuring spin ● Polar angle θ in the Collins-Soper frame (in the rest frame of the di- photon system, z axis is between the the first incoming momentum and – the second incoming momentum ) Phenomenology - Daniel Maître Measuring the spin ● Add more channels and obervables – H→WW→lνlν ● Transverse momentum of the lepton pair ● Invariant mass of the lepton pair ● Azimutal angle difference between the leptons – H→ZZ→4l ● Angles and invariant – Combine them in a Boosted Decision Tree ● Combine all channels Phenomenology - Daniel Maître Spin measurement Phenomenology - Daniel Maître CP measurement ● Different method at CMS From arXiv:1212.6639 Phenomenology - Daniel Maître Future ● Higgs self-coupling, needed to measure the higgs potential – Triple higgs vertex ● Only possible at high luminosity LHC – Quartic higgs vertex ● Probably not possible even at a high luminosity LHC Phenomenology - Daniel Maître.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Triple Vector Boson Production at the LHC
    Triple Vector Boson Production at the LHC Dan Green Fermilab - CMS Dept. ([email protected]) Introduction The measurement of the interaction among vector bosons is crucial to understanding electroweak symmetry breaking. Indeed, data from LEP-II have already determined triple vector boson couplings and a first measurement of quartic couplings has been made [1]. It is important to explore what additional information can be supplied by future LHC experiments. One technique is to use “tag” jets to identify vector boson fusion processes leading to two vector bosons and two tag jets in the final state. [2] However, the necessity of two quarks simultaneously radiating a W boson means that the cross section is rather small. Another approach is to study the production of three vector bosons in the final state which are produced by the Drell- Yan mechanism. There is a clear tradeoff, in that valence-valence processes are not allowed, which limits the mass range which can be explored using this mechanism, although the cross sections are substantially larger than those for vector boson fusion. Triple Vector Boson Production A Z boson decaying into lepton pairs is required in the final state in order to allow for easy triggering at the LHC and to insure a clean sample of Z plus four jets. Possible final states are ZWW, ZWZ and ZZZ. Assuming that the second and third bosons are reconstructed from their decay into quark pairs, the W and Z will not be easily resolved given the achievable dijet mass resolution. Therefore, the final states of interest contain a Z which decays into leptons and four jets arising for the quark decays of the other two vector bosons.
    [Show full text]
  • Pion and Kaon Structure at 12 Gev Jlab and EIC
    Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real.
    [Show full text]
  • 1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
    PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials.
    [Show full text]
  • 1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
    1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s.
    [Show full text]
  • Vector Boson Scattering Processes: Status and Prospects
    Vector Boson Scattering Processes: Status and Prospects Diogo Buarque Franzosi (ed.)g,d, Michele Gallinaro (ed.)h, Richard Ruiz (ed.)i, Thea K. Aarrestadc, Mauro Chiesao, Antonio Costantinik, Ansgar Dennert, Stefan Dittmaierf, Flavia Cetorellil, Robert Frankent, Pietro Govonil, Tao Hanp, Ashutosh V. Kotwala, Jinmian Lir, Kristin Lohwasserq, Kenneth Longc, Yang Map, Luca Mantanik, Matteo Marchegianie, Mathieu Pellenf, Giovanni Pellicciolit, Karolos Potamianosn,Jurgen¨ Reuterb, Timo Schmidtt, Christopher Schwanm, Michał Szlepers, Rob Verheyenj, Keping Xiep, Rao Zhangr aDepartment of Physics, Duke University, Durham, NC 27708, USA bDeutsches Elektronen-Synchrotron (DESY) Theory Group, Notkestr. 85, D-22607 Hamburg, Germany cEuropean Organization for Nuclear Research (CERN) CH-1211 Geneva 23, Switzerland dDepartment of Physics, Chalmers University of Technology, Fysikgården 1, 41296 G¨oteborg, Sweden eSwiss Federal Institute of Technology (ETH) Z¨urich, Otto-Stern-Weg 5, 8093 Z¨urich, Switzerland fUniversit¨atFreiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany gPhysics Department, University of Gothenburg, 41296 G¨oteborg, Sweden hLaborat´oriode Instrumenta¸c˜aoe F´ısicaExperimental de Part´ıculas(LIP), Lisbon, Av. Prof. Gama Pinto, 2 - 1649-003, Lisboa, Portugal iInstitute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego, Cracow 31-342, Poland jUniversity College London, Gower St, Bloomsbury, London WC1E 6BT, United Kingdom kCentre for Cosmology, Particle Physics and Phenomenology (CP3), Universit´eCatholique de Louvain, Chemin du Cyclotron, B-1348 Louvain la Neuve, Belgium lMilano - Bicocca University and INFN, Piazza della Scienza 3, Milano, Italy mTif Lab, Dipartimento di Fisica, Universit`adi Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy nDepartment of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK oDipartimento di Fisica, Universit`adi Pavia, Via A.
    [Show full text]
  • List of Particle Species-1
    List of particle species that can be detected by Micro-Channel Plates and similar secondary electron multipliers. A Micro-Channel Plate (MCP) can detected certain particle species with decent quantum efficiency (QE). Commonly MCP are used to detect charged particles at low to intermediate energies and to register photons from VUV to X-ray energies. “Detection” means that a significant charge cloud is created in a channel (pore). Generally, a particle (or photon) can liberate an electron from channel surface atoms into the continuum if it carries sufficient momentum or if it can transfer sufficient potential energy. Therefore, fast-enough neutral atoms can also be detected by MCP and even exited atoms like He* (even when “slow”). At least about 10 eV of energy transfer is required to release an electron from the channel wall to start the avalanche. This number also determines the cut-off energy for photon detection which translates to a photon wave-length of about 200 nm (although there can be non- linear effects at extreme photon fluxes enhancing this cut-off wavelength). Not in all cases when ionization of a channel wall atom is possible, the electron will eventually be released to the continuum: the surface energy barrier has to be overcome and the electron must have the right emission direction. Also, the electron should be born close to surface because it may lose too much energy on its way out due to scattering and will be absorbed in the bulk. These effects reduce the QE at for VUV photons to about 10%. At EUV energies QE cannot improve much: although the primary electron energy increases, the ionization takes place deeper in the bulk on average and the electrons thus can hardly make it to the continuum.
    [Show full text]
  • Basic Ideas of the Standard Model
    BASIC IDEAS OF THE STANDARD MODEL V.I. ZAKHAROV Randall Laboratory of Physics University of Michigan, Ann Arbor, Michigan 48109, USA Abstract This is a series of four lectures on the Standard Model. The role of conserved currents is emphasized. Both degeneracy of states and the Goldstone mode are discussed as realization of current conservation. Remarks on strongly interact- ing Higgs fields are included. No originality is intended and no references are given for this reason. These lectures can serve only as a material supplemental to standard textbooks. PRELIMINARIES Standard Model (SM) of electroweak interactions describes, as is well known, a huge amount of exper- imental data. Comparison with experiment is not, however, the aspect of the SM which is emphasized in present lectures. Rather we treat SM as a field theory and concentrate on basic ideas underlying this field theory. Th Standard Model describes interactions of fields of various spins and includes spin-1, spin-1/2 and spin-0 particles. Spin-1 particles are observed as gauge bosons of electroweak interactions. Spin- 1/2 particles are represented by quarks and leptons. And spin-0, or Higgs particles have not yet been observed although, as we shall discuss later, we can say that scalar particles are in fact longitudinal components of the vector bosons. Interaction of the vector bosons can be consistently described only if it is highly symmetrical, or universal. Moreover, from experiment we know that the corresponding couplings are weak and can be treated perturbatively. Interaction of spin-1/2 and spin-0 particles are fixed by theory to a much lesser degree and bring in many parameters of the SM.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at NN
    Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at sNN = 62.4 GeV Ming Shao1,2 for the STAR Collaboration 1University of Science & Technology of China, Anhui 230027, China 2Brookhaven National Laboratory, Upton, New York 11973, USA PACS: 25.75.Dw, 12.38.Mh Abstract. We report on preliminary results of pion, kaon, and (anti-) proton trans- verse momentum spectra (−0.5 < y < 0) in Au+Au collisions at sNN = 62.4 GeV us- ing the STAR detector at RHIC. The particle identification (PID) is achieved by a combination of the STAR TPC and the new TOF detectors, which allow a PID cover- age in transverse momentum (pT) up to 7 GeV/c for pions, 3 GeV/c for kaons, and 5 GeV/c for (anti-) protons. 1. Introduction In 2004, a short run of Au+Au collisions at sNN = 62.4 GeV was accomplished, allowing to further study the many interesting topics in the field of relativistic heavy- ion physics. The measurements of the nuclear modification factors RAA and RCP [1][2] at 130 and 200 GeV Au+Au collisions at RHIC have shown strong hadron suppression at high pT for central collisions, suggesting strong final state interactions (in-medium) [3][4][5]. At 62.4 GeV, the initial system parameters, such as energy and parton den- sity, are quite different. The measurements of RAA and RCP up to intermediate pT and the azimuthal anisotropy dependence of identified particles at intermediate and high pT for different system sizes (or densities) may provide further understanding of the in-medium effects and further insight to the strongly interacting dense matter formed in such collisions [6][7][8][9].
    [Show full text]
  • Photon–Photon and Electron–Photon Colliders with Energies Below a Tev Mayda M
    Photon–Photon and Electron–Photon Colliders with Energies Below a TeV Mayda M. Velasco∗ and Michael Schmitt Northwestern University, Evanston, Illinois 60201, USA Gabriela Barenboim and Heather E. Logan Fermilab, PO Box 500, Batavia, IL 60510-0500, USA David Atwood Dept. of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA Stephen Godfrey and Pat Kalyniak Ottawa-Carleton Institute for Physics Department of Physics, Carleton University, Ottawa, Canada K1S 5B6 Michael A. Doncheski Department of Physics, Pennsylvania State University, Mont Alto, PA 17237 USA Helmut Burkhardt, Albert de Roeck, John Ellis, Daniel Schulte, and Frank Zimmermann CERN, CH-1211 Geneva 23, Switzerland John F. Gunion Davis Institute for High Energy Physics, University of California, Davis, CA 95616, USA David M. Asner, Jeff B. Gronberg,† Tony S. Hill, and Karl Van Bibber Lawrence Livermore National Laboratory, Livermore, CA 94550, USA JoAnne L. Hewett, Frank J. Petriello, and Thomas Rizzo Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 USA We investigate the potential for detecting and studying Higgs bosons in γγ and eγ collisions at future linear colliders with energies below a TeV. Our study incorporates realistic γγ spectra based on available laser technology, and NLC and CLIC acceleration techniques. Results include detector simulations.√ We study the cases of: a) a SM-like Higgs boson based on a devoted low energy machine with see ≤ 200 GeV; b) the heavy MSSM Higgs bosons; and c) charged Higgs bosons in eγ collisions. 1. Introduction The option of pursuing frontier physics with real photon beams is often overlooked, despite many interesting and informative studies [1].
    [Show full text]
  • Pion-Proton Correlation in Neutrino Interactions on Nuclei
    PHYSICAL REVIEW D 100, 073010 (2019) Pion-proton correlation in neutrino interactions on nuclei Tejin Cai,1 Xianguo Lu ,2,* and Daniel Ruterbories1 1University of Rochester, Rochester, New York 14627, USA 2Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom (Received 25 July 2019; published 22 October 2019) In neutrino-nucleus interactions, a proton produced with a correlated pion might exhibit a left-right asymmetry relative to the lepton scattering plane even when the pion is absorbed. Absent in other proton production mechanisms, such an asymmetry measured in charged-current pionless production could reveal the details of the absorbed-pion events that are otherwise inaccessible. In this study, we demonstrate the idea of using final-state proton left-right asymmetries to quantify the absorbed-pion event fraction and underlying kinematics. This technique might provide critical information that helps constrain all underlying channels in neutrino-nucleus interactions in the GeV regime. DOI: 10.1103/PhysRevD.100.073010 I. INTRODUCTION Had there been no 2p2h contributions, details of absorbed- pion events could have been better determined. The lack In the GeV regime, neutrinos interact with nuclei via of experimental signature to identify either process [14,15] is neutrino-nucleon quasielastic scattering (QE), resonant one of the biggest challenges in the study of neutrino production (RES), and deeply inelastic scattering (DIS). interactions in the GeV regime. In this paper, we examine These primary interactions are embedded in the nucleus, the phenomenon of pion-proton correlation and discuss where nuclear effects can modify the event topology. the method of using final-state (i.e., post-FSI) protons to For example, in interactions where no pion is produced study absorbed-pion events.
    [Show full text]