United States Department of the Interior Geological Survey Short Papers For

Total Page:16

File Type:pdf, Size:1020Kb

United States Department of the Interior Geological Survey Short Papers For UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY SHORT PAPERS FOR THE SECOND INTERNATIONAL SYMPOSIUM ON THE CAMBRIAN SYSTEM 1981 Michael E. Taylor Editor Open-File Report 81-743 Technical sessions held August 9-13, 1981, at the Colorado School of Mines, Golden, Colorado, United States of America AUTHOR INDEX Acerolaza, P. G., p. 1 Lai Cai-gen, p. 242 Ahlberg, Per, p. 5 Lafuste, J. CL, p. 64 Altken, 0. Dn p. 8 Landing, Ed, p. 222 Apolionov, M. 1C, p. 15 Un Huanllng, p. 118 Bengtson, Stefan, p. 18,19 LuoHuUin.p.123 Bergstrflm, Jan, p. 22 Lu Yanhao, p. 118,1U Brangulls, A. Pn p. 26 vMamy, J. Ln p, 65 Braaier, M. Dn p. 29 Mch4amara, K. Jn p. 126 BrigoA D. C. GL, p. 34, 38 Mens, K. An p. 26,130,132 Bush, J.H,p.42 Miller, J.Fn p. 78,134 Cheong, C. I-L, p. 46 Miller, R. Hn p. 57,138 Chugaeva, M. hL, p. 15 Miaiarzhevaky, V. Vn p. 19 Conway Morris, Simon, p. 47 Mount, J. Fn p. 143 Cook, H. En p. 50 MOUer, K. Jn p. 147 Cooper, 3. Dn p. 57,138 Norford, B. Sn p. 152 Dabrenne, Fn p. 63,64,65 Palmer, A. Rn p. 156,160 Demlcco, R. V., p. 67 Parrish, J. Tn p. 252 Oaratler, Kraig, p. 71 Perrus, Enn, p. 132 Drozdova, N. A^ p. 76 Pojeta, John, >n P-163,167 Dubinins, S. Vn p. 15 Ragozina, A. L-, p. 76 Egbert, R. Mn p. 50 Rees, M. Nn p. 188 Erdtmann, B.-Dn p. 78 Repetski, J. En p. 169 Ergaliev, G. Kn p. 82 Repina, L. Nn p. 173 Fadonkin, M. A^ p. 89, 91 Rigby, J. Kn p. 181 Ftochcr,K J^p.42 Rowell, A. JL, p. 184,188 Fletcher, T. Pn p. 18 Rowland, S. Mn p. 143,193 Fenln, V. Dn p. 76 Rozanov, A. Yun p. 26,76 Gangloff, R. A., p. 63, 64 Runnegar, Bruce, p. 196 Giiiett, S. U, p. 222 Sayutlne, T. An p. 76 Grigorjeva, N. V., p. 76 Scotese, C. Rn p. 252 Hardie, L. A^ p. 67 Sepkoski,J.Jnp.203 Hewitt, R. A^ p. 29 Shergold, J* Hn p* 208 Jago, J» B», p* 93 Spencer, L. Mn p. 215 James, N. Pn p. 63 Sprinkle, James, p. 219 Jell, P. An p. 97 Sundberg, F. An p. 57,138 Kepper, John, p. 100,102 Szaniawski, Hubert, p. 169 Kindle, C. K, p. 106 Taylor, M. En p. 222 Kirjyanov, V. V^ p. 26 Theokritoff, George, p. 228 Kopaska-Merkel, D. C., p. Ill Toselli, A. Jn p. 1 Kurtz, V. En p. 115 Tynan, M. Cn p. 231 Vidal, Gonzalo, p. 232 Voronin, Yu. L, p. 76 Voronova, L. GL, p. 76 Webere, a P., p. 167, 236 Whittington, H. a, p. 38, 239 Xiang Li-wen, p. 240, 242 Yochebon, E. U, P-167, 244 Yuan JInliang, p. 250 VuanK«xing,p. 249 Zhang Sengui, p. 249 Zhegallo, E. A^ p. 76 Zhiwen, Jiang, p. 98 Zhou Zhiyl, p. 250 Zhu Zhaoling, p. 121 Ziegler, A. H., p. 252 * U. S. WVEMWEIIT miNTINC OFFICE IjBl - 780-«V*15 SECOND INTERNATIONAL SYMPOSIUM ON THE CAMBRIAN SYSTEM ORGANIZING COMMITTEE Michael E. Taylor, Chairman U.S. Geological Survey, Denver, Colorado Allison R. Palmer Geological Society of America, Boulder, Colorado Richard A. Robison University of Kansas, Lawrence, Kansas Albert J. Rowell University of Kansas, Lawrence, Kansas PROGRAM Field Trip 1. Cambrian Stratigraphy and Paleontology of the Great Basin and vicinity, western United States. July 30 to August 9, 1981. Technical Sessions. Colorado School of Mines, Golden, Colorado. August 9-13, 1981. Field Trip 2. The Cambrian System in the Canadian Rocky Mountains, Alberta and British Columbia. August 14-20, 1981. Field Trip 3. Cambrian and Lowest Ordovician Lithostratigraphy and Biostratigraphy of Southern Oklahoma and Central Texas. August 14-19, 19S1. ii PREFACE The Cambrian System holds special scientific interest because it contains the primary record of the earliest evolutionary diversification of metazoan life on Earth. Study of the patterns of evolutionary diversification and associated environmental conditions provides our understanding of the original colonization of the Earth's marine ecosystem by complex plant and animal communities. Rocks of Cambrian age contain a significant portion of the world's sedimentary and metallic mineral resources. Increased understanding of Cambrian stratigraphy, depositional environments, and paleogeography improves our ability to discover new deposits which are so necessary to the agricultural and industrial well being of the world's human population. This volume is the proceedings of the technical sessions of the Second International Symposium on the Cambrian System, held August 9-13, 1981, in Golden, Colorado. The first international Cambrian symposium was held in conjunction with the 20th International Geological Congress in Mexico City in 1956. Since 1956, a wealth of research on Cambrian stratigraphy and paleontology has been conducted in all parts of the world. This volume contains a sample of that work in 72 scientific reports authored or coauthored by 95 research scientists. Thirteen countries are represented by the contributors, including the United States of America (37), the Union of Soviet Socialist Republics (16), the People's Republic of China (12), England (6), Australia (5), Sweden (5), Canada (3), France (3), Argentina (2), Estonia (2), West Germany (2), South Korea (1), and Poland (1). This volume was edited and published with a lead time of less than three months from the time manuscripts were received from authors. Reports were technically reviewed by at least two specialists, and edited and proofread by the editor, who assumes all responsibility for errors in the published version of the authors' original texts. Production of this proceedings volume in such a short period of time would not have been possible without the dedicated effort of Julia E. H. Taylor, Leonard A. Wilson, and a group of very capable publications specialists and typists from the U.S. Geological Survey in Denver, Colorado. Michael E. Taylor, Editor June 12, 1981 111 CONTENTS Page Preface................................................................................. iii 1. The Precambrian-Lower Cambrian Formations of Northwestern Argentina. By F. G. Acenolaza and A. J. Toselli ............................................. 1 2. Ptychopariid Trilobites in the Lower Cambrian of Scandinavia. By Per Ahlberg ............................................................... 5 3. Generalizations about Grand Cycles. By James D. Aitken ................................. 8 4. The Cambrian-Ordovician Boundary in the Malyi Karatau Range, South Kazakhstan. By M. K. Apollonov, M. N. Chugaeva and S. V. Dubinina ............................ 15 5. The Succession of Skeletal Fossils in the basal Lower Cambrian of Southeastern Newfoundland. By Stefan Bengtson and Terence P. Fletcher......................... 18 6. Coeloscleritophora - A Major Group of Enigmatic Cambrian Metazoans. By Stefan Bengtson and Vladimir V. Missarzhevsky................................. 19 7. Lower Cambrian Shelly Faunas and Biostratigraphy in Scandinavia. By Jan BergstrBm ............................................................. 22 8. Vendian and Cambrian Paleogeography of the East European Platform. By A. P. Brangulis, V. V. Kirjyanov, K. A. Mens, and A. Yu. Rozanov ........................................................... 26 9. Faunal Sequence within the Lower Cambrian "Non-Trilobite Zone* (S.L.) of Central England and Correlated Regions. By M. D. Brasier and R. A. Hewitt ................. 29 10. The Burgess Shale Project. By Derek E. G. Briggs ........................................ 34 11. Relationships of Arthropods from the Burgess Shale and other Cambrian Sequences. By D. E. G. Briggs and H. B. Whittington ......................................... 38 12. Stratigraphic and Depositional Summary for Middle and Upper Cambrian Strata in Northeastern Washington, Northern Idaho and Northwestern Montana. By John H. Bush and Howard J. Fischer........................................... 42 13. Precambrian-Cambrian Boundary in Korea. By Chang Hi Cheong ........................... 46 14. The Burgess Shale Fauna as a Middle Cambrian Community. By S. Conway Morris........................................................... 47 15. Late Cambrian-Early Ordovician Continental Margin Sedimentation, Central Nevada. By Harry E. Cook and Robert M. Egbert........................... 50 16. Upper Cambrian Depositional Environments, Southeastern California and Southern Nevada. By John D. Cooper, Richard H. Miller and Frederick A. Sundberg ............ 57 iv Page 17. Archaeocyathan Buildups: Pioneer Reefs of the Paleozoic. By F. Debrenne, R. A. Gangloff and N. P. James................................... 63 18. Microstructure of Tabulaconus and its Significance to the Taxonomy of Early Phanerozoic Organisms. By F. Debrenne, J. G. Lafuste and R. A. Gangloff.................................. 64 19. Archaeocyath Occurrences and Tectonic Movements in the Canadian Cordillera. By F. Debrenne and J. L. Mansy ................................................. 65 20. Patterns of Platform and Off-Platform Carbonate Sedimentation in the Upper Cambrian of the Central Appalachians and their Implications for Sea Level History. By Robert V. Demicco and Lawrence A. Hardie.................................... 67 21. Morphological Diversity of Early Cambrian Echinoderms. By Kraig Derstler ............................................................. 71 22. Precambrian-Cambrian Reference Section in Mongolia. By N. A. Drozdova, V. D. Fonin, N. V. Grigorjeva, A. L. Ragozina, A. Yu. Rozanov, T. A. Sayutina, L. G. Voronova, Yu. I. Voronin, and E. A. Zhegallo ............................................... 76 23. Eustatic Control of Lithofacies and Biofacies Changes near the Base of the Tremadocian. By Bernd-D. Erdtmann and James F. Miller ....................................... 78 24. Upper Cambrian Biostratigraphy of the Kyrshabakty Section, Maly Karatau, Southern Kazakhstan
Recommended publications
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Geology and Palaeontology of the Codos Anticline, Eastern Iberian Chains, NE Spain: Age Constraints for the Ediacaran-Cambrian B
    Geological Magazine Geology and palaeontology of the Codos www.cambridge.org/geo anticline, eastern Iberian Chains, NE Spain: age constraints for the Ediacaran–Cambrian boundary in the Iberian Chains Original Article Cite this article: Streng M. Geology and Michael Streng palaeontology of the Codos anticline, eastern Iberian Chains, NE Spain: age constraints for Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 752 36 Uppsala, Sweden the Ediacaran–Cambrian boundary in the Iberian Chains. Geological Magazine https:// Abstract doi.org/10.1017/S0016756821000595 The two major structural elements of the Iberian Chains, the Datos and Jarque thrust faults, Received: 3 November 2020 have been described as occurring in proximity in the area around the village of Codos. The Revised: 16 May 2021 Accepted: 26 May 2021 purported Jarque fault corresponds to the axial plane of an anticline known as the Codos anti- cline, which exposes the oldest stratigraphic unit in this area, i.e. the Codos Bed, a limestone bed Keywords: bearing skeletal fossils of putative Ediacaran or earliest Cambrian age. Details of the geology of Paracuellos Group; Aluenda Formation; Codos the area and the age of the known fossils are poorly understood or not universally agreed upon. Bed; Cloudina; helcionelloids; Terreneuvian; New investigations in the anticline revealed the presence of a normal fault, introduced as the Heraultia Limestone Codos fault, which cross-cuts the course of the alleged Jarque fault. The vertical displacement Author for correspondence: along the axial plane of the anticline appears to be insignificant, challenging the traditional Michael Streng, interpretation of the plane as an equivalent of the Jarque thrust fault.
    [Show full text]
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Luis V. Rey & Gondwana Studios
    EXHIBITION BY LUIS V. REY & GONDWANA STUDIOS HORNS, SPIKES, QUILLS AND FEATHERS. THE SECRET IS IN THE SKIN! Not long ago, our knowledge of dinosaurs was based almost completely on the assumptions we made from their internal body structure. Bones and possible muscle and tendon attachments were what scientists used mostly for reconstructing their anatomy. The rest, including the colours, were left to the imagination… and needless to say the skins were lizard-like and the colours grey, green and brown prevailed. We are breaking the mould with this Dinosaur runners, massive horned faces and Revolution! tank-like monsters had to live with and defend themselves against the teeth and claws of the Thanks to a vast web of new research, that this Feathery Menace... a menace that sometimes time emphasises also skin and ornaments, we reached gigantic proportions in the shape of are now able to get a glimpse of the true, bizarre Tyrannosaurus… or in the shape of outlandish, and complex nature of the evolution of the massive ornithomimids with gigantic claws Dinosauria. like the newly re-discovered Deinocheirus, reconstructed here for the first time in full. We have always known that the Dinosauria was subdivided in two main groups, according All of them are well represented and mostly to their pelvic structure: Saurischia spectacularly mounted in this exhibition. The and Ornithischia. But they had many things exhibits are backed with close-to-life-sized in common, including structures made of a murals of all the protagonist species, fully special family of fibrous proteins called keratin fleshed and feathered and restored in living and that covered their skin in the form of spikes, breathing colours.
    [Show full text]
  • An Ankylosaurid Dinosaur from Mongolia with in Situ Armour and Keratinous Scale Impressions
    An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions VICTORIA M. ARBOUR, NICOLAI L. LECH−HERNES, TOM E. GULDBERG, JØRN H. HURUM, and PHILIP J. CURRIE Arbour, V.M., Lech−Hernes, N.L., Guldberg, T.E., Hurum, J.H., and Currie P.J. 2013. An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions. Acta Palaeontologica Polonica 58 (1): 55–64. A Mongolian ankylosaurid specimen identified as Tarchia gigantea is an articulated skeleton including dorsal ribs, the sacrum, a nearly complete caudal series, and in situ osteoderms. The tail is the longest complete tail of any known ankylosaurid. Remarkably, the specimen is also the first Mongolian ankylosaurid that preserves impressions of the keratinous scales overlying the bony osteoderms. This specimen provides new information on the shape, texture, and ar− rangement of osteoderms. Large flat, keeled osteoderms are found over the pelvis, and osteoderms along the tail include large keeled osteoderms, elongate osteoderms lacking distinct apices, and medium−sized, oval osteoderms. The specimen differs in some respects from other Tarchia gigantea specimens, including the morphology of the neural spines of the tail club handle and several of the largest osteoderms. Key words: Dinosauria, Ankylosauria, Ankylosauridae, Tarchia, Saichania, Late Cretaceous, Mongolia. Victoria M. Arbour [[email protected]] and Philip J. Currie [[email protected]], Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9; Nicolai L. Lech−Hernes [nicolai.lech−[email protected]], Bayerngas Norge, Postboks 73, N−0216 Oslo, Norway; Tom E. Guldberg [[email protected]], Fossekleiva 9, N−3075 Berger, Norway; Jørn H.
    [Show full text]
  • Shell Microstructures in Early Cambrian Molluscs
    Shell microstructures in Early Cambrian molluscs ARTEM KOUCHINSKY Kouchinsky, A. 2000. Shell microstructures in Early Cambrian molluscs. - Acta Palaeontologica Polonica 45,2, 119-150. The affinities of a considerable part of the earliest skeletal fossils are problematical, but investigation of their microstructures may be useful for understanding biomineralization mechanisms in early metazoans and helpful for their taxonomy. The skeletons of Early Cambrian mollusc-like organisms increased by marginal secretion of new growth lamel- lae or sclerites, the recognized basal elements of which were fibers of apparently aragon- ite. The juvenile part of some composite shells consisted of needle-like sclerites; the adult part was built of hollow leaf-like sclerites. A layer of mineralized prism-like units (low aragonitic prisms or flattened spherulites) surrounded by an organic matrix possibly existed in most of the shells with continuous walls. The distribution of initial points of the prism-like units on a periostracurn-like sheet and their growth rate were mostly regular. The units may be replicated on the surface of internal molds as shallow concave poly- gons, which may contain a more or less well-expressed tubercle in their center. Tubercles are often not enclosed in concave polygons and may co-occur with other types of tex- tures. Convex polygons seem to have resulted from decalcification of prism-like units. They do not co-occur with tubercles. The latter are interpreted as casts of pore channels in the wall possibly playing a role in biomineralization or pits serving as attachment sites of groups of mantle cells. Casts of fibers and/or lamellar units may overlap a polygonal tex- ture or occur without it.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • TREATISE TREATISE Paleo.Ku.Edu/Treatise
    TREATISE TREATISE paleo.ku.edu/treatise For each fossil group, volumes describe and illustrate: morphological features; ontogeny; classification; geologic distribution; evolutionary trends and phylogeny; and All 53 volumes of the Treatise are now available as fully searchable pdf systematic descriptions. Each volume is fully indexed and files on CD, even out-of-print and superseded volumes! Also available contains a complete set of references, and there are many is the complete set of volumes, either on one DVD, or a set of 41 CDs, detailed illustrations and plates throughout the series. each decorated with a different fossil. See below for details. Complete set of 53 Treatise volumes Part B Single DVD or 41 CDs: $1850.00 Protoctista 1: Charophyta, vol. 1 Edited by Roger L. Kaesler, with coordinating author, Monique Feist, Porifera (Revised), vol. 2 Part F leading a team of international specialists, 2005 edited by Roger L. Kaesler; coordinating author, J. Keith Rigby, with First volume of Part B to be published, covering generally plantlike authors R. E. H. Reid, R.M. Finks, and J. Keith Rigby, 2003 Coelenterata, Supplement 1, Rugosa and Tabulata, vol. 1–2 autotrophic protoctists. Future volumes will cover the dinoflagellates, Second volume in the revision of Porifera. General features of the Porifera, edited by C. Teichert, coordinating author Dorothy Hill, 1981 silicoflagellates, ebredians, benthic calcareous algae, coccolithophorids, including glossary, references, and index. Introduction to Paleozoic corals and systematic descriptions for Rugosa; and diatoms. Included in the charophyte volume are introductory chapters 376 p., ISBN 0-8137-3130-5, $75.00, hard copy or CD introduction to and systematic descriptions for Tabulata.
    [Show full text]
  • Copertina Guida Ai TRILOBITI V3 Esterno
    Enrico Bonino nato in provincia di Bergamo nel 1966, Enrico si è laureato in Geologia presso il Dipartimento di Scienze della Terra dell'Università di Genova. Attualmente risiede in Belgio dove svolge attività come specialista nel settore dei Sistemi di Informazione Geografica e analisi di immagini digitali. Curatore scientifico del Museo Back to the Past, ha pubblicato numerosi volumi di paleontologia in lingua italiana e inglese, collaborando inoltre all’elaborazione di testi e pubblicazioni scientifiche a livello nazonale e internazionale. Oltre alla passione per questa classe di artropodi, i suoi interessi sono orientati alle forme di vita vissute nel Precambriano, stromatoliti, e fossilizzazioni tipo konservat-lagerstätte. Carlo Kier nato a Milano nel 1961, Carlo si è laureato in Legge, ed è attualmente presidente della catena di alberghi Azul Hotel. Risiede a Cancun, Messico, dove si dedica ad attività legate all'ambiente marino. All'età di 16 anni, ha iniziato una lunga collaborazione con il Museo di Storia Naturale di Milano, ed è a partire dal 1970 che prese inizio la vera passione per i trilobiti, dando avvio a quella che oggi è diventata una delle collezioni paleontologiche più importanti al mondo. La sua instancabile attività di ricerca sul terreno in varie parti del globo e la collaborazione con professionisti del settore, ha permesso la descrizione di nuove specie di trilobiti ed artropodi. Una forte determinazione e la costruzione di un nuovo complesso alberghiero (AZUL Sensatori) hanno infine concretizzzato la realizzazione
    [Show full text]
  • Treatise on Invertebrate Paleontology
    PART H, Revised BRACHIOPODA VOLUMES 2 & 3: Linguliformea, Craniiformea, and Rhynchonelliformea (part) ALWYN WILLIAMS, S. J. CARLSON, C. H. C. BRUNTON, L. E. HOLMER, L. E. POPOV, MICHAL MERGL, J. R. LAURIE, M. G. BASSETT, L. R. M. COCKS, RONG JIA-YU, S. S. LAZAREV, R. E. GRANT, P. R. RACHEBOEUF, JIN YU-GAN, B. R. WARDLAW, D. A. T. HARPER, A. D. WRIGHT, and MADIS RUBEL CONTENTS INFORMATION ON TREATISE VOLUMES ...................................................................................... x EDITORIAL PREFACE .............................................................................................................. xi STRATIGRAPHIC DIVISIONS .................................................................................................. xxiv COORDINATING AUTHOR'S PREFACE (Alwyn Williams) ........................................................ xxv BRACHIOPOD CLASSIFICATION (Alwyn Williams, Sandra J. Carlson, and C. Howard C. Brunton) .................................. 1 Historical Review .............................................................................................................. 1 Basis for Classification ....................................................................................................... 5 Methods.......................................................................................................................... 5 Genealogies ....................................................................................................................... 6 Recent Brachiopods .......................................................................................................
    [Show full text]
  • Malformed Agnostids from the Middle Cambrian Jince Formation of the Pøíbram-Jince Basin, Czech Republic
    Malformed agnostids from the Middle Cambrian Jince Formation of the Pøíbram-Jince Basin, Czech Republic OLDØICH FATKA, MICHAL SZABAD & PETR BUDIL Two agnostids from Cambrian of the Barrandian area bear different types of skeletal malformations. The tiny pathologi- cal exoskeleton of Hypagnostus parvifrons (Linnarsson, 1869) has asymmetrically developed pygidial axis, while the posterior pygidial rim in the larger Phalagnostus prantli Šnajdr, 1957 has an irregular outline. • Key words: agnostids, Middle Cambrian, Jince Formation, Příbram-Jince Basin, Barrandian area, Czech Republic. FATKA, O., SZABAD,M.&BUDIL, P. 2009. Malformed agnostids from the Middle Cambrian Jince Formation of the Příbram-Jince Basin, Czech Republic. Bulletin of Geosciences 84(1), 121–126 (2 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received November 11, 2008; accepted in revised form January 9, 2009; published online January 23, 2009; issued March 31, 2009. Oldřich Fatka, Department of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, Praha 2, CZ -128 43, Czech Republic; [email protected] • Michal Szabad, Obránců míru 75, 261 02 Příbram VII, Czech Re- public • Petr Budil, Czech Geological Survey, Klárov 3, Praha 1, CZ -118 21, Czech Republic; [email protected] Numerous examples of exoskeletal abnormalities have discussed by Babcock and Peng (2001). Öpik (1967) de- been described in various polymerid trilobites (e.g., Owen scribed and figured one pathological pygidium of Glyp- 1985, Babcock 1993, Whittington 1997), including para- tagnostus stolidotus Öpik, 1961 with hypertrophic devel- doxidid trilobites from the Cambrian Příbram-Jince Basin opment of the left side of the pygidium. of the Barrandian area (Šnajdr 1978).
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J.
    [Show full text]