<<

Estimation and Control of Processes Utilizing Variable Intake Valve Actuation

Lyle E. Kocher Technical Advisor Advanced Engineering

Innovation you can depend on™ Innovation You Can Depend On 2

• • • • • •

Gas Exchange ModelGas Approach Based Model Experimental TestBed Combustion Model Summary Controller Development • • • • •

Manifold Filling DynamicsFilling Manifold PCCI Combustion Timing Model Oxygen DynamicsFraction Volumetric Efficiency PCCI Combustion TimingPCCI

Presentation Overview

Exhaust

Manifold Intake Position VGT VGT

EGR VALVE FRESH Position Valve EGR EGR

AIR

Cooler

Modulation Fueling

IVC IVC

CAC Innovation You Can Depend On 3

• • • • • 2010 ISB2010 Cummins System Actuation Valve Variable Air Rail Common Ratio Compression 17.3:1 kW) HP (268 360 • • • • • Electro Variable Geometry ValveGas Recirculation Exhaust - Handling System Cycle Independent -Hydraulic -tocycle Experimental

System

Test Bed

Innovation You Can Depend On 4 EGR valve

• • • position position

Timing Physically Validatedstability, via (math analysis -based convergence Validated experimentally Valve VGT VGT

rate, and sensitivity/uncertainty analysis) Engine Engine speed based -based Exchange Process Gas Model Based Approach Based Model Exhaust gas enthalpy generalizable

injection “mixing”

[O Fuel m ECR T 2 IVC IVC ] IVC

models

• • PCCI, LTC) strategies (i.e. combustion Advanced combustion Conventional Combustion Combustion

Process

consumption Emissions Torque Exhaust gas

enthalpy

Fuel

Innovation You Can Depend On • 5 Model States5 Model • • • Manifold Intake Exhaust Manifold Turbo Shaft Speed Turbo • • • • Pressure Pressure Temperature Temperature

Gas ExchangeModel Exhaust

Manifold Exhaust Manifold Intake Position VGT VGT EGR

EGR VALVE Cooler Position Valve EGR LFE

Commands Intake Valve Valve Intake Modulation Fueling Fueling AIR

CAC FRESH

AIR

Innovation You Can Depend On WW TWT TTWT T T ω  em  tc +−+− + − −+ + = = TT WT T T W T T W T  im η RT PV mem em mem em ubcomp turb m = PP I RT PV ubtc turb mim im mim im   − ω ( p  Equation State Speed Turbocharger mehe g me mte mem em em t em em em egr em exh em f e   em Exhaust Manifold State Equations State Manifold Exhaust Intake Manifold State Equations State Manifold Intake −− + = g meri mcci mi im im im e im cac im c im egr im egr TWT WT T W p  im γ ( x exh exh ) γγ γγ Gas ExchangeModel V +− = ( em γγ γ R γ mim im V im R   +− − −+ −+ ( WT T W T W W ( x g mtem t em egr exh f e ) g g a im e cac c egr egr )

) ( ( ) )

)

(

( ) ) Innovation You Can Depend On η vol =     AnalyticalTurbocharger PerformanceFunctions VPVVPVV V P V V P PV V P im     V V ivc ivc eff  k v mioe v ivo evc em ivo em ivc TV cc evo ηη RNWfP N PR f W N PR f W vv −+ − − c Volumetric EfficiencyModel = c = Gas ExchangeModel ECR P k V R m = Exhaust Enthalpy Model pk meoe evo im c RNfP N PR f N PR f im ( ( ECR kk ea ubt turb c ubt turb c − , , 1 k ( , , WV a    mvld vol im e = e ρη − ) ) 1 P

) ( im cR bmQ N a V p ⋅+ dp = c = im N mi im 2 ( ( ) ( civo vc ef f LHV f −− turb t turb t ) +

tdc ) h )

v ivc ivo k − e ( T T alim wall − ) A s v iv ivo − c R   Innovation You Can Depend On VolumetricEfficiency Model Results Gas ExchangeModel ±

5% Lines 5% RMSError 2.5%

Innovation You Can Depend On 1850 RPM, 300 ft-lb 1850 RPM, Results Model Exchange Gas Gas ExchangeModel

Innovation You Can Depend On 10 WFW FW W W F F  em WFW FW W F F −− +− =  im PV RT mem em +− = Gas ExchangeModel PV em RT mim im   im oefe g mt em egr em f e eo   ( m meri e im egr em c amb )

Innovation You Can Depend On 11

OxygenFraction Estimator Results Gas ExchangeModel

Innovation You Can Depend On 12 StartPredictionCombustion of PCCI Combustion Timing Combustion PCCI

Model Red lines are ± are lines Red

2 ° CA

Innovation You Can Depend On 13 Slower Slower dynamics driven by gas exchange process • • Can dynamics? we separate timing? combustion PCCI control to controlled be to needs What Fasterprocessdriven dynamics byfuel injection PCCI Combustion Timing Combustion PCCI

Model

Innovation You Can Depend On 14

PCCI Combustion Timing Combustion PCCI F im

1600 rpm &1600 rpm 140ft Command Step Change Command

Controller - lbf

Innovation You Can Depend On 15

PCCI Combustion Timing Combustion PCCI SOC Command Step ChangeSOC Command 1600 rpm &1600 rpm 140ft

Controller - lbf

Innovation You Can Depend On 16 • • • • • •

Gas Exchange ModelGas Approach Based Model Experimental TestBed Combustion Model Summary Controller Development • • • • •

Manifold Filling DynamicsFilling Manifold PCCI Combustion Timing Model Oxygen DynamicsFraction Volumetric Efficiency PCCI Combustion TimingPCCI

Summary

Exhaust

Manifold Exhaust Manifold Intake Position VGT VGT EGR VALVE FRESH Position Valve EGR EGR

AIR

Cooler

Modulation Fueling

IVC IVC

CAC