High-Performance and Fuel-Efficient Common Rail Systems by Liebherr Common Rail Systems by Liebherr

Total Page:16

File Type:pdf, Size:1020Kb

High-Performance and Fuel-Efficient Common Rail Systems by Liebherr Common Rail Systems by Liebherr High-Performance and Fuel-Efficient Common Rail Systems by Liebherr Common Rail Systems by Liebherr 2 Common Rail Systems by Liebherr The operational spectrum of Liebherr Common Rail systems covers inroad and onroad machines as well as stationary applications and includes the medium and heavy duty ranges. The highly flexible system is equally reliable for series inline and V-engines and supports compliance with applicable and future emissions stand- ards. These include the offroad standards USA EPA CARB Tier 4, 97 / 68 EC Stage IIIA, Stage IV and Stage V, as well as the onroad standards Euro V and Euro VI. The injection technology developed in-house has already demonstrated its success in nearly 400 engine variants, in diesel engines made by the Liebherr Group as well as in units from other manufacturers. Advantages Liebherr's great engineering and sys- the harshest environmental conditions tem expertise as well as its high de- ensure the ultimate high-performance gree of vertical integration provide high and reliability of injection systems over flexibility in integration of Common Rail a long service life. Precision multiple systems in various engine variants. Dec- injection at pressures up to 2,200 bar ades of experience in the development guarantees low emissions and low fuel and production of diesel engines for consumption. Ultimate Comprehensive quality high-performance assurance Optimal fuel efficiency for your engine For lifetime reliability Engineering System expertise solutions State-of-the art methods for stable Your partner for complete integration power and high load capacity Precision parts from in-house production Flexibility for every customer requirement Common Rail Systems by Liebherr 3 Ultimate high-performance Liebherr Common Rail systems not only deliver a high injec- soot particles and NOx emissions already inside the engine. tion pressure of 2,200 bar, but also stable multiple injection The most complete fuel combustion possible ensures maxi- per combustion cycle. Therefore, it is possible to minimise mum energy use, which thereby reduces fuel use. 4 Common Rail Systems by Liebherr Optimal fuel efficiency for your engines High degree of efficiency Minimum switching leakage Efficient energy conversion from the high pressure generation Liebherr injectors are set apart by their very small amount up to the injection pressure is decisive for a high degree of of switching leakage. In the case of system injectors for en- efficiency of the injection system. Liebherr uses many design gines with a capacity of up to 2 litres per cylinder, at full load measures to connect the injector nozzles throttle-free, if pos- it is a maximum of 30 ml / min. This provides the following sible, to the high pressure pipe system, for example hole filters. advantages: • higher degree of efficiency and therefore lower Stable multi-point injection fuel consumption With multiple injection, pre-injection is very important for quiet • lower leakage temperatures, therefore lower cooling engine operation, the main injection is important for optimal requirements power development and maximum torque, and post-injection • good tolerance of various fuel qualities is important for reduction of emissions. • optimal preconditions for start-stop operation – as the system pressure is still maintained when the engine is The 3-way servo valve ensures that the injection spray is shut off, restarting is accelerated established moderately. Finally, the injection process is com- pleted by closing the nozzle needle very quickly. This results in a very clear boundary for the individual injections and a precisely measured fuel amount – both of which are deci- sive factors for an optimal combustion process, low fuel con- sumption and minimum raw emissions. 3-way servo valve Quantity engine characteristic map Injection rates The injector has an additional hydraulic At pressures from 200 to 2,200 bar, the The chart shows the fuel supply during the intermediate valve with which the nozzle quantity characteristic curves of the Liebherr injection process at various opening speeds needle can be closed very quickly and, injectors excel by very high linearity, i.e. of the servo valve depending on a set pres- independently of that, can be opened with uniform injection amounts. sure of between 200 and 2,200 bar. Closing adjustable speed. takes place independently. Injection rate Injection Quantity per stroke Time of current Time Common Rail Systems by Liebherr 5 Engineering expertise Simultaneous engineering concepts are used in development stant optimisation of the system and its modules. This en- of the Liebherr injection system. Modern development tools ables Liebherr to provide its customers with a reliable state- such as the Finite Element Method (FEM) and Computational of-the-art complete system. Fluid Dynamics analysis (CFD) contribute towards the con- 6 Common Rail Systems by Liebherr State-of-the art methods for stable power and high load capacity Product validation Engineering methods All components in Liebherr Common Rail systems are sub- Many components of a fuel injection system are subjected to ject to a thorough and comprehensive validation program. cyclic loads. When testing with FEM, particular emphasis is This is oriented on excellent system reliability and availability placed on determining and then optimising fatigue resistance. under demanding environmental conditions, as well as to- wards a long product service life. All Common Rail system components are also inspected It contains advanced models for damage modelling that use intensively by calculation engineers with CFD analyses to accelerated testing in endurance tests, mechanical strength model flow effects inside components and incorporate the tests, temperature tests and environmental tests to repro- findings in the design. duce the ageing process of components. Sophisticated statistical data analyses are used to ensure that the selected samples are representative for all components. Field trials are also a key element of the validation process. They are primarily used for verifying simulations of the under- lying data and accordingly modifying the validation tests. Development test bench Finite Element Method (FEM) CFD simulation Liebherr Common Rail systems are subject The FEM design not only determines fatigue CFD analyses made minimisation of the effect to comprehensive endurance tests on special resistance, but stress and deformation are also of cavitation erosion on nozzle needles and test benches during development. Acceler- inspected under operating and peak loads, nozzles possible; cavitation erosion results ated testing examines the ageing process of and component geometries are adapted from the very high flow speeds. the system and single components. accordingly. Common Rail Systems by Liebherr 7 Precision parts from in-house production Liebherr Common Rail and engine management systems are Lindau, Deggendorf is the competence centre for production developed and manufactured at three sites in Switzerland of micro-precision parts. The assembly lines for injectors and and Germany. Whilst engine control units are produced in high pressure pumps are in Bulle, Switzerland. 8 Common Rail Systems by Liebherr Flexibility for every customer requirement Micro-precision manufacturing Assembly monitoring The geometry of the nozzle hole and its process-reliable On the assembly line, which is configured for series produc- manufacturing are especially important for the required fine tion and largely automated, all manual process steps are fuel nebulisation. Therefore Liebherr has introduced Electri- monitored by the system technology. Operating errors are cal Discharge Machining (EDM) and Hydro Erosive Grinding practically eliminated by the intelligent quality management (HEG) manufacturing processes at a dedicated micro-preci- system (Poka Yoke). sion manufacturing site. High parts availability Assembly in a clean room Large investments in modern production and test facilities Extreme care is necessary during assembly to ensure the enable fast start-up times for series production. For maxi- functional capability of the high-precision parts in the Com- mum flexibility, the latest knowledge about material flow and mon Rail system. The parts must be absolutely dust and other process sequences were taken into account when oil-free, therefore they are cleaned in four separate washing constructing the facilities. High parts availability provides the cycles. High pressure pump, high pressure connector and foundation for optimum customer support. injector components are assembled in a class 7 clean room after acclimatisation to ensure absolute precision during assembly. Electrical Discharge Machining Hydro Erosive Grinding Injector assembly To ensure it can reliably maintain tolerances At its Deggendorf site, Liebherr has many The injectors assembled in the clean room of a few µm, Liebherr uses the electrical years of experience with hydro erosive grind- are subjected to various tests as early as discharge machining process based on spark ing. It is used primarily to round injector nozzle during assembly, for checking fitted O-rings erosion in the production of injector holes and exactly set the flow rate. for example. components. Common Rail Systems by Liebherr 9 Comprehensive quality assurance Uncompromising quality assurance is indispensable for as the production creation process and covers the entire the high reliability and availability of fuel injection systems. product life cycle. Efficient
Recommended publications
  • Engine Control Unit
    Engine Control Unit João Filipe Ferreira Vicente Dissertation submitted for obtaining the degree in Master of Electronic Engineering, Instituto Superior Técnico Abstract The car used (Figure 1) has a fibreglass body and uses a Honda F4i engine taken from the Honda This paper describes the design of a fully CBR 600. programmable, low cost ECU based on a standard electronic circuit based on a dsPIC30f6012A for the Honda CBR600 F4i engine used in the Formula Student IST car. The ECU must make use of all the temperature, pressure, position and speed sensors as well as the original injectors and ignition coils that are already available on the F4i engine. The ECU must provide the user access to all the maps and allow their full customization simply by connecting it to a PC. This will provide the user with Figure 1 - FST03. the capability to adjust the engine’s performance to its needs quickly and easily. II. Electronic Fuel Injection Keywords The growing concern of fuel economy and lower emissions means that Electronic Fuel Injection Electronic Fuel Injection, Engine Control Unit, (EFI) systems can be seen on most of the cars Formula Student being sold today. I. Introduction EFI systems provide comfort and reliability to the driver by ensuring a perfect engine start under This project is part of the Formula Student project most conditions while lessening the impact on the being developed at Instituto Superior Técnico that environment by lowering exhaust gas emissions for the European series of the Formula Student and providing a perfect combustion of the air-fuel competition.
    [Show full text]
  • 05 NG Engine Technology.Pdf
    Table of Contents NG Engine Technology Subject Page New Generation Engine Technology . .5 Turbocharging . .6 Turbocharging Terminology . .6 Basic Principles of Turbocharging . .7 Bi-turbocharging . .10 Air Ducting Overview . .12 Boost-pressure Control (Wastegate) . .14 Blow-off Control (Diverter Valves) . .15 Charge-air Cooling . .18 Direct Charge-air Cooling . .18 Indirect Charge Air Cooling . .18 Twin Scroll Turbocharger . .20 Function of the Twin Scroll Turbocharger . .22 Diverter valve . .22 Tuned Pulsed Exhaust Manifold . .23 Load Control . .24 Controlled Variables . .25 Service Information . .26 Limp-home Mode . .26 Direct Injection . .28 Direct Injection Principles . .29 Mixture Formation . .30 High Precision Injection . .32 HPI Function . .33 High Pressure Pump Function and Design . .35 Pressure Generation in High-pressure Pump . .36 Limp-home Mode . .37 Fuel System Safety . .38 Piezo Fuel Injectors . .39 Injector Design and Function . .40 Injection Strategy . .42 Initial Print Date: 09/06 Revision Date: 03/11 Subject Page Piezo Element . .43 Injector Adjustment . .43 Injector Control and Adaptation . .44 Injector Adaptation . .44 Optimization . .45 HDE Fuel Injection . .46 VALVETRONIC III . .47 Phasing . .47 Masking . .47 Combustion Chamber Geometry . .48 VALVETRONIC Servomotor . .50 Function . .50 Subject Page BLANK PAGE NG Engine Technology Model: All from 2007 Production: All After completion of this module you will be able to: • Understand the technology used on BMW turbo engines • Understand basic turbocharging principles • Describe the benefits of twin Scroll Turbochargers • Understand the basics of second generation of direct injection (HPI) • Describe the benefits of HDE solenoid type direct injection • Understand the main differences between VALVETRONIC II and VALVETRONIC II I 4 NG Engine Technology New Generation Engine Technology In 2005, the first of the new generation 6-cylinder engines was introduced as the N52.
    [Show full text]
  • Design of the Electronic Engine Control Unit Performance Test System of Aircraft
    aerospace Article Design of the Electronic Engine Control Unit Performance Test System of Aircraft Seonghee Kho 1 and Hyunbum Park 2,* 1 Department of Defense Science & Technology-Aeronautics, Howon University, 64 Howondae 3gil, Impi, Gunsan 54058, Korea; [email protected] 2 School of Mechanical Convergence System Engineering, Kunsan National University, 558 Daehak-ro, Miryong-dong, Gunsan 54150, Korea * Correspondence: [email protected]; Tel.: +82-(0)63-469-4729 Abstract: In this study, a real-time engine model and a test bench were developed to verify the performance of the EECU (electronic engine control unit) of a turbofan engine. The target engine is a DGEN 380 developed by the Price Induction company. The functional verification of the test bench was carried out using the developed test bench. An interface and interworking test between the test bench and the developed EECU was carried out. After establishing the verification test environments, the startup phase control logic of the developed EECU was verified using the real- time engine model which modeled the startup phase test data with SIMULINK. Finally, it was confirmed that the developed EECU can be used as a real-time engine model for the starting section of performance verification. Keywords: test bench; EECU (electronic engine control unit); turbofan engine Citation: Kho, S.; Park, H. Design of 1. Introduction the Electronic Engine Control Unit The EECU is a very important component in aircraft engines, and the verification Performance Test System of Aircraft. test for numerous items should be carried out in its development process. Since it takes Aerospace 2021, 8, 158. https:// a lot of time and cost to carry out such verification test using an actual engine, and an doi.org/10.3390/aerospace8060158 expensive engine may be damaged or a safety hazard may occur, the simulator which virtually generates the same signals with the actual engine is essential [1].
    [Show full text]
  • SURVEY on MULTI POINT FUEL INJECTION (MPFI) ENGINE Deepali Baban Allolkar*1, Arun Tigadi 2 & Vijay Rayar3 *1 Department of Electronics and Communication, KLE Dr
    ISSN: 2277-9655 [Allolkar* et al., 7(5): May, 2018] Impact Factor: 5.164 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SURVEY ON MULTI POINT FUEL INJECTION (MPFI) ENGINE Deepali Baban Allolkar*1, Arun Tigadi 2 & Vijay Rayar3 *1 Department of Electronics and Communication, KLE Dr. M S Sheshgiri College of Engineering and Technology, India. 2,3Assistant Professor, Department of Electronics and Communication, KLE Dr. M S Sheshgiri College of Engineering and Technology, India. DOI: 10.5281/zenodo.1241426 ABSTRACT The Multi Point Fuel Injection (MPFI) is a system or method of injecting fuel into internal combustion engine through multi ports situated on intake valve of each cylinder. It delivers an exact quantity of fuel in each cylinder at the right time. The amount of air intake is decided by the car driver by pressing the gas pedal, depending on the speed requirement. The air mass flow sensor near throttle valve and the oxygen sensor in the exhaust sends signal to Electronic control unit (ECU). ECU determines the air fuel ratio required, hence the pulse width. Depending on the signal from ECU the injectors inject fuel right into the intake valve. Thus the multi-point fuel injection technology uses individual fuel injector for each cylinder, there is no gas wastage over time. It reduces the fuel consumption and makes the vehicle more efficient and economical. KEYWORDS: Multi point fuel injection (MPFI), Cylinder, Gas pedal, Throttle valve, Electronic control Unit (ECU). I. INTRODUCTION Petrol engines used carburetor for supplying the air fuel mixture in correct ratio but fuel injection replaced carburetors from the 1980s onward.
    [Show full text]
  • FUEL INJECTION SYSTEM for CI ENGINES the Function of a Fuel
    FUEL INJECTION SYSTEM FOR CI ENGINES The function of a fuel injection system is to meter the appropriate quantity of fuel for the given engine speed and load to each cylinder, each cycle, and inject that fuel at the appropriate time in the cycle at the desired rate with the spray configuration required for the particular combustion chamber employed. It is important that injection begin and end cleanly, and avoid any secondary injections. To accomplish this function, fuel is usually drawn from the fuel tank by a supply pump, and forced through a filter to the injection pump. The injection pump sends fuel under pressure to the nozzle pipes which carry fuel to the injector nozzles located in each cylinder head. Excess fuel goes back to the fuel tank. CI engines are operated unthrottled, with engine speed and power controlled by the amount of fuel injected during each cycle. This allows for high volumetric efficiency at all speeds, with the intake system designed for very little flow restriction of the incoming air. FUNCTIONAL REQUIREMENTS OF AN INJECTION SYSTEM For a proper running and good performance of the engine, the following requirements must be met by the injection system: • Accurate metering of the fuel injected per cycle. Metering errors may cause drastic variation from the desired output. The quantity of the fuel metered should vary to meet changing speed and load requirements of the engine. • Correct timing of the injection of the fuel in the cycle so that maximum power is obtained. • Proper control of rate of injection so that the desired heat-release pattern is achieved during combustion.
    [Show full text]
  • Heat Release Analysis and Modeling for a Common-Rail Diesel Engine
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2002 Heat Release Analysis and Modeling for a Common-Rail Diesel Engine M. Rajkumar University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Mechanical Engineering Commons Recommended Citation Rajkumar, M., "Heat Release Analysis and Modeling for a Common-Rail Diesel Engine. " Master's Thesis, University of Tennessee, 2002. https://trace.tennessee.edu/utk_gradthes/2144 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by M. Rajkumar entitled "Heat Release Analysis and Modeling for a Common-Rail Diesel Engine." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Mechanical Engineering. Dr. Ming Zheng, Major Professor We have read this thesis and recommend its acceptance: Dr. Jeffrey W. Hodgson, Dr. David K. Irick Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by M.Rajkumar entitled "Heat Release Analysis and Modeling for a Common-Rail Diesel Engine”.
    [Show full text]
  • Sudden Acceleration in Vehicles with Common Rail Diesel Engines
    Sudden Acceleration in Vehicles with Common Rail Diesel Engines by Ronald A. Belt Plymouth, MN 55447 1 July 2016 Abstract: An explanation is given for sudden unintended acceleration (SUA) in vehicles with common rail diesel engines. SUA is explained by an increase in the gain of the common rail pressure controller that leads to more fuel being injected into the engine than the throttle map specifies. The gain increase is caused by an erroneous battery voltage compensation coefficient produced by a negative voltage spike occurring while the battery voltage is being sampled. The erroneous battery voltage compensation coefficient increases the fuel injected into the engine, causing an increase in the engine speed, which causes the next iteration of the throttle map to issue a new common rail pressure set-point that is even higher than the previous one. The result is a runaway engine speed without the driver’s foot being on the accelerator pedal. No diagnostic trouble code (DTC) is produced because all the engine sensors and actuators are working normally except for the battery voltage compensation coefficient, and this compensation coefficient is not checked for an erroneous value. This explains why a majority of SUA incidents occur while the engine is at idle in a parking lot or at stop sign because this is the only time that the battery voltage can be determined by sampling the supply voltage. It also explains why the high engine speeds go away when the ignition is turned off and the engine is restarted, because a new battery voltage sample is taken after restarting that is not affected by a random negative voltage spike.
    [Show full text]
  • Common Rail Design & Field Experience
    Common Rail Design & Field Experience Introduction MAN Diesel & Turbo Common Rail MAN Diesel & Turbo is the world’s leading designer and manufacturer of low and medium speed engines – engines from MAN Diesel & Turbo cover an estimated 50% of the power needed for all world trade. We develop two-stroke and four-stroke engines, auxiliary en- gines, turbochargers and propulsion packages that are manufactured both within the MAN Diesel & Turbo Group and at our licensees. The coming years will see a sharp in- increasingly important success factor continuous and load-independ ent con- crease in the ecological and eco- for marine and power diesel engines. trol of injection timing and injection nomical requirements placed on Special emphasis is placed on low load pressure. This means that common rail combustion engines. Evidence of operation, where conventional injection technology achieves, for a given engine, this trend is the further tightening of leaves little room for optimization, as highest levels of flexibility for all load emission standards worldwide, a de- the injection process, controlled by the ranges and yields significantly better re- velopment that aims not only at im- camshaft, is linked to engine speed. sults than any conventional injection proving fuel economy but above all Thus, possibilities for designing a load- system. at achieving clean combustion that indepen dent approach to the combus- is low in emissions. tion pro cess are severely limited. A reliable and efficient CR system for an extensive range of marine fuels has Compliance with existing and upcom- MAN Diesel & Turbo’s common rail tech- been developed and is also able to ing emission regulations with best pos- nology (CR) severs this link in medium handle residual fuels (HFO).
    [Show full text]
  • Closed Loop Engine Management System
    Information Sheet #105 CLOSED-LOOP CONTROL SYSTEMS ON GASEOUS GENERATORS Frequently the engine used to drive the generator in a standby or prime power generator system is a 4-stroke spark ignition (SI) engine. While many smaller portable generators use SI engines fueled by gasoline, the majority of SI engine driven generators above 10kW are fitted with SI engines fueled by gaseous fuel, either natural gas (NG), or liquid petroleum gas (LPG). The majority of gaseous powered SI engines within a generator system are frequently referred to as having a Closed-Loop Engine Control System. In understanding Buckeye Power Sales necessary maintenance required to maintain optimum operation and performance of an SI engine using a closed-loop system, it is Reliable Power Professionals Since 1947 important to be aware of all the components within the system, their functions, and the advantages a closed-loop system. 1.0 WHAT IS A CLOSED-LOOP SYSTEM: The term “loop” in a control system refers to the path taken through various components to obtain a desired output. Used in conjunction with the word “closed” it refers to sensors measuring actual output along the path against required output. The various outputs measured along the path, or loop, are referred to as feedback signals. In a closed- loop system, the feedback along the path constantly enables the engine control system to adjust and ensure the right output is maintained as variations in ambient temperature, load, altitude, and humidity influence combustion and required output. So, in brief, closed-loop systems employ sensors in the loop to constantly provide feedback so the ECU can adjust inputs to obtain the required output.
    [Show full text]
  • Air Management System Components
    AIR MANAGEMENT SYSTEM Air Management System Components Air Management System Features • The series sequential turbocharger is a low • Series Sequential Turbocharger pressure/high pressure design working in series with a turbocharger actuator on the high pressure • Charge Air Cooler turbine controlling the boost pressures. • Intake Manifold • The charge air cooler is utilized to reduce the temperature of the pressurized air therefore inducing a cooler/denser air • Air Filter/Filter Minder charge into the intake manifold for maximum efficiency. • An air filter/filter minder combination is utilzed to clean • Exhaust Gas Recirculation (EGR) System the incoming air and provide a means for monitoring the condition of the air filter via the filter minder. • The EGR system is designed to reduce exhaust emissions. 57 EGR Cooler Vertical Throttle Body EGR Valve Turbocharger Actuator Compressor Inlet (from air Turbocharger cleaner) Crossover Tube Low Pressure Turbocharger High Pressure Turbocharger Intake Manifold EGR Cooler Horizontal EGR Diesel Oxidation Catalyst (EDOC) 58 33 Air MANAGEMENT SYSTEM System Flow • Air enters the system through the air filter where particles • The intake manifold directs the cooled air to are removed from the air. The air filter has a filter minder the intake ports of the cylinder heads. on it to warn the operator of a restricted air filter. • The burned air fuel mixture is pushed out of the cylinder into • After the air is filtered, the mass of the air and temperature the exhaust manifold which collects the exhaust and routes are measured by the mass air flow sensor (MAF) and it to the high pressure turbocharger’s turbine wheel.
    [Show full text]
  • Design of Electronically Controlled Fuel Injection System for Carburetor Based Engine
    IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 DESIGN OF ELECTRONICALLY CONTROLLED FUEL INJECTION SYSTEM FOR CARBURETOR BASED ENGINE 1 2 3 4 Abhishek Kumar , Abhijeet Kumar , Ujjwal Ashish , Ashok B 1B.Tech (EEE), 3rd year, VIT University, Vellore, India 2B.Tech (ECE), 3rd year, VIT University, Vellore, India 3B.Tech (EEE), 3rd year, VIT University, Vellore, India 4Assistant Professor, SMBS, VIT University, Vellore, India Abstract In the Modern world, automotive electronics play an important role in the manufacturing of any passenger car. Automotive electronics consists of advanced sensors, control units, and “mechatronic“actuator making it increasingly complex, networked vehicle systems. Electronic fuel injection (EFI) is the most common example of automotive electronics application in Powertrain. An EFI system is basically developed for the control of injection timing and fuel quantity for better fuel efficiency and power output. In this paper, we will explain various types of fuel injection system that are used most commonly nowadays and will also explain the various parameters considered during calculating,(using speed density method), base fuel quantity during runtime. We will explain the major difference between speed density method and alpha-n method and in the end, we will also show the MATLAB/Simulink model of fuel injection system for Single cylinder four stroke engine. Keywords: Air Fuel Ratio, Fuel Injection System, Speed Density Method, Engine Management System --------------------------------------------------------------------***---------------------------------------------------------------------- 1. INTRODUCTION The primary difference between carburetors and fuel Engine management system (EMS) is an essential part of injection system is that fuel injection atomizes through a any vehicle, which controls and monitors the engine.
    [Show full text]
  • Engine Control Unit MS 12 Engine Control Unit MS 12
    Bosch Motorsport | Engine Control Unit MS 12 Engine Control Unit MS 12 www.bosch-motorsport.com u 12 injection output stages u For piezo injectors u 78 data inputs The MS 12 is the high-end ECU for Diesel engines. This Optional function packages available ECU offers 12 Piezo injection power stages for use in up to a 12 cylinder engine. Various engine and chassis Interface to Bosch Data Logging System parameters can be measured with a high number of in- Max. vibration Vibration profile 1 (see Appendix put channels. All measured data can be transferred via or www.bosch-motorsport.com) FireWire interface to an optional flash card data log- ger. Gear box control strategies are optional. Technical Specifications Application Mechanical Data Engine layout Max. 12 cyl. Aluminum housing Injector type Piezo injectors 5 connectors in motorsport technology with high pin density, 242 pins Control strategy Quantity based Each connector individually filtered. Injection timing 2 pilot injections Vibration damped circuit boards 1 main injection 1 post injection 8 housing fixation points Turbo boost control (incl. VTG) Single or Twin-Turbo Size 240 x 200 x 57 mm Lambda measurement Protection Classification IP67 to DIN 40050, Section 9, Is- sue 2008 Traction control Weight 2,500 g Launch control Temperature range -20 to 85°C Gear cut for sequential gearbox Gearbox control Speed limiter 2 | Engine Control Unit MS 12 Electrical Data AS 6-18-35 SB Power consumption w/o inj. Approx. 5 W at 14 V Mating Connector III F 02U 000 475-01 AS 6-18-35 SC Power consumption at 6,500 rpm Max.
    [Show full text]