<<

HIGH ASTROPHYSICS - Lecture 10

PD Frank Rieger ITA & MPIK Heidelberg Wednesday

1 Pair Plasmas in Astrophysics

1 Overview

γ + γ → e+ + e− (threshold) • Compactness parameter • Example I: ”internal” γγ-absorption in AGN (Mkn 421) • Example II: EBL & limited transparency of the Universe to TeV • Pair e+ + e− → γ + γ (no threshold) • Example: Annihilation-in-flight (energetics)

2 2 Two- Pair Production

Generation of e+e−-pairs in environments with very high energy density:

γ + γ → e+ + e−

• Reaction threshold for pair production (see lecture 9):

2 2 e1e2 − p1p2 cos θ = m1m2c + δm c (m1 + m2 + 0.5 δm)

With mi = 0, ei := i/c = pi (photons) and δm = 2me:

2 4 2 4 12(1 − cos θ) = 0.5 (δm) c = 2mec

2 4 ⇒ 12 = mec for producing e+e− at rest in head-on collision (lab frame angle cos θ = −1).

12 • Example: for TeV photon 1 = 10 eV, interaction possible with soft photons 2 2 ≥ (0.511) eV = 0.26 eV (infrared photons).

3 • Cross-section for pair-production:

πr2  1 + β∗  σ (β∗) = 0 (1 − β∗2) 2β∗(β∗2 − 2) + (3 − β∗4) ln γγ 2 1 − β∗

with β∗ = v∗/c velocity of () in centre of frame, 2 and πr0 = 3σT /8.

In terms of photon and collision angle θ (cf. above):

∗2 ∗ ∗ 2 2 ∗2 −1/2 12(1 − cos θ) = 2Ee and Ee = γ mec = mec (1 − β ) ∗ where Ee =total energy of electron (positron) in CoM frame, so 1   (1 − cos θ) = 2γ∗2m2c4 = 2m2c4 1 2 e e (1 − β∗2)

s 2m2c4 ⇒ β∗ = 1 − e 12(1 − cos θ)

4 1 + - "+" --> e + e T !

/ 0.1 "" !

0.01 1 10 100

#1 #2 (1-cos$)

Figure 1: Cross-section for γγ-pair production in units of the Thomson cross-section σT as a function of 2 2 interacting photon energies (1/mec )(2/mec ) (1−cos θ). The cross-section rises sharply above the threshold 2 4 2 4 12(1 − cos θ) = 2mec and has a peak of ' σT /4 at roughly twice this value, i.e. at 12(1 − cos θ) = 4mec . 5 • At low energies, large annihilation probability of created pairs (cf. later). • Maximum of cross-section(isotropic radiation field, average of cos θ → 0) 2 4 σγγ ' 0.25σT at 12 ' 4mec ⇒ TeV photons interact most efficiently with infrared photons

1 TeV t := 2 ' 1 eV 1 ⇒ produced e+e− will be highly relativistic and tend to move in direction of initial VHE γ-ray. • High-energy limit (β∗ → 1): πr2  1 + β∗  σ (β∗) = 0 (1 − β∗2) 2β∗(β∗2 − 2) + (3 − β∗4) ln γγ 2 1 − β∗ 3σ  (1 + β∗)(1 + β∗) ⇒ σ (β∗) → T (1 − β∗2) 2(1 − 2) + (3 − 1) ln γγ 16 (1 − β∗)(1 + β∗) ∗ 3 σT  ∗2  1 σγγ(β ) ' ∗2 ln(4γ ) − 1 ∝ 8 γ 1t

⇒ γ-rays with 1 can interact with all photons above threshold, but cross- section decreases.

6 • Delta-function approximation for cross-section in power-law soft photon field (cf. Zdziarski & Lightman 1985):

−α1 (e.g., γ-ray with 1 interacting with power-law differential energy density n(2) ∝ 2 ; approximating interac- 2 4 tion by cross-section peak at 12 ' 2mec [head-on] and accounting for proper normalization)  2  δ σT 2 2 2mec σγγ(1, 2) ' 2 δ 2 − 3 mec mec 1

• Compare (noting δ(ax) = (1/|a|)δ()):   2  2  max 1 12 σT 2mec 2 2mec σγγ ∼ σT δ 2 4 − 1 = δ 2 − 4 2mec 4 1 mec 1  2  σT 2 2 2mec = 2 δ 2 − 4 mec mec 1 with 2 4 12 ' 2mec (from peak location for head − on)

7 • In general optical depth for γγ-absorption of a γ-ray photon in differential soft photon field nph(2, Ω, x) including interaction probability ∝ (1 − cos θ): Z Z Z ∞

τγγ(1) = dx dΩ (1 − cos θ) 2 4 d2 nph(2, Ω, x) σγγ(1, 2, cos θ) 0 4π 2mec 1(1−cos θ)

−α Example: For isotropic power-law soft photon field (Fν ∝ ν ) with energy −α1 spectral index α = α1 − 1, i.e. nph(2) ∝ 2 using δ-approximation: Z ∞  2 4  σT 2mec τγγ(1) ' R d2 nph(2) 2 δ 2 − 3 2 4  mec /1 1 2 4  2 4  σT 2mec 2mec 1 α1 α ' R nph ∝ 1 ∝ 1 3 1 1 1

⇒ τγγ increase with increasing 1 (there are more targets if α > 0).

8 • Estimating optical depth for homogeneous non-relativistically moving source:

L( > t) Ltσγγ τγγ(1) ' ntσγγR ' σγγ ' 3 4πRct 4πRmec

with σγγ ' σT /4 and nt number density of target photons, and where last 2 equality holds for typical photon energies < t >∼ mec .

⇒ source can be opaque for high target luminosities Lt and small sizes R

• If absorbing radiation field is external to source (e.g., BLR in AGN, EBL interactions), γγ-absorption leads to exponential suppression (lect. 3):

obs int −τγγ() Fν () = Fν () e

9 • If absorption is internal, i.e. happens within source, from formal solution of

radiation transfer equation: (cf. lecture 3, no background source Iν(0) ' 0, and constant source

function Sν := jν/αν with τν = ανR):

−τν  jνR −τν  jνR −τν  Iν(τν) ' Sν 1 − e = 1 − e = 1 − e ανR τν

−τγγ() int obs int 1 − e Fν () ⇒ Fν () ' Fν () ' for τγγ  1 τγγ() τγγ()

• Compactness parameter lc for measuring relevance of internal γγ-absorption:

Lγ σT lc := 3 4πR mec

(Note: Sometimes, lc is defined without 4π in denominator) > > At MeV energies, τγγ ∼ 1 ⇔ lc ∼ 4. ⇒ if lc  1, then high-energy photons are likely to be absorbed.

10 3 Example I: ”Internal” γγ-absorption in AGN: Mkn 421 (d ∼ 140 Mpc)

Figure 2: Spectral Energy Distribution (SED) for the BL Lac object Markarian 421 as seen by different instruments [Credits: Abdo, A. et al., ApJ 736 (2011)]. 11 • Application to Markarian 421 – assume ”characteristic” numbers: 14 44 Schwarzschild rS ∼ 10 cm, LIR ∼ 10 erg/s (cf. SED), IR ∼ 1 eV ∼ 10−12 erg

LIRσγγ 5 rs  ⇒ τ(VHE) ' ∼ 3 × 10  1 4πRcIR R ⇒ IR flux from extended region R  rs and/or jetted-AGN emission (variability may help to distinguish)

• Note: Modification for relativistically moving source (”blob”): (1) Apparent vs intrinsic luminosity (flux enhancement by beaming, lect. 3): 4 0 Lt = D Lt (2) Short-term variability vs size of emitting region (Doppler formula): 0 0 ∆tobs = ∆t /D ⇒ R = cD∆tobs

(3) boosting with D = 1/[γb(1 − βb cos i)]: 0 0 t = Dt ⇔ t = t/D ⇒ Optical depth: 0 0 0 Ltσγγ Lt Lt τ ' 0 0 ∝ 0 0 ∝ 4 4πR ct R t D

12 4 Example II: ”External” Absorption of TeV photons in the Ex- tragalactic Background Light

• Extragalactic background light (EBL) = accumulated light from all galaxies (optical/UV) reprocessed by dust (infrared) ⇒ TeV photons from a distant AGN traversing EBL will get absorbed.

Figure 3: Sketch illustrating absorption of VHE gamma-rays from distant AGN by interaction with the EBL [Credits: M. Raue].

13 Figure 4: EBL energy density in the local Universe (z = 0) with model curves to observations (data points) [Credits: J. Primack]. The EBL is usually difficult to measure due to foreground emission from within the solar system and the Milky Way. Note: λ =1 Angstroem= 10−8 cm corresponds to ν = c/λ = 3 × 1018 Hz.

• TeV photons of energy 1 primarily interact with infrared photons of energy 1 TeV 2 ' 1 eV, corresponding to 1

h c 4 λ2 = = 1.2 × 10 (1/1 TeV) Angstrom = 1.2 (1/1 TeV) µ m 2

14 Figure 5: Gamma-ray flux attenuation for γ-ray photons of energy Eγ from sources at different redshifts z. The plateau between 1 and 10 TeV at low redshifts is a consequence of the mid-IR valley in the EBL spectrum [Credits: J. Primack]. • EBL spectrum and intensity depends on cosmological time ( formation history) and hence on redshift z. ”Knowing” intrinsic source spectra, γγ absorption imprint can be used to diagnose EBL evolution.

15 5 Pair Annihilation

Decay of e+e−-pairs into two photons (no threshold):

e+ + e− → γ + γ

• Annihilation cross-section in center of momentum (CoM) frame: " # 2 ∗2 ∗   ∗ ∗ πr0 γ + 4γ + 1 ∗ p ∗2 γ + 3 σe+e−(γ ) = ln γ + γ − 1 − γ∗ + 1 γ∗2 − 1 pγ∗2 − 1

∗ ∗ 2 2 2 with γ = E /mec energy in CoM frame, r0 = e /mec (cgs) classi- 2 cal electron radius. Note: Thomson cross-section σT := 8πr0/3.

• Low-energy (β∗ << 1, thermal electrons) limit:

1 2 3σT σ + − ' πr = e e β∗ 0 8β∗ ⇒ Annihilation probability is high for nearly at rest. 2 ⇒ Decay produces two γ’s very close to rest energy of electron: hν ∼ mec ⇒ 0.511 MeV ”annihilation line”

16 10 + - e + e --> "+"

1 T ! / - e + e !

0.1

1 * "

Figure 6: Cross-section σe+e− for pair annihilation in units of the Thomson cross-section σT as a function of CoM electron/positron Lorentz factor γ∗.

17 • High energy (γ∗  1) limit: 2 πr0 ∗ σ + − ' (ln 2γ − 1) e e γ∗ Decay produces two photons, but photons have broader energy spread ⇒ ”annihilation spectrum”.

• If ambient density of is ne, characteristic positron annihilation time scale (assuming σe+e− ∼ 3σT /8) is:

1 6  ne  tann ' ∼ 4 × 10 −3 year cneσe+e− cm

+ + + + + + • Note: e are created in π -decay, i.e. π → µ +νµ with µ → e +ν¯µ+νe, the charged ’s being created in pp-collisions (lect. 9), p+p → p+n+π+.... Since pp-collisions also produce π0 which decay into γ-rays, flux of interstellar created by this process can be estimated from γ-ray luminosity of interstellar gas.

18 6 Example: Positron-electron-annihilation in flight

Maximum/minimum photon energy in case of relativistic e+ and stationary e−:

+ − 4-vectors Pe = γme(c,~v), Pe = mec(1, 0), Pγ1 = e1(1, −~n), Pγ2 = e2(1, ~n), with ~n = ~v/|~v|:

+ − Pe + Pe = Pγ1 + Pγ2

2 2 ⇒ P = (P + + P − − P ) γ1 e e γ2

2 2 2 ⇒ 0 = P + + P − + P +2 P +P − − 2P +P − 2P −P e e γ2 e e e γ2 e γ2

 v ⇒ 0 = 2m2c2 +2 γm2c2 − 2γm ce 1 − − 2m ce e e e 2 c e 2

i 1 + γ 2 1 + γ ⇒ ei := = mec = mec v p 2 c γ(1 ∓ c ) + 1 γ ∓ γ − 1 + 1

(minus sign for e2; plus sign for e1 once solved for Pγ2)

19 Have i 2 1 + γ ⇒ ei := = mec c γ ∓ pγ2 − 1 + 1

+ 2 2 T In terms of kinetic e -energy: T = E − mec = (γ − 1)mec ⇔ γ = 2 + 1: mec 2 2 2 2 mec (T + 2mec ) mec mec i = √ = √ = 2 2 2 2 2 −1/2 T + 2mec ∓ 2mec T + T T 1+2mec /T 1 ∓ (1 + 2mec /T ) 1 ∓ 2 T (1+2mec /T ) 2 −1/2 x For T  mec , expansion (1 + x) ' 1 − 2 , 2 mec i ' 2 1 ∓ (1 − mec /T ) Hence m c2  ' e (plus sign) 1 2

2 ' T ( for minus sign) ⇒ forward-going photon (maximum) takes almost all the kinetic energy of the positron, while energy of backward-moving photon (minimum) is only half the rest energy. ⇒ in lab. frame, photon spectrum by annihilation will spread over interval [1, 2].

20