<<

Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2007

Low-thrust control of a lunar orbiter

Nathan Harl

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Aerospace Engineering Commons Department:

Recommended Citation Harl, Nathan, "Low-thrust control of a lunar orbiter" (2007). Masters Theses. 6818. https://scholarsmine.mst.edu/masters_theses/6818

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected].

LOWTHRUSTCONTROLOF

ALUNARORBITER

by NATHANROBERTHARL ATHESIS

PresentedtotheFacultyoftheGraduateSchoolofthe

UNIVERSITYOFMISSOURIROLLA

InPartialFulfillmentoftheRequirementsfortheDegree

MASTEROFSCIENCEINAEROSPACEENGINEERING

2007

Approvedby

______ ______ Dr.HenryJ.Pernicka,Advisor Dr.RobertG.Landers ______ Dr.K.Krishnamurthy

2007 NathanRobertHarl AllRightsReserved iii

ABSTRACT In2004,PresidentBushunveiledhisVisionforSpaceExploration(VSE)plan, whichdefinedmanygoalsforNASAincludingrevisitingtheMooninunmannedand mannedmissions.Asaresult,therehasbeenarenewedinterestinthestudyoflunar missions,particularlypertainingtolunarthatwouldbesuitableformapping missions.OnetypeoflunarthatisbeneficialforamappingmissionisaSun synchronousorbit,whichprovidesconstantlightingconditionsforimaging.However, lunarSunsynchronousorbitsdonotexistnaturally,andinsteadmustbecreatedand continuouslymaintainedusingactivecontrolhardware. ThisthesispresentsamethodformaintainingalongtermlunarSunsynchronous orbitusingcontinuouslowthrusthardware.Thecontrolmethodisdevelopedusing optimalcontroltheory,whichinvolvescontrollingasystemthroughtheminimizationof adesiredcostfunction.Theadvantageofthismethodisthatthecreationofthecost functionisentirelyuptotheuser,andthuscanbeeasilymodifiedtocontrolvarious orbitalelementsdependingontheneedsofthemissionathand.Weightscanalsobe assignedtotheelementsinthecostfunctioninordertoprioritizethecontrolofone elementoveranother Atransitionmatrixalgorithmisusedtosolvetheoptimalcontrolproblem. Simulationsofthisalgorithmarepresentedwhichshowitseffectivenessformaintaining theSunsynchronouscondition,aswellaskeepingtheorbitnearpolar.Casestudiesare alsopresentedwhichdescribetheeffectsonthetrajectoryandcontrolmagnitudesfrom changingthecontrolweightinginthecostfunction.

iv

ACKNOWLEDGMENTS IwouldliketothanktheUniversityofMissouriRollaforprovidingmewith manygreatopportunitiestobettermyselfasbothastudentandaperson.Iespecially wouldliketothankmyadvisorDr.Pernicka,notonlyforbeingsuchagreatadvisorand professor,butalsoformotivatingmetopursuethefieldoforbitalmechanics.Iwould alsoliketothankDr.LandersandDr.Krishnamurthyforservingonmygraduate committee.Finally,Iwouldliketothankmyfamilyandfriendsforconstantlyproviding mewithmotivationandsupportthroughoutmyacademiccareer.

v

TABLE OF CONTENTS

Page ABSTRACT...... iii ACKNOWLEDGMENTS...... iv LISTOFILLUSTRATIONS...... vii LISTOFTABLES………………………………………………………………………ix SECTION 1.INTRODUCTION...... 1 1.1.INTRODUCTIONTOSUNSYNCHRONOUSORBITS...... 1 1.2.THESISOVERVIEW...... 2 2.LITERATUREREVIEW...... 4 2.1.CURRENTSTATEOFLOWTHRUSTHARDWARE...... 4 2.2.REVIEWOFLOWTHRUSTMISSIONS...... 5 2.2.1.LowThrustTrajectoryOptimization...... 5 2.2.2.LowThrustStationkeeping...... 6 2.2.3.LowThrustRendezvousMissions.…………………………………….8 2.3.REVIEWOFWORKINGENERATINGLUNARMAPPINGORBITS…10 3.SYSTEMMODELSANDEQUATIONSOFMOTION...... 13 3.1.MEANSELENOGRAPHICREFERENCEFRAME...... 13 3.1.1.DefinitionoftheMeanSelenographicReferenceFrame...... 13 3.1.2.TransformationfromFrametoMeanSelenographicFrame.....14 3.2.DERIVATIONOFTHEEQUATIONSOFMOTION……………………..16 3.3.DERIVATIONOFLUNARGRAVITATIONALPOTENTIAL…………..20 3.4.DYNAMICMODELCREATIONANDRESULTS……………………….28 4.OPTIMALCONTROLANALYSIS……………………………………………..35 4.1.INTRODUCTIONTOOPTIMALCONTROLTHEORY………………….35 4.2.SOLVINGTHETWOPOINTBOUNDARYVALUEPROBLEM………..38 4.3.COSTFUNCTIONSELECTION…………………………………………...41 4.4.DERIVATIONOFNECESSARYCONDITIONSFOROPTIMALITY….44 4.5.TERMINALSTATECONTROLLER………………………………………49

vi

4.6.SPECIALCONSIDERATIONSFOREQUATORAND POLECROSSINGS…………………………………………………………52 5.CASESTUDIESANDRESULTS……………………………………………….55 5.1.SIMULATIONSOFASCENDINGNODEONLYCONTROL……………55 5.2.SIMULATIONSOFINCLINATIONONLYCONTROL………………….61 5.3.SIMULATIONSOFCOMBINEDASCENDINGNODEAND INCLINATIONCONTROL………………………………………………….69 5.4LONGTERMSIMULATIONS.………...... 73 5.4.1.DifficultiesatAscendingNodesof0°and180°.….…………………...73 5.4.2.Simulations…………………………………………………………….75 6.CONCLUSIONS………………………………………………………………...80 7.FUTUREWORK…………………………………………………………………81 APPENDICES A.CONVERSIONFROMORBITALELEMENTSTOCARTESIAN COORDINATES.………………………………………………………………...83 B.CONVERSIONFROMTHEROTATINGFRAMETOTHE INERTIALFRAME.....…………………………………………………………..91

BIBLIOGRAPHY……………………………………………………………………....95

VITA..………………………………………………………………………………..…99

vii

LIST OF ILLUSTRATIONS Figure Page 1.1.ExampleofaSunSynchronousOrbit...... 1 3.1.ExampleofSelenographicCoordinateFrame...... 13 3.2.TransformationfromEcliptictoMeanSelenographicFrame...... 15 3.3.FourBodySunEarthMoonSpacecraftSystem...... 17 3.4.SetupfortheLunarGravitationalPotentialDerivation……………………………21

3.5.20DayOrbitfor lmax = 2,m max = 0……………………………………………...... 30

3.6.20DayOrbitfor lmax = 10 ,m max = 10……………………………………………..30

3.7.20DayOrbitfor lmax = 20 ,m max = 20……………………………………………..31

3.8.20DayOrbitfor lmax = 25 ,m max = 25……………………………………………..31

3.9.20DayOrbitfor lmax = 50 ,m max = 50 ……………………………………………..32 3.10.OrbitalElementTrajectoriesfor105DayIntegration...………………………….33 3.11.PeriapsisAltitudeEvolutionfor105Dayintegration……………………………33 4.1.Correctionofaninitial15°InclinationError…………………………………...….52 4.2.ExampleofControlDifficultiesaroundPoleCrossings…………………………..53 5.1.SimulationofAscendingNodeonlyControl……………………………………..56 5.2.CostateEvolutionforAscendingNodeonlyControl……………………………..57 5.3.ControlAccelerationsforAscendingNodeonlyControl………………………...57

5.4.CaseStudy1: w3=1……………………………………………………………….59

5.5.CaseStudy1: w3=3……………………………………………………………….59

5.6.CaseStudy1: w3=7……………………………………………………………….60

5.7.CaseStudy1: w3=12……………………………………………………………..60

5.8.CaseStudy1: w3=20……………………………………………………………..61 5.9.SimulationofInclinationonlyControl…………………………………………….63 5.10.CostateEvolutionforInclinationonlyControl…………………………………..63 5.11.ControlAccelerationsforInclinationonlyControl………………………………64 5.12.InitialCorrectionandStationkeepingforInclination…………………………….65

5.13.CaseStudy2: w3=1………………………………………………………………66

5.14.CaseStudy2: w3=5……………………………………………………………...67

viii

5.15.CaseStudy2: w3=8……………………………………………………………...67

5.16.CaseStudy2: w3=12…………………………………………………………….68

5.17.CaseStudy2: w3=17…………………………………………………………...68 5.18.SimulationofCombinedAscendingNodeandInclinationControl……………...70 5.19.CostateEvolutionforCombinedAscendingNodeand InclinationControl………………………………………………………………..71 5.20.ControlAccelerationsforCombinedAscendingNodeand InclinationControl………………………………………………………………..71 5.21.ControlForceMagnitudeforCombinedAscendingNode andInclinationControl……………………………………………………………72 5.22.OrbitalElementTrajectoriesforLongTermControlSimulation………………..76 5.23.ControlForceEvolutionforLongTermControlSimulation…………………….76 5.24.TotalControlForceMagnitudeforLongTermControlSimulation……………..77 5.25.PeriapsisAltitudeEvolutionforLongTermControlSimulation………………..78

ix

LIST OF TABLES Table Page 3.1.InitialOrbitalElementsforDynamicModelSimulations………………………...29 5.1.InitialOrbitalElementsforAscendingNodeonlyControlSimulations………….55 5.2.InitialOrbitalElementsforInclinationonlyControlSimulations………………..62 5.3.InitialOrbitalElementsforCombinedAscendingNodeand InclinationControlSimulations……………………………………………………70 5.4.InitialOrbitalElementsforLongTermControlSimulation………………………75

1. INTRODUCTION 1.1. INTRODUCTION TO SUN-SYNCHRONOUS ORBITS WiththeannouncementofNASA’sVisionforSpaceExplorationtherehasbeena renewedinterestinlunarmissions.OneofthemoresignificantgoalsoftheVSEisto commenceunmannedandmannedmissionstotheMoonby2008and2020,respectively. Eachofthesemissionswillrequirealunarorbitthatistailoredtosatisfypredetermined missionrequirements.Onespecialtypeoflunarorbitthatisusefulforavarietyof missionsisalunarSunsynchronousorbit. ASunsynchronousorbitcanbedefinedasanearpolarorbitinwhichthelineof nodesrotatesatsucharatethatitisalwaysorientedataconstantanglewithavector directedfromtheSuntothebodythespacecraftisorbiting[1].Figure1.1depictsalunar Sunsynchronousorbit,andshowshowthelineofnodesisorientedrelativetotheSunby theangle φ insuchanorbit.

φ

φ φ

φ

Figure1.1.ExampleofaSunSynchronousOrbit

2

Thesetypesoforbitsareusefulformanyreasons.Forexample,mappingmissions canbenefitfromtheconstantlightingconditionsalongthespacecraft’sgroundtrack,and manymoremissionscanbenefitfromtheconstantthermalenvironmentduetounvarying solarexposure[1].

Theexactrateatwhichthelineofnodesneedstorotateinorderfortheorbittobe Sunsynchronouswillgenerallydependonwhatbodyinspaceisbeingorbited.For example,sincetheEarthorbitstheSuninonesiderealyear(365.2563days),aSun synchronousorbitabouttheEarthwouldrequireanodalrotationof360°/365.2563days, or0.9856 °/day.Thisrotationrateof0.9856 º/daywouldapplytoalunarSunsynchronous orbitaswellsincetheMoonalsomakesafullrevolutionaroundtheSuninonesidereal year.

EarthSunsynchronousmissionsbenefitfromtheEarth’soblatenessor“bulge” abouttheequator,whichallowsforthegenerationofSunsynchronousorbitsthatdonot requiremaneuverstomaintaintheorbit.Theequatorialoblatenesscreatesanoutofplane gravitationalforcewhich,fororbitswithcertainaltitudesandinclinations,canrotatean orbitatthedesiredSunsynchronousrate[1].Sincethelunaroblatenessismuchlessthan theEarth’s,thisluxuryisnotpresentwhentryingtogeneratealunarSunsynchronous orbit.Instead,generatingandmaintainingalunarSunsynchronousorbitrequires continuouslyapplyinganoutofplanethrusttorotatetheorbitatthedesiredrate. Thegoalofthisworkwastodevelopmethodstoefficientlyestablishandmaintainsuch lunarSunsynchronousorbits. 1.2. THESIS OVERVIEW Followingthisintroductorysection,theremainderofthedocumentisorganized asfollows: • Section2Thissectionreviewsthecurrentstateoflowthrusthardware, summarizeslowthrustmissionsthathavebeenproposedandstudied,and givesanoverviewofpreviousworkthathasbeenperformedinlunarSun synchronousorbitmissiondesign.

3

• Section3Thissectionpresentstheequationsofmotionforalowaltitude lunarorbiter.Thesectionendswithacasestudyofhowincreasingthe degreeandorderofalunargravitymodelaffectstheresults.Appendices AandBcontainadditionalinformationrelatedtothissection. • Section4–Thissectionprovidesanintroductiontooptimalcontrol theory,andgoesontoderiveanalgorithmforcontrollingalunarSun synchronousorbit. • Section5–Thissectionpresentsresultsgeneratedfromthecontroller describedinSection4andcontainscasestudiesshowingtheeffectof applyingweightstothecontrolrequirementsandthecontrolinputs. • Section6–Thissectionsummarizestheresultsgainedfromthisworkand providesconclusions. • Section7–Thissectionprovidesanoverviewoffuturedevelopmentsfor thisresearch.

4

2. LITERATURE REVIEW

2.1. CURRENT STATE OF LOW-THRUST HARDWARE Whileinterestintheuseoflowthrustsystemsforaerospaceapplicationshasbeen aroundsincethe1960s,efficientandreliablelowthrusthardwarehasbeendeveloped onlyrecently.Today,manycommercialcommunicationsatellitesareequippedwithlow thrustsystems,usingthesmallthrustlevelsfororbitstationkeeping[2].Twoofthemost prevalenttypesoflowthrusthardwarecurrentlybeingusedforspaceapplicationsare HallandIonthrusters.Thissectionsummarizesareviewofthecapabilitiesofcurrent Hallandionthrusters. Wilsonin[2]discussesnewHallandIonthrusterscurrentlybeingproducedby Aerojet.IntermsofHallsystems,AerojetiscurrentlyproducingaHallThruster PropulsionSystem(HTPS)whichusesaBPT4000Hallthruster.Thepowerlevelofthe HTPScanbetoggledbetween3to4.5kW,givingathrustrangeof161to282mN. AerojetalsorecentlydevelopedtheNEXTionpropulsionsystem.TheNEXTsystemcan operateatpowerlevelsrangingfrom0.546.9kW,withamaximumthrustthatisgreater than236mN.AerojetdevelopedtheNEXTsystemwithapplicationtofutureNASA roboticexplorationmissions. In[3],SporesandBirkanpresentcurrentlowthrusthardwareeffortswithinthe U.S.AirForce(USAF).OfparticularnoteisadualmodeHallthrusterthattheauthors describe.UnderdevelopmentbytheBusekCo.,Inc.,thethrusterisbeingdesignedto togglebetweenalowandhighthrustlevel.ThethrusterisexpectedtodevelopI sp values greaterthan1900secwithathrustnear550mN,andalsobeabletooperateatanI sp of 1000secandathrustof750mN. NASAhasalsobeenworkingonlowthrustsystems,developingahighlyefficient ionpropulsionsystemcalledDawn[4],[5].Dawn’sengineshaveaspecificimpulseof 3100sandamaximumthrustlevelof90mN.TheDawnionpropulsionsystemwillbe usedonamissiontorendezvouswithandmapthetwolargestmainbeltasteroids,Vesta andCeres,andwillbethefirstuseofionpropulsiononafullupNASAsciencemission. ThelaunchofthespacecraftequippedwiththeDawnsystemisplannedforsummer 2007.

5

In[6],JacobsonandManzelladescribethe457MHallThrusterdevelopedby NASA.Thethrusterwastestedoverarangeof8.5kWto74.0kW,andwasfoundto producethrustlevelsrangingfrom390mNto2.5N.Inthistest,Kryptonwasusedasa propellant,ratherthanusingthepropellantmostcommonincurrentHallsystems,Xenon. ItwasfoundthatwhileusingKryptonasapropellantincreasesthemaximumthrust levels,italsoleadstoaslightlylowerefficiency.

2.2. REVIEW OF LOW-THRUST MISSIONS Duetomanyofthepromisingaspectsofusinglowthrustsystems,previouswork hasbeenperformedonapplyingalowthrustanalysistovariousmissiontypes.This sectiongivesanoverviewofthetypesofpreviouslyresearchedmissionsthatwere identifiedofinterest. 2.2.1. Low-Thrust Trajectory Optimization. Onefieldthathasseenmanylow thrustanalysesistrajectoryoptimization.Trajectoryoptimizationcanbedefinedasthe processofdesigningatrajectorythatminimizesormaximizessomemeasureof performance.Thefollowingareexamplesofthelowthrustworkthathasbeendonein thisfield. WhitingstudiedoptimallowthrusttransfersbetweenLEOandGEOin[14]. Whatisuniqueabouthismethodisthathepresentsacontrollerthatsimulatesathruster withvariablespecificimpulseatconstantpowerandothersthatincludeperiodsof coastingalongthetransfer.Oneofthecoastingcontrollersinvolvesturningofftheengine wheneverthespacecraftisintheEarth’sshadow,amethodwhichWhitingcalls“Eclipse Control.”WhenthespacecraftisintheEarth’sshadow,theengineispowerbysolar panelsalone,whichhelpsconservethebatteriesforuseafterthetransfer.Hecompares theresultsfromthevariouscontrollers,andshowsthatusingEclipseControlleadstothe lowesttotalV. In[7],KlueverpresentsanapproachtoanEarthMoontrajectoryoptimization problem.Theapproachconsistsofthreephases:acontinuousthrustspiralescape trajectoryfromaLowEarthOrbit(LEO),asuboptimaltranslunarcoastingphase,and thenacontinuousthrustspiralcapturetrajectoryattheMoon.SequentialQuadratic Programming(SQP)isusedinsolvingtheassociatedoptimalcontrolproblem.Kluever

6 usesthisapproachforaplanarEarthMoontrajectory,withatotaltriptimeof7.73days. Hethenaddsmorecomplexitytotheapproachin[8]byanalyzingtrajectoriesfromLEO toaninclinedlowlunarorbit.Itwasfoundthat,comparedtotheplanarcasein[7],only 0.6%morefuelisrequiredtotransferintoapolarlunarorbit.Thetotaltriptimewas foundtobearound7.5daysforthiscase. Klueverfurtherexaminestheapproachof[7]and[8]byspecifyingspecifictypes ofpropulsionsystemsforthetransfer.In[9],heexaminesatransferusingcombined chemicalelectricalpropulsion.ThespiralEarthescapetrajectoryisreplacedwitha chemicalstageboostfromLEOtothetranslunarcoastingphase,andthentheelectrical systemisusedforthecapturespiraltoalunarpolarorbit.Forthecapturespiral,two typesofelectricalpropulsionwerestudied:arcjetthrustersandstationaryplasma thrusters(SPT).Itwasfoundthatusingthearcjetthrustersledtoatotaltriptimeof46.4 days,andusinganSPTsystemledtoatotaltriptimeof48.52days. AlowthrustEarthMoontrajectoryproblemwasalsoanalyzedbyConwayand Hermanin[10].Ratherthanusethethrustcoastthrustapproachstudiedin[79] however,theauthorsstudyafullycontinuousthrusttrajectoryfromaGeostationary EarthOrbit(GEO)toapolarlowlunarorbitwithnocoastingphase.Theauthorsalsouse aninitialthrustaccelerationof10 4g,athrustlevelwhichis30timessmallerthanthe magnitudeassumedbyKluever.Theiranalysisledtoatotaltriptimeof32.54days. In[11],Kimcreatesanoptimizationalgorithmtosolvegeneralminimumtime transfertrajectoryoptimizationproblems.Kim’sapproachconsistsoffirstgeneratingan optimaltrajectorywithgivenboundaryconditionsusingadaptivesimulatedannealing andNewtonmethods.Oncethisoptimaltrajectoryisfound,symmetrymethodsareused tofindotheroptimaltrajectories.TheauthoranalyzedEarthMarstransferandEarth MarsEarthtransfersusingelectricpropulsionandsolarsailspacecraft. In[12]and[13],Thornestudiesminimumtimetransfersbetweencoplanar circularorbits.Thetransfersareperformedusingcontinuousthrustofconstant magnitude.Thorneplacesspecialemphasisonemployingmethodsofgeneratingoptimal initialcostates. 2.2.2. Low-Thrust Stationkeeping.Lowthrustsystemsareparticularlyuseful formissionswhichrequireorbitalstationkeeping.Stationkeepinginvolveskeepinga

7 spacecraftinadesiredorbitdespiteallofthenaturalperturbationsthatwoulddecaythe orbit.Sincemoststationkeepingmissionsonlyrequiremakingsmallcorrectionsinthe orbit,lowthrustsystemsarebecomingacrucialcandidatefortheirsuccess.Today,avast majorityofgeostationarycommunicationsatellitesareoutfittedwithelectricpropulsion systemsforstationkeepingpurposes[2].Thefollowingsummarizesresearchthathas beenperformedintovariouslowthruststationkeepingmissions. Oneoftheearliestworksrelatingtolowthruststationkeepingwasperformedby Hunzikerin1970[15].In[15],Hunzikercreatesacontrollerforthepurposesof stationkeepinganearlycircularequatorialorbitfora24hoursatellite.Thegoalofhis controllerwastominimizethechangeinspacecraftlongitudeoverthecourseofthe integration,leadingtothespacecraftstayingdirectlyoverheadacertainpointonthe Earthandthe“24hoursatellite”designation.Hunzikerpursuedabangbangcontroller approachtotheproblem,solvingtheproblemusingvariationofparametersand correctingeachinitialestimatefortheoptimaltrajectoryusingaNewtonRhapson method.Hiscontrollerwasasuccess,leadingtoamaximumlongitudechangeofonly 0.4°overthecourseof105days. Morerecently,theauthorsin[16]presentananalysisofusingsolarelectric propulsion(SEP)forinsertionintoageostationaryorbitandfor15yearNorthSouth stationkeepingonceinthatgeostationaryorbit.Themethodinvolvesusingtheremaining fuelintheCentaurstageofanAtlas IIASrocketalongwithonboardchemicalpropulsion systemstoinsertthespacecraftintowhattheauthorsrefertoasan“SEPstartingorbit.” OnceontheSEPorbit,theelectricpropulsionsystemsareusedtoinsertthespacecraft intoGEO.OnceintheGEO,theelectricsystemsareusedforNorthSouthstation keepingforatotalof15years.Theauthorsanalyzethenetmassincreaseassociatedby usingSEPratherthanchemicalsystemstoinsertintoaGEO,anddiscoverthatthenet massisincreasedbyasmuchas45%throughtheuseofSEP. In[17],theauthorscomparetwodifferentstrategiesforthestationkeepingofa geostationarysatelliteusingionicpropulsion.Oneofthestrategiessplitsthe stationkeepingintotwobranches:NorthSouth(NS)stationkeepingforcontrollingthe inclinationoftheorbitandEastWest(EW)stationkeepingforcontrollingthe eccentricityandlongitudedrift.Theotherstrategy,createdbytheauthors,involves

8 controllingtheinclination,eccentricity,andlongitudedriftalltogetherduringNS stationkeepingbymakinguseofthelargethrustercantangles.Simulationswere performed,anditwasfoundthatperformingallstationkeepingmaneuversduringNS stationkeepingrequiredonly1percentmorefuelthancontrollingonlyinclination.The authorsconcludethattheNSstationkeepingstrategyisfavorablewhentherearetight restrictionsontheeccentricity,butthecombinedNSandEWstationkeepingstrategyis moreefficientformissionswheretherestrictionsoneccentricityarenotverystrict. In[18],Losapresentsageostationarylowthruststationkeepingcontrollerthat usesadirectoptimizationapproach.Thecontrolleriscreatedwiththegoalofholdinga satellite’slatitudeandlongitudeconstanttowithin0.01°for28days.Forsolvingthe controlproblem,amethodcalleddifferentialinclusionwasused.Differentialinclusionis adirectoptimizationapproachwhichinvolvesdiscretizingthestatevariabletimehistory andreplacingconstraintsonthecontrolwithconstraintsonvaluesofthestatevariable timeratesofchange[19].Usingthisapproach,resultswerepresentedwhichshowedthe controller’ssuccessatkeepingasatellite’slatitudeandlongitudeconstantfor28days, withamaximumrequiredthrustforceofaround40mN. 2.2.3. Low-Thrust Rendezvous Missions. Onefinaltypeofmissionthathas seenlowthrustresearchistherendezvousmission.Arendezvousisdefinedasamission whereaspacecraft,usuallycalledachaserorinterceptor,attemptstotransferfroman initialstatetoafinalstatethatcoincideswithsometargetbodyatsomedesiredtime.The targetbodyistypicallyeitheranotherspacecraftorsomesmallbodyinspacesuchasan asteroid.Thefollowingisasummaryofresearchthathasbeenperformedtowardsa varietyofrendezvousmissions. Oneoftheearliestworksonlowthrustrendezvouswasperformedin1964by Edelbaum[20].In[20],Edelbaumderivesamethodfortheoptimalcorrectionofallsix orbitalelementsofageneralellipticorbit.Hismethodinvolvesfindingaclosedform analyticsolutionrelatingchangesintheorbitalelementstoLagrangianmultiplierswhich definethecontrolvariables.Resultsarepresentedontheoptimalthrustprogramsfor changingvariouselements,andtheauthorstatesthatthismethodcouldalsoeasilybe appliedtolowthruststationkeeping.

9

AnotherearlyworkonlowthrustrendezvouswasperformedbyBillik[21].In [21],Billikanalyzedvariouslowthrustrendezvousmissionsbyemployingthetechnique ofdifferentialgames.Hepresentssolutionstothreedifferentrendezvousproblems.The firstproblem,calledapassiverendezvous,involvestransferringtheinterceptorspacecraft fromitsinitialstatetoafinalstatewhichiscoincidentwiththetargetspacecraft.The secondprobleminvolvesthetransferoftheinterceptorfromsomeinitialstatetoafinal stateinwhichtheinterceptorpassesatsomedesireddistancefromthetarget,andis calledapassiveflyby.Bothoftheseproblemsinvolveaninterceptorspacecraftwith continuousthrustcapabilitiesandatargetbodyonacircularorbitthathasnocontrol capabilities.ThefinalproblemBillikpresentsiscalledactiverendezvous,acaseinwhich bothvehicleshavelowaccelerationengines.Thisfinalproblemcanbeseenasa“pursuit andevasion”typeofproblem,inwhichtheinterceptorspacecrafthastoattempt rendezvouswithatargetspacecraftthatistryingtoescape.Billikpresentssolution methodstoallthreeoftheseproblemsusingoptimalcontroltheoryandthetechniqueof differentialgames. In1969,Eulerfurtherdevelopedthepassiverendezvousproblempresentedby Billikbyanalyzingcoplanarrendezvousmaneuversbetweenamaneuveringspacecraft andanonmaneuveringtargetinanellipticorbit[22].Theoptimalrendezvoustrajectories arefoundusingaNewtonRhapsonalgorithm,andEulerpresentssimulationsshowing thatrendezvouswiththetargetissuccessfullyachievedwithamaximumrequiredthrust magnitudeofaround0.016N. In[23],theauthorsstudyrendezvousmissionstominorplanetsbetweenEarth andJupiter.Minorplanetsarealsosometimesknownasplanetoidsorasteroids,and accountforthousandsofbodiesthatorbittheSunbetweenEarthandJupiter.The propulsionsystemusedintheauthors’analysisisa30cmKaufmanthrusterwithathrust forceof0.132Natapowerinputof2.7kW.Simulationsarepresentedforrendezvous missionstotendifferentminorplanets,withtotalflighttimesrangingfrom240to480 days.Theauthorsnotethatinseveralcases,enoughpropellantremainsafterrendezvous withthetargetminorplanetforacontinuationofthemissiontoasecondtarget.Onetwo targetmissionofthistypewasstudiedtothebodiesAtenand1951NL,bothofwhich

10 orbitinnearlythesameplane.Thetotaltriptimeforthismissionwasfoundtobe807 days. In[24],AleshinandGuelmanstudylowthrust,fixedtimerendezvousmissions betweenspacecraftinLEO.Theauthorspresentamethodslightlydifferentthanprevious papersbyimposingconstraintsonthechaser’sfinalapproachtothetarget.Their approachtotheprobleminvolvesatwostageprocess.Thefirststageinvolvesatransfer fromtheinitialconditionstoanintermediatepointinthefinallineofapproach,andthe secondstageinvolvestheconstrainedterminalapproachtothetargetapproach.The authorspresentresultsshowinghowtheterminalapproachdirectionofthechaser spacecraftissuccessfullycontrolled.In[25],theauthorsexpandtheirapproachby imposingaconstraintonthemaximumcontrolaccelerationof5x10 4m/s 2.Theauthors presentsimulationsofchasertrajectorieswiththiscontrolconstraintandshowthatthe optimalterminalapproachdirectionisstillobtained. 2.3. REVIEW OF WORK IN GENERATING LUNAR MAPPING ORBITS Sunsynchronousorbitsareusefulformanydifferentmissions,butamissiontype forwhichsuchorbitsarespecificallyusefularemappingorbits.Amappingorbitis typicallyalowaltitude,polarorbitdesignedtoobtainthemaximumcoverageofthebody byasatelliteequippedwithcamerasorothersensors.Duetoanincreasinginterestinthe Moon,mostoftherecentandupcominglunarmissionsinvolvemappingofthelunar surface.Mappingorbitsusedtoimageofthesurfacebenefitfromtheconstantlighting conditionsproducedbyaSunsynchronousorbit.Thissectiondiscussessomeofthe researchintothefieldoflunarmappinganddetailssomeoftherecentlunarmapping missionsthathavebeenconducted. In[26],ParkandJunkinspresentlunarmappingorbitsthatarecreatedusinga frozenorbitconcept.Afrozenorbitistypicallydefinedasanorbitinwhichthe eccentricity,argumentofperiapsis,andinclinationvariationsareapproximatelyzero. Suchanorbitis“fixed”initsstructure,hencethenamefrozenorbit.Theauthorsshow thatbyusingthisfrozenorbitconcept,lunarorbitscanbeobtainedwhicharenear circular,nearconstantlowaltitude,andnearpolar.Itisalsoshownthatataninclination of101.4°,anearSunsynchronousorbitexistsinwhichtheorbitnodedeviatesfromthe

11

Sunsynchronousconditionbyapproximately10°overonemonth.Toobtainthefrozen orbitconditions,theauthorsstudiedLagrange’sPlanetaryequationsofmotion.These equationsaredifferentialequationsintermsofthesixorbitalelements,andafrozenorbit isfoundbyfindingtheelementswhichmakesomeofthederivativesequaltozero.Using thismethod,theauthorsfoundafrozenorbitwhichexistsataneccentricityof0.0013and anargumentofperiapsisof90°.Theauthorspresentresultswhichshowthattheorbit staysroughlyfrozenwhilekeepingwithin10°oftheSunsynchronousnodalcondition overamonth.Afteramonth,however,theorbitnodelinewillcontinuetorotateaway fromtheSunsynchronouscondition. LunarmappingorbitsarealsostudiedbyRamananandAdimurthyin[27].The authorsabandontheideaofidentifyingaSunsynchronousorbit,andinsteadfocuson findinganearpolar,circular,lowaltitudelunarorbitwithalonglifetime.Inparticular, theauthorsstudytheeffectoftheinitialinclinationonthelifetimeofa100kmaltitude circularorbit.Itisshownthattheorbitallifetimeisdirectlyrelatedtotheinclination, minimizingatapproximately20daysforaninitialinclinationof11°andlastinglonger than730daysforaninitialinclinationof95°.Forthe95°inclinationcase,theauthors showthattheperiapsisaltitudevariationisonlyaround26km.Theauthorsalsoshow thattheinitialascendingnodecanhaveanimpactontheorbitallifetime,andthatan initialascendingnodeof120°canextendthelifetimebyaround35days. DuetoconstantlyevolvinginterestintheMoon,severallunarmappingmissions haveactuallybeenconducted.Onesuchmissionisthe1994Clementinemissionthatwas jointlyledbyNASAandtheNavalResearchLaboratory(NRL)[28,29].Thegoalsof theClementinemissionweretomapthelunarsurfacethroughtheuseofanadvanced sensorcomplementandthenperformacloseflybyoftheasteroid1620Geographos.The lunarmappingportionofthemissioninvolvedatwomonthstayinapolarlunarorbit withaneccentricityof0.36andasemimajoraxisof5,116km.Duringeachorbit,80 minutesofmappingwasperformedaroundperiapsiswith139minutesofdownlinktime aroundapoapsis.Theperiapsislocationwasinitially30degreesbelowthelunarequator forthefirstmonthofthemappingmission,andamaneuverwasperformedtoshiftthe periapsisto30degreesabovetheequatorforthesecondmonth.Thelunarmapping portionofthemissionwasasuccess,butacomputermalfunctionafterthemappingphase

12 preventedClementinefromreachingitssecondobjectiveofperformingaflybyaround Geographos. AfterClementine,thenextlunarmappingmissiontobeperformedwasNASA’s LunarProspector(LP)missionin1998[30].ThegoalsoftheLPmissionweretomapthe compositionofthelunarsurface,studytheMoon’sgravityandmagneticfields, investigatelevelsoftectonicandvolcanicactivity,andsearchforevidenceofwatericeat theMoon’spoles.LPconsistedofaoneyearstayina100kmaltitudepolarmapping orbit,withcorrectionmaneuversperformedevery56daystocorrecttheeccentricityand argumentofperiapsis.Inordertominimizethemaneuversrequiredandmaximizethe orbitallifetime,theLPmappingorbitwasaQuasiFrozenorbitwhichloweredthe eccentricityandargumentofperiapsisvariations[31].TheLPmissionwasasuccess, providingahighresolutionmapoftheMoonaswellasobtainingalargeamountofdata ontheMoon’sgravityfield. NASAisalsocurrentlyplanninganotherlunarmappingmissionwhichwillbegin in2008[32,33].CalledtheLunarReconnaissanceOrbiter(LRO)mission,someofits primarygoalsaretomapmineralogyacrosstheMoon,searchforindicationsofice, providesubmeterresolutionimagingoftheMoonandtoprovideanassessmentof possiblelunarlandingsites.TheLROwillconductitsmissionfroma50kmpolarlunar orbitforadurationofoneyear.WhilenomaneuversaretobemadetoobtainaSun synchronousorbit,asexplainedin[33]stationkeepingmaneuverswillbeperformedto correcttheeccentricityandargumentofperiapsisdrift.Thestationkeepingmaneuversare intendedtobeperformedonceperlunarorbitperiod,or27.4days. Inlightofthepreviousworkperformedingeneratinglunarmappingorbits,the effortspresentedinthisthesiscanbeseenasastrongadvancementtothefield.In particular,whilepreviouseffortshavebeenmadetowardsgeneratingshortdurationSun synchronousmissions,amethodforgeneratinglongdurationSunsynchronousmissions willbepresentedinthisthesis.Also,itwillbeshownthatSunsynchronousorbitscanbe achievedusingcurrentagelowthrusthardware,somethingwhichuptothispointhasnot beenafocusofstudy.

13

3. SYSTEM MODELS AND EQUATIONS OF MOTION

3.1. MEAN SELENOGRAPHIC REFERENCE FRAME 3.1.1. Definition of the Mean Selenographic Reference Frame. Sinceorbits abouttheMoonaretobeanalyzed,itisdesiredtosolvethesystemdynamicsina referenceframethatisfixedintheMoon.Forthisreason,aselenographicreference frameischosen.Aselenographicframeisdefinedasarotatingreferenceframewiththe origininthecenteroftheMoon,wherethe xˆ , yˆ and zˆ axescorrespondtotheMoon’s principalaxesofinertia[34].The xˆ axisisintheMoon’sequatorialplanepointing towardsEarth,the zˆ axisisthroughtheMoon’snorthpole,andthe yˆ axiscompletesthe righthandedcoordinatesystem.Figure3.1depictssuchaselenographiccoordinate system.

Figure3.1.ExampleofSelenographicCoordinateFrame

Escobalin[34]describestwobasictypesofselenographicreferenceframes.One, calledthetrueselenographiccoordinatesystem,incorporatesthephysicallibrationsof

14 theMoon,whileanother,themeanselenographicreferenceframe,doesnotincludethe librations.Itwasdecidedtousethemeanselenographicreferenceframeforthisinitial analysis,dueinparttotheMoon’slibrationsbeingverycomplicatedtomodeland becausethelibrationeffectslikelycauseverysmallperturbationsinthemodel. 3.1.2. Transformation from Ecliptic Frame to Mean Selenographic Frame. Insolvingtheequationsofmotionpresentedlater,itwillbenecessarytoconvertfromthe eclipticframetothemeanselenographicframediscussedinSection3.1.1.Theecliptic frameisdefinedastheplaneofEarth’sorbitaroundtheSun.The xˆ axisoftheecliptic frameisdirectedtowardsthevernal,the zˆ axisistiltedapproximately23.44° fromtheEarth’snorthpole,andthe yˆ axiscompletestherighthandedcoordinatesystem. Thiscoordinatetransformationisrequiredbecausepositionvectorsoriginatingfrom Earth,suchasthevectorsfromtheEarthtotheSunorfromtheEarthtotheMoon,are typicallydefinedinaneclipticframe.Thecoordinateframetransformationwhichis describedinthissectionisderivedinEscobal[34]. Itisfirstrequiredtocalculatesomeauxiliaryanglesthatwillbeneededinthe transformation.Theseanglesaredefinedwithrespecttotheindependentvariable

J.D.−(J.D.) T = Jan ,5.0 1900 (3.1) u 36525 where J.D. isthecurrentJuliandatewiththedatetakenas

(J.D.) Jan ,5.0 1900 = 2415020 (3.2)

Now,definethevariables λmoon andasfollows[34],

2 −5 3 λmoon = 270.4341639° + 481,267.8831417°Tu − .0 001133333°Tu + .0 1888889°x10 Tu (3.3)

2 −5 3 = 259.1832750° − ,1 934.1420083°Tu + .0 002077778°Tu + .0 2222222x10 Tu (3.4)

isthelongitudeofthemeanascendingofthelunarorbitmeasuredintheecliptic framefromthemeanequinoxofdate,and λmoon isthegeocentricmeanlongitudeofthe

Moon, λmoon = +η ,where η istheanglebetweentheMoonandthelocationatwhich itsorbitcrossestheeclipticplane.Equations(3.3)and(3.4)areveryusefulinthatthey giveprecisevaluesforboth λmoon andasafunctionoftime.

15

Threedifferentrotationsareneededinordertoconvertfromtheeclipticframeto themeanselenographicframe.Figure3.2showsthesethreerequiredrotations.

xs

ψ

φ θ

Figure3.2.TransformationfromEcliptictoMeanSelenographicFrame

Thefirstrotation, φ ,istakenaboutthe zˆ axisoftheeclipticframeandisequalto

φ = +π (3.5)

Thesecondrotation, θ ,istakenabouttheintermediate xˆ'axisandisequalto

θ = I (3.6) where I isthemeaninclinationofthemeanselenographicreferenceframetotheecliptic framewhichisequalto1.53889°.Thefinalrotationisabouttheresultant zˆ '' axisandis equalto

ψ = λmoon − (3.7)

The φ , θ ,and ψ angles,alsoknownastheEulerangles,areusedtocreatea directioncosinematrix(DCM)whichwillconvertapositionvectorexpressedinthe eclipticframetothemeanselenographicframe.Itshouldbenotedthatthetrigonometric expressionsinthefollowingDCMareabbreviatedas

16

Sα = sin(α) (3.8)

Cα = cos(α) (3.9)

TheresultingDCM,asdescribedinEscobal[34],is

 Cφ Cψ −Cθ Sφ Sψ Sφ Cψ +Cθ Cφ Sψ Sψ Sθ    DCM = − Sψ Cφ −Cθ Sφ Cψ − Sφ Sψ +Cθ Cφ Cψ Sθ Cψ  (3.10)    Sφ Sθ −Cφ Sθ Cθ 

WiththeDCMgivenbyEquation(3.10),apositionvectorintheeclipticframe canbeexpressedinthemeanselenographicframeas

rselenographic= [DCM ] r ecliptic (3.11)

Ifitwerealsodesiredtoconvertvelocitiesfromtheecliptictothemeanselenographic frame,additionalcalculationswouldhavetobemade.However,sinceforthisworkonly positionvectorswillneedtobeconverted,Equation(3.11)willsuffice. 3.2. DERIVATION OF THE EQUATIONS OF MOTION Inthissection,theequationsofmotionofalowaltitudelunarorbiterwillbe derived.TheequationswillincorporateperturbationsfromEarth,theSun,andthehighly nonuniformlunargravityfield. AsdepictedinFigure3.3,thesystemconsistsoffourbodies:Earth,Sun,Moon, andspacecraft.Also,thepoint“O”inFigure3.3isconsideredtobeaninertiallyfixed pointinspace,andisneededforstartingthederivations. LetthevectorfromtheMoontothespacecraftbedefinedby

rmoon− s/ c =x xyzˆ + y ˆ + z ˆ (3.12) wherethe xˆ , yˆ and zˆ axescorrespondtothemeanselenographicframedescribedin Section3.1.Thispositionvectorisdefinedwithrespecttoarotatingreferenceframe,but thevelocityandaccelerationvectorsmustbeexpressedinaninertialreferenceframein ordertobeusedinNewton’sLaw.

17

r

rsun −s / c

r r r r r sun −moon moon −s / c r sun −earth r r r earth −s / c r Rsun rearth −moon r R r s / c r R Rearth moon

Figure3.3.FourBodySunEarthMoonSpacecraftSystem

Inordertoexpressthevelocityandaccelerationwithrespecttoaninertial referenceframe,thebasickinematicequation(BKE)mustbeusedtoexpressthefirstand secondderivativesof(3.12)as

I dr R dr r& = moon−s / c = moon−s / c + I w R xr (3.13) moon−s / c dt dt s / c

I d 2 r R d 2 r I dr r&& = moon−s / c = moon−s / c + I w R x moon−s / c (3.14) moon−s / c dt 2 dt 2 dt

I R −6 where w = wm zˆ andwm = .2 661699x10 rad/sec istheMoon’srotationalvelocity. Evaluating(3.13)and(3.14)leadsto

& & & & rmoon−s / c = (x − wm y)xˆ + (y + wm x) yˆ + zzˆ (3.15)

&& && & 2 && & 2 && rmoon−s / c = (x − 2wm y − wm x)xˆ + (y + 2wm x − wm y) yˆ + zzˆ (3.16)

18

Equations(3.15)and(3.16)givetheinertialpositionandvelocityofthespacecraftwith respecttotheMoon. Next,usingNewton’sLaw && ms/c Rs / c = Fs / c (3.17)

where Fs / c isthesumoftheexternalforcesonthespacecraft.Also,fromFigure3.3

Rs / c = Rmoon + rmoon−s / c (3.18)

From(3.18),itcanbeseenthat

&& && && rmoon−s / c = Rs / c − Rmoon (3.19)

Now,itcanbeshownthat

&& mms/c earth mm s/c sun mGs/c Rs/ c=−3 r earth− s / c − G 3 r sun − s / c +∇ mUs/c Moon (3.20) rearth− s/c r sun − s/c andthat

&& mmoon mearth mmoon msun mmoon Rmoon = −G 3 rearth−moon −G 3 rsun−moon (3.21) rearth−moon rsun−moon wherefromFigure3.3

rearth−sc = rearth−moon + rmoon−s / c (3.22)

rsun−sc = −rearth−sun + rearth−moon + rmoon−sc (3.23)

rsun−moon = −rearth−sun + rearth−moon (3.24)

km 3 InEquations(3.20)and(3.21), G = .6 673x10−20 istheuniversalgravitational kg.s 2 constant, ∇U Moon isthegradientofthelunargravitypotentialwhichisdefinedinthenext section,and mearth , msun ,and mmoon correspondtothemassesoftheEarth,Sun,andMoon, respectively.equationspresentedinEscobal[34]andintheJPLsoftware

Quick[35,36]areusedtosolvefor rearth−moon and rearth−sun inEquations(3.223.24).The ephemerisequationsgiveaccuratepositionsofthebodiesasafunctionofthecurrent

19

JulianDate.Sincebothvectorsarecomputedintheeclipticframe,theyhavetobe convertedintotheselenographicframethroughtheprocessdetailedinSection3.1.2.

Now,definethegravitationalparameterterms earth = Gmearth and sun = Gmsun .

DividingEquations(3.20)and(3.21)by ms/c and mmoon ,respectivelyandsubstitutingthe resultantequationsintoEquation(3.19)yields

− r&& =earth r − sun r + earth r moon− s/ cr3 earth − s / c r 3 sun − s / c r 3 earth − moon earth− s/c sun − s/c earth − moon (3.25) sun +3 rsun− moon + ∇ U Moon rsun− moon

Itisnowdesiredtoconvertthissecondordersystemintoafirstorderform.Let r thestatevector x bedefinedas

x1  x x  y  2    x  z x = 3 = (3.26)    & x4  x x  y&  5    & x6  z

Also,allowforthepossibilityofacontrolaccelerationalongeachdirectionas u1, u2, and u3,respectively.BysettingEquation(3.16)equaltoEquation(3.25),thesixdifferential equationsareobtained

& x1 === x4 (3.27)

& x2 === x5 (3.28)

& x3 === x6 (3.29)

r r r & 2 earth earth−scx sun sun−scx earth earth−moonx x4 = 2wm x5 + wm x1 − − + + r 3 r 3 r 3 earth−sc sun−sc earth−moon (3.30) r sun sun−moonx +∇U +u 3 Moonx 1 rsun−moon

20

r r r & 2 earth earth−scy sun sun−scy earth earth−moony x5 = −2wm x4 +wm x2 − − + + r 3 r 3 r 3 earth−sc sun−sc earth−moon (3.31) sunrsun−moon y +∇U +u 3 Moony 2 rsun−moon

− r r r r x& = earth earth−scz + sun sun−scz + earth earth−moonz + sun sun−moonz +∇U +u (3.32) 6 3 r 3 3 3 Moonz 3 rearth−sc sun−sc rearth−moon rsun−moon

Equations(3.273.32)representsixfirstorderequationsthatspecifythedynamics ofalowaltitudelunarorbiterunderperturbationsfromEarth,theSun,andtheMoon’s gravityfield.Thelunargravitationalpotentialterm, ∇U Moon ,inEquations(3.303.32)is derivedinthefollowingsection.

3.3. DERIVATION OF LUNAR GRAVITATIONAL POTENTIAL Theprimarythatalowaltitudelunarorbiterexperiencescomes fromtheMoon’shighlynonsphericalgravityfield.Therefore,agoodmodelofthelunar gravitationalpotentialiscrucialforobtainingahighfidelitydynamicmodel.Thissection willdescribeanumericalmethodforcalculatingthegradientofthelunargravitational potentialusingthemostrecentgravitymodelavailablefortheMoon.Amajorityofthe analysisinthissectionistakenfromVallado[37]. AsdescribedinVallado[37],thegravitationalpotential U ofanygeneralbody canbedescribedas

∞ m U = G∑ Q (3.33) Q=1 ρ Q whereGisthegravitationalconstantofthebody,mQisaninfinitesimalmassonthe body,and ρQ ,calledtheslantrange,isdefinedasthedistancefromtheinfinitesimal masstosomepointinspacePatwhichitdesiredtoevaluatethepotential.Inthiscase, pointPwillcorrespondtoasatellite.Figure3.4showsthegeometryinvolved.

21

r ρQ mQ r r rQ r Λ yˆ

xˆ Figure3.4.SetupfortheLunarGravitationalPotentialDerivation Equation(3.33)canfurtherbeexpressedintheformofanintegralovertheentire bodyas

1 U = G dm (3.34) ∫ ρ Body Q

Now,definethegeocentricdistancefromthebodytothesatelliteatpointPas r andthedistancefromthecenterofthebodytotheinfinitesimalpointasrQwhere

r = x 2 + y 2 + z 2 (3.35)

2 2 2 rQ = ε +η +ξ (3.36)

Usingthelawofcosines,theslantrange ρQ canbecomputedas

2 2 ρQ = r − 2rrQ cos(Λ) (3.37)

whereasshowninFigure3.4, Λ istheanglebetweenthe r and rQ vectors.The Λ angle canbecomputedthroughthedotproductofthepositionvectorsas

22

xε + yη + zξ r ⋅r cos(Λ) = = Q (3.38) rrQ rrQ

InsertingEquation(3.38)inEquation(3.37),theslantrangeisnow

2 ρQ = r 1− 2α cos(Λ) +α (3.39) where

r α = Q (3.40) r

UsingEquation(3.38),thegravitationalpotentialofthebodynowbecomes

dm U = G (3.41) ∫ 2 Body r 1− 2α cos(Λ) +α

The α variablewillalwaysbelessthan1.0forapointPoutsidethebody,andthe absolutevalueofthe cos(Λ) quantitywillalwaysbelessthanorequalthan1.0,therefore thebinomialtheoremcanbeusedtoexpandthedenominatorofEquation(3.41)intoa series.AsexplainedinVallado[37],thisleadstothefollowingequationforthe gravitationalpotential U:

G ∞ U = α l P [cos(Λ)]dm (3.42) r ∫ ∑ l Body l=0

The Pl [cos(Λ)] terminEquation(3.42)isreferredtoasaLegendrepolynomial, andthefullequationinvolvesaseriesofLegendrepolynomials.Setting cos(Λ) = ω , Vallado[37]givesanequationfortheLegendrepolynomialsas

1 d l (ω 2 − )1 l 1 ∞ (− )1 j 2( l − 2 j)! P [ω] = = ω l−2 j (3.43) l l l l ∑ 2 l! dω 2 j=0 j (! l − j ()! l − 2 j)!

ThefirstsixLegendrepolynomialsare

P0 [ω] =1(3.44)

P1[ω] = ω (3.45)

23

1 P [ω] = 3( ω 2 − )1 (3.46) 2 2

1 P [ω] = 5( ω 3 −3ω) (3.47) 3 2

1 P [ω] = (35ω 4 −30ω 2 + )3 (3.48) 4 8

1 P [ω] = (63ω 5 − 70ω 3 +15ω) (3.49) 5 8

Itshouldalsobenotedthatthe l=0termofEquation(3.42)is

G Gm U = dm = = (3.50) 0 r ∫ r r whichisthestandardequationforthegravitationalpotentialofasphericallysymmetric andhomogenousbody.ForsomebodiesEquation(3.50)isagoodapproximationforthe gravitationalpotential,butduetotheMoon’snonsphericalgravityfieldanaccuratehigh fidelitymodelforalunarorbiterinvolvescomputingalargeamountofthetermsin Equation(3.42). InordertocomputetheLegendrepolynomialsforlargedegreesof l,the followingrecursivealgorithmisused. • DefinethefirsttwoLegendrepolynomialsbyEquations(3.44)and(3.45). • UseBonnet’srecursiontosolvefortherestoftheLegendrepolynomialsuptoa

desiredmaximumdegree lmax :

2l+ 1 l P()ω= ωω P () − P () ω (3.51) l+1 l+1 l l + 1 l − 1

FurthersimplifyingEquation(3.42),Vallado[37]illustratesthatbyusingthe additiontheoremofsphericalharmonicsthe Pl [cos(Λ)] termcanalsobeexpressedas

l (l − m)! P [cos(Λ)] = P [sin(φ )]P [sin(φ )]+ 2 {P [sin(φ )]cos(mλ )⋅ l l gcQ l gcsat ∑ l,m gcQ Q m=1 (l + m)! P [sin(φ )]cos(mλ ) + P [sin(φ )]sin(mλ )⋅ P [sin(φ )]cos(mλ )}(3.52) l,m gcsat sat l,m gcQ Q l,m gcsat sat

24 where φ , λ , φ and λ arethegeocentriclatitudeandlongitudeoftheinfinitesimal gcQ Q gcP P massonthebodyandthepointP,respectively,andthesummationindices land marethe degreeandorder,respectively.

The Pl,m termsinEquation(3.52)arereferredtoasassociatedLegendrefunctions. Thesefunctionshavethegeneralformof

1 d l+m d m P ()ω = 1( −ω 2 ) m 2/ (ω 2 − )1 l = 1( −ω 2 ) m 2/ P ()ω (3.53) l,m 2l l! dω l+m dω m l

SomeofthefirstfewassociateLegendrefunctionsare

P 0,0 =1(3.54)

P = sin(φ ) (3.55) 0,1 gcsat

P = cos(φ ) (3.56) 1,1 gcsat

1 P = {3sin 2 (φ ) −1}(3.57) 0,2 2 gcsat

P = 3sin(φ )cos(φ ) (3.58) 1,2 gcsat gcsat

P = 3cos 2 (φ ) (3.59) 2,2 gcsat

When m =0,orforzeroorder,theassociatedLegendrefunctionisequaltotheLegendre polynomialevaluatedatthesamevalueof l. WhileEquation(3.53)issufficientforhandcalculations,itisinefficientfor calculationsonacomputerduetothederivativeterm.Therefore,itisdesiredtoobtaina recursiveequationforcomputingtheassociatedLegendrefunctionsthatwouldbeeasyto implementoncomputersoftware.Thefollowingalgorithmisusedforobtainingthis recursiveequation: • FirstdefinethethreestartingvaluesfortheassociatedLegendrefunctionsby Equations(3.543.56).Alsodefinethethreestartingvaluesforthederivativeterm inEquation(3.53)as

d 0 P (ω )= 1 (3.60) dω 0 0

25

d 0 P (ω ) = ω (3.61) dω 0 1

d P (ω )= 1 (3.62) dω 1

• Usethefollowingrecursiveequationforcalculatingthederivativesofthe

Legendrepolynomialsuptosome lmax and mmax :

dm d m d m −1 Pw()= P ()(21)ω + l − P () ω (3.63) dωml d ω m l−2 d ω m −1 l − 1

d m Itshouldbenotedthatforthecaseswhere m=0, P()ω= P () ω . dω m l l • WiththederivativesobtainedfromEquation(3.63),theassociatedLegendre functionscanbecomputedusingEquation(3.53). WithexpressionsobtainedfortheassociatedLegendrefunctions,Equation(3.42) cannowbeseparatedintotermsthataredependentonthesatellite’slocationandterms thatonlydependonthecentralbody.Whilealloftheequationsbeforethispointwould applyforanygeneralbody,atthispointthefocuswillchangetospecificallychoosingthe

Moonasthecentralbody.TheMoon’sradiuswillbedefinedas RMoon ,whichisequalto

1737.4km,andthemassoftheMoonwillbedefinedas mMoon ,whichisequalto 7.36x10 22 kg.TobegintheseparationofthetermsinEquation(3.42)definethe followingcoefficients:

(l − m)! C' = r l 2 P [sin(φ )]cos(mλ )dm (3.64) l,m ∫ Q (l + m)! l,m gcQ Q Moon

(l − m)! S' = r l 2 P [sin(φ )]sin(mλ )dm (3.65) l,m ∫ Q (l + m)! l,m gcQ Q Moon

The C’ l,m and S’l,m coefficientsinEquations(3.64)and(3.65)representthe mathematicalmodelingoftheMoon’sshapeusingsphericalharmonicsandarereferred toasgravitationalcoefficients.Eachofthegravitationalcoefficientsdescribessurface sphericalharmonicsforsomepointontheMoon.Forexample,the m =0coefficients

26 describezonalharmonicsandrepresentbandsoflatitude,the l=m coefficientsdescribe sectorialharmonicswhichrepresentbandsoflongitude,andthe l ≠ m termsdescribe tesseralharmonicsindicatingspecificregionsoftheMoon.Also,ifthecenterofthe coordinatesystemcorrespondswiththeattractingbody’scenterofmass,thecoefficients

C’ 1,0 , C’ 1,1 and S’ 1,1 areequaltozero. SubstitutingEquations(3.64)and(3.65)intoEquation(3.42)leadstothe followingseriesrepresentationfor U:

∞ ∞ l G Pl [sin(φ gc )] G Pl,m [sin(φgc )] U = sat C' + sat C' cos(mλ ) + S' sin(mλ ) (3.66) ∑ l l 0, ∑∑ l { l,m sat l,m sat } r l=0 r r l=1m = 1 r

ItisseenfromEquation(3.65)thatinordertohaveproperunits,the C’and S’ gravitationalcoefficientswillneedtobenondimensionalized.Therefore,thecoefficients arenondimensionalizedas

C' m C = l, l,m l (3.67) RMoon mMoon

S' S = l,m l,m l (3.68) RMoon mMoon

SubstitutingEquations(3.67)and(3.68)intoEquation(3.66)andnotingthatthe

U0termisdefinedbyEquation(3.50),thefinalequationforthegravitationalpotentialis obtainedas

l  ∞ l  R   U = 1+  Moon  P [sin(φ )]{}C cos(mλ ) + S sin(mλ )  (3.69) ∑∑ l,m gcsat l,m sat l,m sat r  l=2m = 0 r  

The Cand Sgravitationalcoefficientsaretypicallycomputedfromobservingthe resultsofmissionsthathavebeenconductedaroundthedesiredcentralbody.Forthe Moon,manymissionshavebeenconducted,someofwhicharetheApolloMissions,the ClementineMission,andtheLunarProspectormission.Currentlunargravitymodels contain Cand Scoefficientsthathavebeendeterminedusingtheresultsfrommanyof thesemissions.ThelunargravitymodelusedinthisworkistheLP165Pgravitymodel

27 obtainedfromtheNASAPDSGeosciencesNode,whichcontainslunar Cand S coefficientsuptoadegreeandorderof165x165[39].Thisgravitymodelisfreefor publicuse,andwasobtainedoffoftheNASAwebsite. NowthatthegravitationalpotentialfunctionisdefinedbyEquation(3.69),the nextstepistocalculatetheacceleration,equaltothegradientofthegravitational potentialfunctiondefinedas

∂U ∂U ∂U ∂U ∇U = = , , (3.70) Moon ∂r ∂x ∂y ∂z

However,since Uisdefinedintermsofsphericalcoordinates( r, φ , λ )anditis gcP P desiredtofindtheaccelerationisCartesiancoordinates( x,y,z) ,thechainrulemustbe applied.Thisleadstotheequationforthegradientas

T T ∂U  ∂r  ∂U  ∂φgc  ∂U  ∂λ  ∇U =   +  sat  +  sat  (3.71) Moon ∂r ∂r ∂φ  ∂r  ∂λ ∂r   gcsat   sat   where

l ∂U  ∞ l  R   = − 1+  moon  (l + )1 P [sin(φ )]{}C cos(mλ ) + S sin(mλ  (3.72) ∂r 2 ∑∑ r l,m gcsat l,m sat l,m sat) r  l=2m − 0  

l ∂U ∞ l  R  =  moon  {P [sin(φ )]− mtan(φ )P [sin(φ )]} ∂φ r ∑∑ r l,m+1 gcsat gcsat l,m gcsat (3.73) gcsat l=2m = 0 

×{}Cl,m cos(mλsat ) + Sl,m sin(mλsat )

l ∂U ∞ l  R  =  moon  mP [sin(φ )]{S cos(mλ ) −C sin(mλ )}(3.74) ∑∑ l,m gcsat l,m sat l,m sat ∂λsat r l=2m = 0 r 

∂r r T = (3.75) ∂r r

28

T ∂φ gc 1  r r ∂r  sat = − z + z  (3.76) ∂r 2 2  r 2 ∂r  rx + ry  

∂λ 1  ∂r ∂r  sat = r y − r x (3.77) 2 2  x y  ∂r rx + ry  ∂r ∂r 

AfterthesubstitutionofEquations(3.723.77)intoEquation(3.71),Equation (3.71)canbeusedtosolvefortheaccelerationinducedbythelunargravitational potential.ThethreecomponentsofEquation(3.70), ∇U , ∇U ,and ∇U are Moonx Moony Moonz thenusedintheequationsofmotionforthesatellite,Equations(3.273.32).Asexplained atthebeginningofthissection,thelunargravitationalpotentialisoneofthemain perturbationsonalowaltitudelunarorbiter,thustheadditionofEquation(3.71)tothe equationsofmotiongreatlyincreasesthefidelityofthedynamicmodel. 3.4. DYNAMIC MODEL CREATION AND RESULTS ThissectiondetailsthedevelopmentofadynamicmodelinMATLAB,and concludeswithresultsthatshowtheevolutionofalowaltitudelunarorbitoveran extendedperiodoftimeandtheeffectsofusingalargenumberoftermsfromthegravity model. ForthepurposesofintegratingEquations(3.273.32),aMATLABodeintegrator isutilized.Inparticular,the“ode113”integratorisused,whichisavariableorder AdamsBashforthMoultonPECEsolver[39].Theinputsthattheintegratorrequiresare aninitialstatevectorandthedesiredtimespan.Theuserspecifiestheinitialorbital elements,andtheelementsarethensentthroughasubroutinethatconvertsthemto Cartesiancoordinates.ThisconversionprocessfromorbitalelementstoCartesian coordinatesisdescribedinAppendixA.Itisalsopossibletospecifytheerrortolerances fortheintegrator.Forthiswork,theabsoluteandrelativeerrortolerancesarebothsetto 1x10 14 . Afteralloftheinputsfortheintegratorareset,theintegrationisperformedwith theoutputselectedasthestatevectoracrossthedesiredtimespan.However,the integrationisperformedincoordinateswithrespecttotherotatingselenographicframe

29 whileitisdesiredtoplottheresultswithrespecttoaninertialframe.Therefore,afterthe integrationiscompletedthestatesareconvertedtoaninertialframe.Thisconversionis detailedinAppendixB. Withthedynamicmodelcreated,theresultscanbeanalyzedinordertoobserve thelongtermbehaviorofthelunarorbits.Itshouldbenotedthattheonlyvariablesthat willaffectthestructureoftheresultantorbitaretheinitialorbitalelementsandtheorder anddegreeofthegravitymodelthatwillbeused,i.e. lmax and mmax .Theconstraintonthe lmax and mmax variablesisthatneithercanbelargerthan165,asthelunargravitymodel usedforthisworkisofdegreeandorder165x165.Theintegratortimespanspecifiesthe timelengthoverwhichtheresultsarepresented,anddoesnotaffectthatactualstructure oftheorbit.Formostofthegraphspresentedinthissection,thetimespanisheld constant. Itwasfoundthatthelengthofcomputerrunningtimeisdirectlyrelatedtothesize ofthe lmax and mmax variables,soananalysiswasmadetoseeifsufficientaccuracycan stillbeobtainedbyusingasmallfractionofthelunargravitymodel.Thisinvolvedacase studywhereasetofinitialorbitalelementsisfixed,andintegrationsareperformedwith differentvaluesfor lmax and mmax .Thesixinitialorbitalelementsusedforthiscasestudy arepresentedinTable1.1.Theseinitialorbitalelementswerechosentospecifya100 km,nearlycircular,polarorbit.Thevaluesfortheascendingnode,argumentofperiapsis, andtrueanomalywerechosenarbitrarily. Table1.1.InitialOrbitalElementsforDynamicModelSimulations

OrbitalParameter Value

Semimajoraxis, ai 1837.4km

Eccentricity, ei 0.0013

Inclination, ii 90°

AscendingNode, i 45°

ArgumentofPeriapsis, ωi 45°

TrueAnomaly, ν i 0°

30

GraphswerecreatedusingtheinitialorbitalelementsdefinedinTable1.1anda constanttimespanof20daysforvariousvaluesoflmax and mmax ,andarepresentedas Figures3.53.9.

Figure3.5.20DayOrbitfor lmax =2,m max =0

Figure3.6.20DayOrbitfor lmax =10, mmax =10

31

Figure3.7.20DayOrbitfor lmax =20, mmax =20

Figure3.8.20DayOrbitfor lmax =25, mmax =25

32

Figure3.9.20DayOrbitfor lmax =50, mmax =50 Figures3.53.9showthelargeimpactofthelunargravityfieldonalunarorbiter. Itcanbeseenfromtheplotsthatwhilethetrajectoriesofamajorityoftheorbital elementsaredirectlyaffectedbythehigherordertermsinthelunargravitymodel,the ascendingnodeappearstobeunaffected.Also,investigationoftheplotsshowsthatusing furthertermsbeyond25x25hasaveryminimaleffectontheresults.Becauseofthis,it wasdecidedtoonlyusethegravitymodeltermsupto25x25fortheremainderofthe analysesinthiswork.Doingsosavesatremendousamountofcomputingtimewhile maintainingaccurateresults. Inordertogetanindicationofthelongtermbehaviorofthesolutions,a105day integrationwasperformedusingthesameinitialorbitalelementsdefinedaboveandusing upto25x25inthelunargravitymodel.ThisplotcanbefoundinFigure3.10.Also,it wasdesiredtoseehowclosethespacecraftwillgettotheMoonduringthissimulation. Forthisreason,aplotwasalsomadeoftheperiapsisevolution,whichcanbefoundin Figure3.11.

33

Figure3.10.OrbitalElementTrajectoriesfor105Dayintegration

Figure3.11.PeriapsisAltitudeEvolutionfor105DayIntegration

34

Figure3.10showsthatinthelongterm,alowaltitudelunarorbitwillexperience driftsinsemimajoraxisandeccentricitywhichwilleventuallyneedtobecorrected dependingonhowlongitisdesiredforthesatellitetoremaininorbit.Thisdriftoccurs primarilybecauseoftheeffectsofthehighlynonsphericallunargravityfield.Itcanalso beseenfromFigure3.10thattheascendingnodeandinclinationbothstayinroughlythe sameregion,performingoscillationsofsimilaramplitudes. Figure3.11showsanotherinterestingresultofthehigherorderlunargravity terms.Inparticular,itcanbeseenthatin105daystheperiapsisaltitudedecreasesby approximately70km.Sincetheperiapsisistheclosestpointontheorbittothelunar surface,thisgivesanindicationoftheriskofthecrashingintothesurface.Thisdecrease inaltitudeiscausedbythedriftinthesemimajoraxisandeccentricityseeninFigure 3.10,anditcanclearlybeassumedthatwithoutperformingaltitudecontrolthespacecraft willeventuallycrash.

35

4. OPTIMAL CONTROL ANALYSIS

Thissectiondiscussesoptimalcontroltheoryanditsapplicationtothelowthrust controlofalunarorbiter.Thesectionbeginswithanintroductiontooptimalcontrol theory,andthenleadsintothemethodchosenforsolvingthetwopointboundaryvalue problem,theselectionofthedesiredcostfunction,andtheevaluationofthenecessary conditionsforoptimality. 4.1. INTRODUCTION TO OPTIMAL CONTROL THEORY Thedisciplineofoptimalcontroltheoryhasbeenaroundforarelativelylong time,withitsoriginsemerginginthe1940’s.Optimalcontrolhasrootsinelectrical engineering,withengineersfirstusingittodesignelectromechanicalapparatusthatwere efficientlyselfcorrectingrelativetosometargetobjective.Sinceitscreation,muchwork hasbeenperformedonimprovingoptimalcontrolsolutiontechniques,anditisnowan oftenusedmethodofcontrol. Solvingoptimalcontrolproblemsrequirestheuseofcalculusofvariations.A goodreferenceforinformationoncalculusofvariationsis[40].Thegeneraloptimal controlprobleminvolvesfindingacontrolinput u(t)foragenerallynonlinearsystem & x = f (x,u t), ,x(t0 ) given(4.1) where x(t)and u(t)arevectorfunctionsofsize nand m,respectively inordertominimize ormaximizetheperformanceindex

t f J =φ(x ,t ) + L(x,u t), dt (4.2) t f f ∫ t0 whilesatisfyingtheconstraint ψ (x , t ) = 0 (4.3) t f f InEquation(4.2), φ(x ,t ) isaweightingfunctiononthefinalstateand L(x,u,t) isa t f f costfunctiontobeminimizedduringtheintegration[41].Thefinalweightingfunction φ(x ,t ) andtheconstraint ψ (x ,t ) shouldnotbeconfused. φ(x ,t ) isafunction t f f t f f t f f

36 ofthefinalstatethatisdesiredtobesmall,butmaynotnecessarilybezero.Ontheother hand, ψ (x ,t ) isafunctionofthefinalstatethatisdesiredtobefixedatexactlyzero. t f f Thedynamicsconstraintx& = f (x,u t ), andtheconstraintonthefinalstate ψ (x ,t ) canbeadjoinedtotheperformanceindexofEquation(4.2)withmultiplier t f f functionsλ(t)andν,respectively[41].Thisleadstothemodifiedperformanceindex

t f J'=φ(x(t ),t ) +ν Tψ (x(t ),t ) + L(x,u t), + λT (t) f (x,u t), − x& dt (4.4) f f f f ∫[]{} t0

TosimplifyEquation(4.4),defineascalarfunction HcalledtheHamiltonianas

H (x,u t), = L(x,u t), + λT (t) f (x,u t ), (4.5)

SubstitutingEquation(4.5)intoEquation(4.4)leadsto

t f J '= φ(x(t ),t ) +ν Tψ (x(t ),t ) + H (x,u t), −λT (t)x& dt (4.6) f f f f ∫{} t0 ThesecondtermintheintegralofEquation(4.6)canbeintegratedbyparts,leadingto

t f J '= φ(x(t ),t ) +ν Tψ (x(t ),t ) − λT (t )x(t ) + λT (t )x(t ) + H (x,u t), + λ&T (t)x(t) dt (4.7) f f f f f f 0 0 ∫{} t0 Inordertofindtheminimumof J’,thevariationin J’ duetovariationsinthe controlvector u(t)forfixedtimes t0and tf.AccordingtoLagrangetheory,theconstrained minimumof J occursattheunconstrainedminimumof J’ ,whichisachievedwhen δJ '= 0

[42] .Thismeansthatthedifferentialof J’ mustbecalculatedas

t f  ∂φ T ∂ψ T   T  ∂H &T  ∂H  ∂H   δJ '=  +ν − λ δx + []λ δx +  + λ (t)δx + δu +  − x&δλ dt (4.8)   t=t0    ∂x ∂x   ∫ ∂x  ∂u  ∂λ   t=t f t0

Sinceitwouldbeverydifficulttocalculatethevariationsin δx(t) and δλ(t) causedbya given δu(t) ,theλ(t)multipliersarechosentomakethecoefficientsof δx(t) and δλ(t) in Equation(4.8)vanish[41].Thisimplies

37

∂H x& = = f (x,u t), (4.9) ∂λ andthat

∂H λ&T (t) = − (4.10) ∂x withtheboundarycondition

T ∂φ T ∂ψ λ (t f ) = +ν (4.11) ∂x(t f ) ∂x(t f )

Equation(4.8)nowbecomes

t f ∂H δJ '= λT (t )∂x(t ) + δudt (4.12) 0 0 ∫ ∂u t0

AccordingtoLagrangetheory,theconstrainedminimumof J occursatthe unconstrainedminimumof J’ [42] . For J’ tobeaminimum, δJ ' mustbeequaltozerofor anarbitrary δu(t) .AsseenfromEquation(4.12),thisoccursonlyif

∂H = 0 (4.13) ∂u

Takingthepartialof H inEquation(4.12),itisfoundthat

T T ∂H  ∂f   ∂L  =   λ +   = 0 (4.14) ∂u  ∂u   ∂u 

Equations (4.9), (4.10), (4.11) and (4.14) are the necessary conditions for a minimumof J,andallsolutionstothenecessaryconditionswillleadtostationarypoints of J. Therefore, the necessary conditions do not guarantee a minimum solution; the solution could actually be a minimum, a maximum, or a saddle point. In order to guaranteeaminimumormaximumof J,thesufficientconditionsforaminimummustbe evaluatedwhichinvolveevaluatingthesecondderivativesof J. However,inthiswork onlystationarypointsarestudied. Inordertofindthecontrolvectorfunction u(t)thatprovidesastationaryvalueof

J, the2 ndifferentialequations,Equations(4.9)and(4.10)mustbeintegratedfrom t0to tf

38 whilecomputing u(t)fromEquation(4.14).TheboundaryconditionsforEquations(4.9) and(4.10)are x(t 0)givenandEquation(4.11).Also,itshouldbenotedthattheboundary conditionsaresplit,withonesetofboundaryconditionsbeingdefinedat t0andtheother setbeingdefinedat tf.Thisimpliesthatthesolutionoftheoptimalcontrolproblem involvessolvingatwopointboundaryvalueproblem,whichistypicallyverydifficultto solvefornonlinearsystemsandrequiresusingnumericalmethods. Thefollowingchapterwilldiscussthedifferencesbetweenthetypesofmethods usedtosolveoptimalcontrolproblems,anddetailthemethodchosenforthiswork. 4.2. SOLVING THE TWO-POINT BOUNDARY VALUE PROBLEM Dueinparttothefactthatoptimalcontroltheoryhasbeenaroundforoverforty years,muchworkhasbeendoneingeneratingmethodsandalgorithmsforsolving optimalcontrolproblems.Reference[43]givesanexcellentoverviewofmanyofthe currentmethodsinuse.Ofallthecurrentmethodsavailable,mostcanbeclassifiedas oneoftwotypes:indirectanddirect[43]. Indirectmethodsinvolvederivingtheexpressionsforthenecessaryconditionsfor optimalityandsolvingtheassociatedtwopointboundaryvalueproblem[43].Commonly usedindirectmethodsincludebackwardsweepalgorithms,indirectshootingmethods, andindirecttranscriptionmethods.Oneratherseriousdrawbackofindirectmethodsis thattheyrequireaverygoodguessfortheinitialcostatesinordertoconverge.However, ifasufficientinitialguessismade,thesemethodstypicallybenefitfromquick convergenceandaguaranteedoptimalsolution.Anotherdrawbackofindirectmethodsis thatforcomplexsystems,derivingexpressionsforthenecessaryconditionsforoptimality canbetedious. Directmethods,ontheotherhand,solvetheoptimalcontrolproblembyadjusting thecontrolvariablesateachiterationinanattempttocontinuallyreducetheperformance index.Alldirectmethodsintroducesomeparametricrepresentationforthecontrol variables.Someexamplesofdirectmethodsusedtodayincludecollocation[44]and directtranscription[43].Oneimmediateadvantageofthesemethodsisthattheytypically donotrequirederivingexpressionsforthenecessaryconditionsforoptimality,making thesetypesofmethodsmoreappealingforcomplexsystems.Thesemethodsalsohavea

39 muchlargerregionofconvergencethanindirectmethods,thereforetheydonotrequireas goodofaguessfortheinitialcostates.However,ahandicapofdirectmethodsisthatthey tendtotakemuchlongertoconvergethanindirectmethods. Bothmethodshavetheiradvantagesanddisadvantages,assummarizedabove. However,asstatedabove,ifagoodguessfortheinitialcostatesisavailable,indirect methodsarethebestchoiceduetotheirfastconvergencecomparedtodirectmethodsand theguaranteeofanoptimalsolution.Testingwasperformed,whichisexplainedinmore detailinSection5,anditwasfoundthatforthesystemusedinthisworkifitisassumed thatinitiallythestatesareonorneartheirnominalvalues,orinotherwordsifitis assumedthatnegligiblecontrolaccelerationsareneededinitially,thenaninitialguessof

λ(t0 )= 0 isasufficientguessforconvergence.Takingadvantageofthis,anindirect methodwaschosen. TheindirectmethodthatwaschosenisaTransitionMatrixalgorithmdescribedin references[41]and[42].Thisalgorithmisbasedoffofassumingalinearrelationship betweentheinitialandfinalcostates,andfindingatransitionmatrixthatcanbeusedto relatechangesbetweenthem.Forthesimulationspresentedinthisthesis,noweightingor constraintsareplacedonthefinalstates,thereforeEquation(4.11)reducesto

λ(t f ) = 0 (4.15)

Equation(4.15)isneededintheimplementationoftheTransitionMatrixalgorithm. Astepbystepwalkthroughofthealgorithmisasfollows:

• Step 1: Guessthe nunspecifiedinitialcostates, λ(t0 ) .

• Step 2: NumericallyintegrateEquations(4.9)and(4.10)forwardfrom t0to tf, usingEquation(4.14)todeterminethecontrolvector u(t).

• Step 3: Record λ1 (t f ) , λ2 (t f ) ,…… λn (t f ) .

∂(t f ) • Step 4: Determinethe( nxn)transitionmatrix   .Thismatrixisfound ∂λ  t0  throughafinitedifferencingmethodbyperformingnadditionalintegrationsof Equations(4.9)and(4.10),whereineachoftheintegrationsoneofthe

λi (t0 )valuesischangedbyasmallamount.Aftereachoftheintegrations,the

40

quantities δ(t f )arecalculatedasthedifferencebetweenthefinalcostates achievedandthevaluesrecordedinStep3

δλ1 (t f )    .  δ()t =  .  (4.16) f    .    δλn ()t f 

andthenaredividedby δλi (t0 ) .Each δ(t f )vectormakesuponecolumnofthe

∂(t f ) total   matrix. ∂λ  t0 

• Step 5: Chooseanother δ(t f )vectorwhichwillbringthenextsolutioncloserto

thedesiredfinalcostatevalues.Thisδ(t f )vectorisfoundbycomparingthefinal costatesrecordedinStep3withthedesiredvaluesspecifiedbyEquation(4.15).

• Step 6: Withthe δ(t f )vectorcomputedinStep5,invertthetransitionmatrix

fromStep4tofind δλ(t0 ):

−1 ∂(t f ) δλ()t0 =   δ(t f ) (4.17)  ∂λ()t0 

• Step 7: Calculatethecorrectedinitialcostatesas

λ(t0 )new = λ(t0 )old +δλ(t0 )(4.18)

andthenrepeatsSteps16untiltherequired δλ(t0 )issufficientlysmall. Inmostofthesimulationsperformedinthisthesis,theabovealgorithmconverges totheoptimaltrajectorywithinonlythreetofouriterations.Whilethealgorithmhas proventobeveryuseful,itshouldbenotedthatduetothelinearityassumptioninherent touseofthetransitionmatrix,thealgorithmmaynotnecessarilybeasefficientwhen tryingtocontroladifferentsystemunderdifferentconstraints.Therequirementthatno largecontrolaccelerationsareneededinitiallyisalsoahandicap,asitleadstoalackof

41 robustnessforthecontroller.Forthesereasons,futureeffortswiththisworkwillinvolve studyingtheuseofdirectoptimalcontrolmethods. 4.3. COST FUNCTION SELECTION Theselectionofthe L(x,u,t) costfunctiontobeusedintheperformanceindex defined by Equation (4.2) will typically depend directly on the requirements of the particularmissionbeinganalyzed.Inthiswork,thefollowingobjectivesareprescribed: • Maintainapolarorbit • MaintainaSunsynchronousorbitbyforcingtheascendingnodetorotateatthe rateof0.9856°/day • Minimizethetotalamountofthrustaccelerationrequired Fromtheaboveobjectives,itisevidentthatthecostfunctionwillneedtohaveterms relating to inclination, ascending node, and the control accelerations. Taking this into account,acostfunctionwaschosenas

2 L(x,u t), = w cos 2 i)( + w [cos() (t) − cos( + & (t −t ) −ω (t −t )] 1 2 R t0 sunsynch 0 m 0 (4.19) 2 2 2 + w3 ()u1 + u2 + u3

InEquation(4.19), R (t) istheascendingnodewithrespecttotherotatingframe, istheinitialascendingnode,and & isthedesiredSunsynchronousrateof t0 sunsynch

0.9856°/day.Also,thevariables w1 , w2 ,and w3 areweightswhichcanbedefinedbythe userinordertostresstheminimizationofoneelementofthecostfunctionoveranother. ByminimizingthefirsttermofEquation(4.19),theinclination i iskeptcloseto 90°.Thesecondterminvolvesminimizingthedifferencebetweentheactualascending nodeandthedesiredSunsynchronousascendingnode.Itshouldbenotedthatthe

ωmoont termaccountsforthefactthattheascendingnodeismeasuredwithrespecttoa rotatingframeratherthananinertialframe.Finally,thesquaredcontroltermsinEquation (4.19)indicatethatthetotalenergyistobeminimized.Itshouldalsobenotedthatallof thetermsinEquation(4.19)aresquaredinordertosatisfytherequirementthat L(x,u,t) mustbepositivedefiniteinorderforaminimumtoexist. InordertousetheabovecostfunctionwiththedynamicsdescribedinSection3, thefirsttwotermsofEquation(4.19)willneedtobeconvertedintoaCartesianform.

42

TheconversionofeachofthesetermsintoCartesiancoordinatesisdescribedinthe remainderofthissection,beginningwiththe cos 2 i)( term. Theinclination i isdefinedas

 h  −1  z  (4.20) i = cos    h  where histheangularmomentumvector

h = r ×V = ( zy& − yz&)xˆ + ( xz& − zx&) yˆ + ( yx& − xy&)zˆ (4.21) and hzisthe zˆ componentoftheangularmomentumvector

& & hz = yx − xy (4.22)

ItcanbeseenfromEquation(4.20)that

h cos(i) = z (4.23) h

SubstitutingEquations(4.21)and(4.22)intoEquation(4.23),takingthesquare,and usingthestatespaceformatdefinedinSection3leadsto

(x x − x x )2 cos 2 i)( = 1 5 2 4 2 2 2 (4.24) ()()()x2 x6 − x3 x5 + x3 x4 − x1 x6 + x1 x5 − x2 x4

With cos 2 i)( expressedintermsofthestatespacecoordinatesdefinedinSection 3,thenextstepistoperformthesameconversionforthesecondtermofEquation(4.19). r Beginbycalculatingthenodevector n ,whichisthevectorfromtheoriginofthe coordinateframetotheascendingnodeoftheorbit.Thisvectorisdefinedas

h n = zˆ× (4.25) h

CarryingoutthecrossproductinEquation(4.25)leadsto

43

− h h n = y xˆ + x yˆ (4.26) h h

Now,thecosineoftheascendingnode, cos( R ),isdefinedas

) x ⋅n cos() = (4.27) R n

SubstitutingEquation(4.26)intoEquation(4.27)leadsto

− hy

h − hy cos()R = = (4.28) 2 2 2 2 hx + hy hx + hy h

NotingthedefinitionoftheangularmomentumcomponentsfromEquation(4.20)and

substitutingtheappropriatecomponentsintoEquation(4.28),theequationfor cos( R ) in termsofthestatespacevariablesisobtainedas

x1 x6 − x4 x3 cos() R = (4.29) 2 2 ()()x2 x6 − x3 x5 + x4 x3 − x6 x1

WithEquations(4.24)and(4.29)inhand,theycanbesubstitutedintoEquation

(4.19)inordertoobtainacostfunctionthatisrepresentedintermsofstatespace variables.Thisrepresentationforthecostfunctionisfoundas

 (x x − x x )2  L(x,u t), = w 1 5 2 4 + 1  2 2 2  ()()()x2 x6 − x3 x5 + x3 x4 − x1 x6 + x1 x5 − x2 x4  2  x x − x x   1 6 4 3 &  w2 − cos()t + sunsynch (t −t0 ) −ωm (t −t0 + (4.30)  2 2 0   ()()x2 x6 − x3 x5 + x4 x3 − x6 x1  2 2 2 w3 ()u1 + u2 + u3

Itshouldbenotedthatthe cos( + & (t −t ) −ω (t −t ))termisleftinitsoriginal t0 sunsynch 0 m 0 formbecauseitisafunctionoftimeonly,andnotthestates.

44

4.4. DERIVATION OF NECESSARY CONDITIONS FOR OPTIMALITY Withthecostfunctiongeneratedintheprevioussectionandthesystemdynamics describedinSection3,itisnowpossibletoevaluatethenecessaryconditionsfor optimalityforthissystem.TheseconditionsaredefinedbyEquations(4.9),(4.10), (4.11),and(4.14).AsexplainedinSection4.1,thenecessaryconditionsforoptimality guaranteeastationarypointfortheperformanceindexusedinthiswork

t f J = ∫ L(x,u t), (4.31) t0 butdonotguaranteeaminimum. Thefirstcondition,Equation(4.9),simplifiestoEquations(3.273.32),the equationsofmotionforthesystem.Thisspecifiessixdifferentialequationswiththe boundaryconditionof x(t0 ) given. ThesecondconditionisEquation(4.10),whichspecifiesthedifferentialequations forthesixcostates.CarryingoutthepartialderivativeinEquation(4.10)leadsto

∂f (x,u t), T ∂L(x,u t), T λ& = − λ − (4.32) ∂x ∂x

∂f (x,u t), ItisevidentthatinordertoutilizeEquation(4.32)thepartials and ∂x ∂L(x,u t), mustbecalculated. ∂x ∂f (x,u t), ThefirstpartialinEquation(4.32), ,isobtainedbytakingthepartialsof ∂x Equations(3.273.32)withrespecttothesixstatevariables.Thephysicalsignificanceof thismatrixisthatitindicatesthechangetothestatedynamicsthatoccursfromasmall ∂f (x,u t), changeinoneofthestates.The matrixisa6x6matrixoftheform ∂x

45

 ∂f (x,u t), ∂f (x,u t), ∂f (x,u t),  1 1 . . . 1  ∂x ∂x ∂x   1 2 6  ∂f (x,u t), ∂f (x,u t),  2 2 . . . .   ∂x ∂x  ∂f (x,u t),  1 2  = ...... (4.33) ∂x    ......     ......  ∂f (x,u t), ∂f (x,u t),  6 . . . . 6     ∂x1 ∂x6 

TheindividualtermsofthematrixinEquation(4.32)are

∂f ∂f ∂f ∂f ∂f ∂f 1 = 0 , 1 = 0 , 1 = 0 , 1 =1, 1 = 0 , 1 = 0 (4.34a,b,c,d,e,f) ∂x1 ∂x2 ∂x3 ∂x4 ∂x5 ∂x6

∂f ∂f ∂f ∂f ∂f ∂f 2 = 0 , 2 = 0 , 2 = 0 , 2 = 0 , 2 =1, 2 = 0 (4.35a,b,c,d,e,f) ∂x1 ∂x2 ∂x3 ∂x4 ∂x5 ∂x6

∂f ∂f ∂f ∂f ∂f ∂f 3 = 0 , 3 = 0 , 3 = 0 , 3 = 0 , 3 = 0 , 3 =1 (4.36a,b,c,d,e,f) ∂x1 ∂x2 ∂x3 ∂x4 ∂x5 ∂x6

r 2 r 2 ∂f 4 2 earth earth−scx sun sun−scx moon = ωm − 3 +3earth 5 − 3 +3 sun 5 − 3 + ∂x1 r r r r r earth−sc earth−sc sun−sc sun−sc moon−sc (4.37a) 2 x1 3 moon 5 rmoon−sc

∂f rearth−sc rearth−sc rsun−sc rsun−sc x x 4 = 3 x y +3 x y +3 1 2 (4.37b) ∂x earth 5 sun r 5 moon 5 2 rearth−sc sun−sc rmoon−sc

∂f r r r r x x 4 = 3 earth−scx earth−scz +3 sun−scx sun−scz +3 1 3 (4.37c) ∂x earth 5 sun 5 moon 5 3 rearth−sc rsun−sc rmoon−sc

∂f 4 ∂f 4 ∂f 4 = 0 , = 2ωm , = 0 (4.37d,e,f) ∂x4 ∂x5 ∂x6

∂f rearth−sc rearth−sc rsun−sc rsun−sc x x 5 = 3 x y +3 x y +3 1 2 (4.38a) ∂x earth 5 sun 5 moon 5 1 rearth−sc rsun−sc rmoon−sc

46

r 2 r 2 ∂f 5 2 earth earth−scy sun sun−scy moon = ωm − 3 +3earth 5 − 3 +3 sun 5 − 3 + ∂x2 r r r r r earth−sc earth−sc sun−sc sun−sc moon−sc (4.38b) 2 x2 3 moon 5 rmoon−sc

∂f rearth−sc rearth−sc rsun−sc rsun−sc x x 5 = 3 y z +3 y z +3 2 3 (4.38c) ∂x earth 5 sun 5 moon 5 3 rearth−sc rsun−sc rmoon−sc

∂f 5 ∂f 5 ∂f 5 = −2ωm , = 0 , = 0 (4.38d,e,f) ∂x4 ∂x5 ∂x6

∂f r r r r x x 6 = 3 earth−scx earth−scz +3 sun−scx sun−scz +3 1 3 (4.39a) ∂x earth 5 sun 5 moon 5 1 rearth−sc rsun−sc rmoon−sc

∂f rearth−sc rearth−sc rsun−sc rsun−sc x x 6 = 3 y z + 3 y z +3 2 3 (4.39b) ∂x earth 5 sun 5 moon 5 2 rearth−sc rsun−sc rmoon−sc

r 2 r 2 ∂f 6 rearth earth−scz sun sun−scz moon = − 3 +3earth 5 − 3 +3 sun 5 − 3 + ∂x3 r r r r r earth−sc earth−sc sun−sc sun−sc moon−sc (4.39c) 2 x3 3moon 5 rmoon−sc

∂f ∂f ∂f 6 = 0 , 6 = 0 , 6 = 0 (4.39d,e,f) ∂x4 ∂x5 ∂x6

∂L(x,u t), ThesecondpartialderivativeinEquation(4.32)is .Thispartial ∂x derivativevectorisfoundbytakingthepartialsofEquation(4.30)withrespecttothesix statevariablesandisintheformof

∂L(x,u t), ∂L(x,u t), ∂L(x,u t), ∂L(x,u t), ∂L(x,u t), ∂L(x,u t), ∂L(x,u t),  =   (4.40) ∂x  ∂x1 ∂x2 ∂x3 ∂x4 ∂x5 ∂x6 

∂L(x,u t), Physically,the vectorindicatesthesensitivityofthecostfunctiontoasmall ∂x changeinthestatevariables.

47

BeforesolvingfortheindividualtermsinEquation(4.40),thefollowingauxiliary variablesaredefined:

A = hx = x2 x6 − x3 x5 (4.41)

B = hy = x3 x4 − x1 x6 (4.42)

C = hz = x1 x5 − x2 x4 (4.43)

D = A2 + B 2 + C 2 (4.44)

E = A2 + B 2 (4.45)

β = + & (t −t ) −ω (t −t ) (4.46) t0 sunsynch 0 m 0

Intermsoftheauxiliaryvariables,thecostfunctioninEquation(4.30)becomes

2 2 C   − B  2 2 2 L(x,u t), = w1   + w2  − cos(β ) + w3 []u1 + u2 + u3 (4.47)  D   E  andthesixpartialderivativesrequiredforEquation(4.40)are

∂L(x,u t), 2Cx C 2 (− 2Bx + 2Cx )  − B  x B 2 x  = w 5 − 6 5 + 2w − cos(β ) 6 − 6 (4.48) 1  2  2   5.1  ∂x1  D D   E  E E 

∂L(x,u t), − 2Cx C 2 (2Ax − 2Cx )  − B  ABx  = w 4 − 6 4 + 2w − cos(β ) 6 1  2  2   5.1  (4.49) ∂x2  D D   E  E 

∂L(x,u t),  C 2 (− 2Ax + 2Bx )  − B − x B(− Ax + Bx ) = w − 5 4 + 2w − cos(β ) 4 + 5 4 1  2  2   5.1  (4.50) ∂x3  D   E  E E 

∂L(x,u t), − 2Cx C 2 (2Bx − 2Cx )  − B − x B 2 x  = w 2 − 3 2 + 2w − cos(β ) 3 + 3 1  2  2   5.1  (4.51) ∂x4  D D   E  E E 

∂L(x,u t), 2Cx C 2 (− 2Ax + 2Cx )  − B − ABx  = w 1 − 3 1 + 2w − cos(β ) 3 1  2  2   5.1  (4.52) ∂x5  D D   E  E 

∂L(x,u t),  C 2 (2Ax − 2Bx )  − B  x B(Ax − Bx ) = w − 2 1 + 2w − cos(β ) 1 + 2 1 (4.53) 1  2  2   5.1  ∂x6  D   E  E E 

48

Equation(4.32)specifiessixfirstorderdifferentialequationsforthecostates.The boundaryconditionforthesedifferentialequationscomesfromthethirdnecessary conditionforoptimality,Equation(4.11).AsexplainedinSection4.2,sincenoweights orconstraintsarebeingplacedonthefinalstates,Equation(4.11)becomes

λ(t f )= 0 (4.54) ThefinalnecessaryconditionforoptimalityisEquation(4.14).Thisconditionis calledthestationaritycondition,anditstatesthattheoptimalcontrolinputwillleadtoa stationaryvalueoftheHamiltonian, H.TheusefulnessofEquation(4.14)isthatitcanbe usedtosolvefortheoptimalcontrolinput. ∂f (x,u t), ∂L(x,u t), AsseenfromEquation(4.14),thematrices and mustbe ∂u ∂u found.Bytakingpartialderivativeswithrespecttothethreecontrolinputs u1, u2,and u3, thesematricesarefoundas

0 0 0   0 0 0 ∂f (x,u t), 0 0 0 =   (4.55) ∂u 1 0 0 0 1 0   0 0 1 and

∂L(x,u t), = []2w u 2w u 2w u (4.56) ∂u 3 1 3 2 3 3

SubstitutingEquations(4.55)and(4.56)intoEquation(4.14)leadsto

λ1  λ   2  0 0 0 1 0 0 2w3u1   λ3    0 0 0 0 1 0   + 2w u = 0 (4.57)   λ  3 2  0 0 0 0 0 1 4  2w u   λ   3 3   5  λ6 

Equation(4.57)cannowbesolvedtoobtaintheequationsforthethreecontrolinputsas

49

1 u1 = − λ4 (4.58) 2w3

1 u2 = − λ5 (4.59) 2w3

1 u3 = − λ6 (4.60) 2w3

Equations(4.584.60)indicatethatifthecostatesareknown,thecontrolinputsrequired fortheequationsofmotion(Equations(3.273.32))caneasilybefound. Theresultoftheanalysisinthissectionistwelvedifferentialequationssupplied byEquations(3.273.32)andEquation(4.32)withboundaryconditionsgivenby x(t0 ) givenandEquation(4.54),wherethethreecontrolinputsarefoundviaEquations (4.584.60).Itshouldbenotedthatthedifferentialequationsarehighlynonlinearand alsothatthestateandcostatedynamicsareinterrelated.Becauseofthis,thesystemis verysensitivetosmallchangesintheunspecifiedboundaryconditions.Sincethe boundaryconditionsforthedifferentialequationsaresplit,themethodpresentedin Section4.2mustbeusedinordertosolvethesystem. Incorporatingtheequationsderivedinthissectionwiththedynamicmodel createdinSection3allowedforacontrollertobemadeinMATLAB.Called“Controller A”,thiscontrollerissuitableforusewhentheinitialstatesareveryclosetonominal values.Asecondcontrollerwasalsocreatedwhichissuitableforcasesinwhichthe initialstatesdeviatefromnominalvalues,andisdescribedinthenextsection. 4.5. TERMINAL STATE CONTROLLER Theanalysisoutlinedintheprevioussectionsworkswellwhentheinitialstates aresuchthatnolargecontrolaccelerationsarerequiredtocorrectthem.Whenthisisthe case,asexplainedinSection4.2,aguessfortheinitialcostatesof λ(t0 )= 0 hasbeen foundtobeverysufficientforconvergent.However,whenthisisnotthecase,the methodsdescribedabovearenotsufficient.Forexample,themethoddescribedabove wouldnotbeabletocorrectaninitialinclinationdeviationof5°.Thissectionpresents

50 anothermethodthatcanbeusedinthecaseswherecorrectionsareneededfortheinitial states. TheprimaryreasonthatthetransitionmatrixalgorithmoutlinedinSection4.2is notsufficientwhentheinitialstatesneedtobecorrectedisduetothefactthatitrequires afullintegrationoveraspecifiedtimespaninordertocorrecttheguessfortheinitial costates.Whentheinitialstatesdonotneedtobecorrectedandaguessof λ(t0 )= 0 is madeforthecostates,astabletrajectoryisobtainedwhicheasilyallowsforthecostates tobecorrected.However,iftheinitialstatesareslightlyoffoftheirnominalvaluesand needcorrected,usingaguessof λ(t0 )= 0 willleadtoadivergingtrajectory.Insucha scenario,thedifferencebetweenthefinalcostatesproducedbytheintegrationandthe desiredfinalcostatesof λ (t f ) = 0 issolargethatacorrectioncannotbefound.Therefore, inorderforthetransitionmatrixalgorithmtobeusedforthesecases,eitherabetterguess fortheinitialcostatesmustbefoundorsimplificationsmustbemadewhichwillallow forastabletrajectoryovertheintegration. Itwasdecidedthatwhenasituationariseswherecorrectionsareneededforthe initialstates,acontrollerisdesiredthatwillcorrecttheinitialstatestotheirnominal valuesinaspecifiedamountoftime.Suchacontrollerisoftencalledaterminalstate controller.Afterthestatesachievetheirnominalvalues,aswitchwillbemadeto ControllerAsinceatthatpointthemethoddefinedintheprevioussectionswillbe applicable.However,itshouldbenotedthatsinceacontrollerswitchismade,the combinedtrajectoriesarenolongeroptimalbutrathersuboptimal. IfitisonlydesiredtogetthestatesfromsomepointAtoanotherpointBinsome time t withnorestrictionsonthepathbetweenthetwopoints,certainsimplificationscan bemade.Namely,theinclinationandascendingnodeweightsinthecostfunctionof

Equation(4.30), w1 and w2 ,canbothbesettozero.Doingthisstatesthattheinclination andascendingnodeareallowedtoattainanypossiblevaluesalongthepath.Withthis simplification,itiseasilyseenthat ∂L(x,u t), = 0 (4.61 ) ∂x SubstitutionofEquation(4.61)intotheequationforthecostatedynamics(Equation (4.32))leadsto

51

T &  ∂f (x,u t),  λ =   λ (4.62)  ∂x  ItcanbeseenfromEquation(4.62)thatiftheinitialcostatesaresettozero,thecostates willbeequaltozeroforanytime t >0.Ifthecostatesarezerothenthecontrolinputis alsozeroviaEquations(4.584.60),soaguessof λ(t0 )= 0 willleadtoanuncontrolled trajectory.Whilethisuncontrolledtrajectorywillhaveadeviationfromthedesired optimaltrajectory,itwillatleastbeastabletrajectory,whichimpliesthatacorrectionto theinitialcostatescanbemade. Asidefromasimplifiedsetofdynamicsforthecostates(Equation4.62),theonly otherdifferencebetweenthisterminalstatecontrollerandControllerAwillbethe terminalboundaryconditions.WhiletheterminalboundaryconditionforControllerA takestheformofEquation(4.54),theterminalboundaryconditionforthiscontrollerisin theformof (tx f )given.The (tx f )conditionsspecifyapolar,Sunsynchronousorbitwith aprescribedsemimajoraxisandeccentricity.Essentially,thesixconditionsofEquation

(4.54)aretradedwithanothersetofconditions, (tx f )given,sothattheproblemstillhas twelveboundaryconditions. Insummary,theterminalstatecontroller,called“ControllerB”,consistsof twelvedifferentialequations(Equations(3.273.32)andEquation(4.62)withboundary conditionsof x(t0 ) and (tx f )given,wherethethreecontrolinputsarefoundthrough

Equations(4.584.60).Usingaguessof λ(t0 )= 0 ,thetransitionmatrixalgorithm describedinSection4.2canbeusedtosolvethissystem.Sincethespecifiedterminal boundaryconditionisintermsofthestatesratherthanthecostates,the δ(t f )vectors requiredinthealgorithmarefoundbycomparingthefinalvaluesofthestatesratherthan thecostates,takingtheform

δx1 (t f ) δx t   2 ()f   .  δ()t f =   (4.63)  .   .    δx6 ()t f 

52

Todemonstratetheeffectivenessofthismethod,Figure4.1showstheresultsof attemptingtocorrectaninitialinclinationerrorof15°in144minutes.

Inclination vs. Time 90

88

86

84 Ist iteration 2nd iteration 3rd iteration 82 Inclination (degrees) 80

78

76

74 0 50 100 150 Time (minutes) Figure4.1.CorrectionofanInitial15°InclinationError

AsseeninFigure4.1,the15°errorissufficientlycorrectedafteronlythreeiterations. Itisemphasizedthatassumingthatnoconstraintsareimposedonthevaluesof theascendingnodeandinclinationalongthepathcanonlybetoleratedforsmalltime durations.Therefore,ControllerBisnotusedforlongtimedurations,forifitwereit woulddefeatthepurposeofobtainingaSunsynchronousorbit. 4.6. SPECIAL CONSIDERATIONS FOR EQUATOR AND POLE CROSSINGS AnanalysisofthepartialderivativesofthecostfunctioninEquation(4.30)has shownthattherearecertainregionswherethepartialofoneofthetermswillgotozero. Specifically,ithasbeenfoundthataroundequatorcrossingsthepartialderivativedueto theascendingnodetermwillgotozeroandaroundpolecrossingstheinclinationterm

53 willgotozero.Thiscomesfromthefactthatduetothegeometryoftheorbit,the ascendingnodeandinclinationcannotphysicallybecontrolledaroundequatorandpole crossings,respectively.Inotherwords,intheseareasasuitablecontrolfunctionsimply doesnotexist.WhenattemptsaremadetouseControllerAthroughtheseregions,a specifictrendisseen.Asthespacecraftenterstheproblematicregion,theorbitalelement thatcannotbyphysicallycontrolledwillstarttoexhibituncontrolledoscillations,and aftergettingpassingthroughtheregiontheoscillationswillincreaseratherthandecrease. Figure4.2showsanexampleofthisbehaviorwhentryingtouseControllerAtocontrol theinclinationaroundtheMoon’sNorthPole.

Inclination vs. Time vs. Time 90.008 180

160 90.006

140 90.004

120

90.002

100

90

80

89.998 60

89.996 40

89.994 20 0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03

Figure4.2.ExampleofControlDifficultiesaroundPoleCrossings

Itistheorizedthatthisbehavioroccursduetoproblemswiththetransitionmatrix algorithmnotbeingabletoconvergewhensingularitiesexistalongthepath.Itispossible thattheremightbeavalueforλ(t0 ) that,whenused,willallowControllerAtostabilize thetrajectoryafteroneoftheseregions,but λ(t0 )= 0 isapparentlynotasufficientinitial

54

guessforachievingthedesiredλ(t0 ) .Duetothisdifficulty,adifferenttypeofcontroller needstobeusedwhentraversingtheseproblematicregions. Itwouldseemthatonepossiblemethodforsolvingthisproblemwouldbeto simplysettheweightfortheorbitalelementthatcannotbecontrolledtobeequaltozero whengoingthroughtheseregions.However,afterleavingtheregion,theoscillationsof theuncontrolledorbitalelementwouldthenhavetobedampenedout,leadingtothe samesituationstatedearlier.Abettersolutionistoutilizetheterminalstatecontroller thatwasdescribedintheprevioussection. Itwasarbitrarilydecidedthatatapproximately10°inlatitudebeforeeachequator andpolecrossing,aswitchwouldbemadefromControllerAtoControllerB.Thefinal valuesofthestatesproducedbyControllerAaresetastheinitialstatesforControllerB. ControllerBisthenusedfrom10°beforetheproblematicregionto10°after,withthe terminalboundaryconditionsspecifyingapolar,Sunsynchronousorbit.After completionoftheControllerBrun,aswitchismadebacktoControllerA,whichcan nowoperatesuccessfullyduetothestatesbeingcorrectedtotheirnominalvalues. AsstatedinSection4.5,onedifficultywithControllerBisthatitcanonlybe usedforsmalltimedurationssinceitplacesnoconstraintsontheascendingnodeand inclinationalongthepath.However,sincethe20°oflatitudeoverwhichControllerB wouldoperateintheaboveplanwouldonlyaccountforroughlysixminutesofthe satellite’stotalorbitperiod,thisdoesnotposeaproblem. Itshouldagainbenotedthatbecauseofthisswitchingmethod,thecombined trajectoriescannolongerbeconsideredoptimal.Ambiguityisaddedtotheproblemby switchingtoControllerBat10°inlatitudebeforetheproblematicregions,sinceitis possiblethatswitchingtothecontrolleratadifferentlatitudecouldleadtoamore optimaltrajectory.The10°inlatitudewaschosenbysimplyperformingsimulationsand noticingthatoneoftheorbitalelementswillstarttofollowitsuncontrolledpathroughly 10°beforeanequatororpolecrossing.Asearchwillbemadeforamethodtogetbeyond theseproblematicregionsandstillgeneratetrajectoriesthatcanbeconsideredoptimal,as explainedinSection7.

55

5. CASE STUDIES AND RESULTS Thissectioncontainssimulationsperformedusingthecontrollersdevelopedin

Section4,aswellascasestudiestoshowtheeffectsofchangingthecontrolweight w3 in thecostfunction.Resultsarefirstpresentedforinclinationonlyandascendingnodeonly controltoshowthecontroller’seffectivenessatcontrollingeachindividualelement. Next,resultsarepresentedforcombinedinclinationandascendingnodecontrol,anditis shownthatdifficultiesarisewhenattemptingtocontrolbothorbitalelementsatthesame time.Finally,longerdurationsimulationsarepresentedwhichshowthesuccessful generationofalongertermSunsynchronousorbit.Eachofthesimulationspresentedin thissectionisperformedusingtermsinthelunargravitymodelupto25x25. 5.1. SIMULATIONS OF ASCENDING NODE-ONLY CONTROL Inthissection,simulationsarepresentedwhichshowtheeffectivenessof ControllerAatmaintainingaSunsynchronousorbit.Forthisanalysisthepolarorbit requirementisremoved,anditisthereforeonlydesiredtocontroltherateofchangeof theascendingnodetocoincidewiththeSunsynchronousrateof0.9856°/day.Thisis performedbysettingtheinclinationweight w1 inEquation(4.30)tobeequaltozero. Thesimulationsinthissectionwereallperformedusingtheinitialorbital elementsdefinedinTable5.1. Table5.1.InitialOrbitalElementsforAscendingNodeonlyControlSimulations

OrbitalParameter Value

Semimajoraxis, ai 1837.4km

Eccentricity, ei 0.0013

Inclination, ii 90°

AscendingNode, i 45°

ArgumentofPeriapsis, ωi 15°

TrueAnomaly, ν i 10°

56

Theinitialorbitalelementswerechosentostartinaspecifictypeoforbit.The semimajoraxisischosenas1837.4kmsothattheorbitwillinitiallyberoughly100km inaltitude,whichcorrespondstoalowlunarorbit.Also,theeccentricityischosenas 0.0013sothattheorbitwillbenearlycircularandtheinclinationischosenas90°sothat theorbitwillbepolar.Finally,thetrueanomalywaschosenas10°sothattheorbitis begundirectlyafteranequatorcrossing. Figures5.15.3showtheresultsofa0.03day(43.2minutes)integrationof ControllerAwithAscendingNodeonlycontrolusingtheinitialorbitalelementsdefined inTable5.1.Thesmall43.2minutetimespanischosensothatanequatorcrossingdoes nothavetobedealtwith.Becauseofthis,noswitchfromControllerAtoControllerB needstobemade,andthereforethetrajectoriespresentedcanbeconsideredoptimal. Figure5.1showstheorbitalelementtrajectories,Figure5.2containsaplotshowingthe evolutionofthecostates,andFigure5.3showsaplotoftheoptimalcontrolaccelerations.

Figure5.1.SimulationofAscendingNodeonlyControl

57

Figure5.2.CostateEvolutionforAscendingNodeonlyControl

Figure5.3.ControlAccelerationsforAscendingNodeOnlyControl

58

FromFigure5.1,themainfeaturetonoticeisthattheascendingnodeiscorrectly rotatedbyapproximately0.03°in0.03days,demonstratingthataSunsynchronousorbit isobtained.Whileperformingthis,itisseenthattheotherfiveorbitalelementsarenot adverselyaffectedbythecontinuousthrusting.Thesemimajoraxisandeccentricity actuallyfollowtheiruncontrolledtrajectoriessincenoinplanethrustingisperformed. Figure5.2showsthebehaviorofthecostatesduringtheintegration,anditcanbe seenfromtheplotsthatthecostatesareallsuccessfullydriventothedesiredfinalcostate valueof λ(t f )= 0 prescribedbyEquation(4.54).Thefinalcostatesconvergedafteronly threeiterations,validatingthetransitionmatrixalgorithmusedtosolvetheproblem. SinceEquation(4.54)issatisfied,thenecessaryconditionsforoptimalityareallachieved andastationarypointoftheperformanceindex J isobtained. ItcanbeseenfromFigure5.3thattherequiredcontrolaccelerationsstayfairly small,nevergettinglargerthan2x10 5km/s 2.Also,itisfoundthattheaccelerationin the zˆ direction, u3,istwoordersofmagnitudesmallerthantheothertwoacceleration components.Thisisduetothefactthattheinclinationisverycloseto90°,meaningthat the zˆ axiswillbealmostparalleltotheorbitplane.Sinceonlyoutofplanethrustingis performed,itisthusexpectedthat u3willbeverysmall. HavingshownthataSunsynchronousorbitisachieved,itisnextdesiredtostudy theeffectsofincreasingtheweightonthecontrolaccelerations, w3 ,inordertoseeifitis possibletodecreasetherequiredcontrolaccelerationswhilestillachievingaSun synchronousorbit.Acasestudywasthereforeperformedinordertoexaminetheeffects oflargecontrolweights.Inordertoconvertthecontrolaccelerationsintoforces,a spacecraftmassof1000kgisassumed.A0.03dayintegrationofControllerAwas performedforvariousvaluesof w3 ,andplotsoftheascendingandcontrolforce magnitude

2 2 2 umag = u1 + u2 + u3 (5.1) wereobtainedfromeachintegration.TheseplotscanbefoundinFigures5.45.8.

59

Figure5.4.CaseStudy1: w3=1

Figure5.5.CaseStudy1: w3=3

60

Figure5.6.CaseStudy1: w3=7

Figure5.7.CaseStudy1: w3=12

61

Figure5.8.CaseStudy1: w3=20

AnexaminationofFigures5.45.8showsthatbyincreasingthecontrolweighting, themagnitudeofthecontrolforcedecreasesbuttheascendingnodebeginstodeviate fromtheSunsynchronouspath.Whenw3 = 1,theascendingnodeistightlycontrolled withanaveragethrustmagnitudeofapproximately25N,whereaswhenw3 = 20 the ascendingnodedeviatesfromtheSunsynchronouspathbyaround0.1°withahighly decreasedaveragethrustmagnitudethatislessthan0.7N.However,this0.1°deviation isstillusuallyacceptable,especiallyforlongdurationmissions. TheabovecasestudyshowsthataSunsynchronousorbitcanbeachievedusing thrustlevelslowerthan0.7N,levelswhicharewithinthecapabilitiesofcurrentlow thrusthardware.Therefore,alowthrustSunsynchronousorbitcanbeachieved. 5.2. SIMULATIONS OF INCLINATION-ONLY CONTROL Inordertogaugethecapabilitiesofthecontrollersformaintainingapolarorbit, simulationswereperformedwhereonlyinclinationiscontrolled.Therefore,allofthe

62

simulationsinthissectionwerecreatedbysettingtheascendingnodeweight w2 in Equation(4.30)tozero. Whilethenaturalmotionoftheascendingnodeistocontinuouslydeviatefrom theSunsynchronouspath,theinclinationwillnaturallyperformsmalloscillationsabout itsinitialvaluewhenleftuncontrolled,asseeninFigures3.53.10.Thisleadstothe suppositionthatthecontrolaccelerationsrequiredforinclinationstationkeepingwillbe lessthantheaccelerationsrequiredforascendingnodestationkeeping.Thisassumptionis foundtobetruefromthesimulationspresentedinthissection. Thefirstsimulationpresentedinthissectionisa0.03day(43.2minutes) integrationofControllerAwithinclinationonlycontrol.Theinitialorbitalelementsused forthissimulationaredefinedinTable5.2.

Table5.2.InitialOrbitalElementsforInclinationonlyControlSimulations

OrbitalParameter Value

Semimajoraxis, ai 1837.4km

Eccentricity, ei 0.0013

Inclination, ii 90°

AscendingNode, i 45°

ArgumentofPeriapsis, ωi 20°

TrueAnomaly, ν i 80° Asinthesimulationforascendingnodeonlycontrol,theinitialorbitalelements werechosentocorrespondtoa100km,nearlycircularpolarorbit.However,adifferent trueanomalyof80°ischosensothattheorbitwillbegindirectlyafterapolecrossing. Aswiththesimulationsintheprevioussection,thedurationof0.03daysis chosensothataswitchfromControllerAtoControllerBisnotrequired.Figures5.9 5.11showtheresultsfromthissimulationintheformoftheorbitalelementtrajectories, theevolutionofthecostates,andthecontrolaccelerations.

63

Figure5.9.SimulationofInclinationonlyControl

Figure5.10.CostateEvolutionforInclinationonlyControl

64

Figure5.11.ControlAccelerationsforInclinationonlyControl Figure5.9showsthatControllerAisabletoperformveryatightstationkeeping controlontheinclination,controllingtheelementtowithinapproximately0.001°ofthe desired90°.Also,asseeninFigure5.10,thecostatesaredriventothedesiredcondition of λ(t f )= 0 ,implyingthatastationarypointof J isobtained.Finally,whileitisseen fromFigure5.11thatthecontrolaccelerationsareindeedslightlysmallerthanthose requiredforascendingnodecontrolinFigure5.3,the u3accelerationinparticularisseen tobemuchsmaller.Thisisduetothefactthattheinclinationinthissimulationis maintainedmuchcloserto90°thanitisinthesimulationshowninFigure5.1,meaning thatthe zˆ axisinthiscaseisevenclosertobeingparallelwiththeorbitplane.Becauseof this,andthefactthatonlyoutofplanethrustingisperformed,itisintuitivethatalarger portionofthetotalcontrolaccelerationwillbedeliveredbythe u1and u2components.

65

Theprevioussimulationswereallinitiatedwiththeinitialstatesattheirnominal valuessothatnocorrectionsareneededinitially.However,itisalsodesiredtostudythe abilityofcombiningControllerAandControllerBtocorrecttheerrorinaninitial elementfollowedbymaintenanceofthatelementaboutitsdesiredvalue.Inthisregard,a simulationwasperformedwithaninitialvaluefortheinclinationof85°.Theinclination isfirstcorrectedto90°usingControllerB,andthenaswitchismadetoControllerAin ordertostationkeeptheinclinationabout90°.Theresultofthissimulationcanbefound inFigure5.12.Itshouldbenotedthatinthissimulation,ascendingnodewasnot controlled.

Figure5.12.InitialCorrectionandStationkeepingforInclination

66

AsshowninFigure5.12,theinitial5°erroriscorrectedin0.05days(72 minutes),andthensuccessfullymaintainedabout90°.However,sinceaswitchis performedbetweentwocontrollers,thetrajectoryisonlysuboptimal. Sinceithasbeendemonstratedthatinclinationstationkeepingcanbesuccessfully performedandthatinitialcorrectionscanbemadeifneeded,itisnowdesiredtoperform acasestudyinordertoseetheeffectsofcontrolweightingoninclinationcontrol.As withthecasestudyperformedinSection5.1,thestudyisconductedbyperforming0.03 dayintegrationsofControllerAwithvaryingvaluesof w3 .Also,a1000kgspacecraft massisagainassumedinordertoconvertthecontrolaccelerationsintoforces.The resultsofthiscasestudycanbefoundinFigures5.135.17.

Figure5.13.CaseStudy2: w3=1

67

Figure5.14.CaseStudy2: w3=5

Figure5.15.CaseStudy2:w3=8

68

Figure5.16.CaseStudy2: w3=12

Figure5.17.CaseStudy2: w3=17

69

Aswiththecasestudydoneintheprevioussection,itisagainseenthatincreasing thecontrolweightingwilldecreasethemagnitudeofthecontrolforce,butwillalsolead tolargervariationsintheinclination.Bysettingthecontrolweightingtobeequalto17, thecontrolforcemagnitudecanbedecreasedbyapproximately21Ntoalowthrust averageof0.7N.Accompaniedwiththiscontroldecrease,theinclinationvariationis increasedbyapproximately0.04°.However,thatamountofinclinationvariationis typicallyconsideredsmallandtheorbitcanstillberegardedaspolar. Figures5.135.17alsoshowthatasmallercontrolforceisrequiredtocontrolthe inclinationascomparedtotheascendingnode.ComparingFigures5.4and5.14,itisseen thatwithnoextraweightingonthecontrol,theinclinationrequiresanaveragecontrol forcethatisapproximately5Nlessthanthatrequiredforcontrollingtheascendingnode. Itisalsoseenthatalargercontrolweightingisrequiredtodecreasetheascendingnode controlforcesothatitcanbeconsideredlowthrust. 5.3. SIMULATIONS OF COMBINED ASCENDING NODE AND INCLINATION CONTROL Having proven the capability for controlling ascending node and inclination separately,itisnowdesiredtoexaminehowefficientlyControllerAcancontrolbothof the elements at the same time. In this section, simulations are presented which incorporate both ascending node and inclination control, and it is shown that some difficultiesarisewhenattemptingtocontrolbothelements. Tostudytheeffectsofcontrollingbothelements,a0.01day(14.4minutes) integrationofControllerAwasperformedwiththeweightsontheascendingnodeand inclinationtermsinEquation(4.30)bothsettoone.The0.01daydurationischosenso thatnopoleorequatorcrossingsareencountered,andthusnoswitchingbetween ControllerAandControllerBneedstobeperformed.Theintegrationwasperformed withtheinitialorbitalelementsdefinedinTable5.3.Aswiththeprevioussimulations, theseinitialorbitalelementswerechoseninordertospecifya100km,nearlycircular polarorbit.

70

Table5.3.InitialOrbitalElementsforCombinedAscendingNodeandInclination ControlSimulations OrbitalParameter Value

Semimajoraxis, ai 1837.4km

Eccentricity, ei 0.0013

Inclination, ii 90°

AscendingNode, i 45°

ArgumentofPeriapsis, ωi 15°

TrueAnomaly, ν i 80° TheresultsofthissimulationcanbefoundinFigures5.185.20intheformofthe orbitalelementhistories,theevolutionofthecostates,andthecontrolaccelerations.

Figure5.18.SimulationofCombinedAscendingNodeandInclinationControl

71

Figure5.19.CostateEvolutionforCombinedAscendingNodeandInclinationControl

Figure5.20.ControlAccelerationsforCombinedAscendingNodeandInclination Control

72

ItcanbeseenfromFigure5.18thatboththeinclinationandtheascendingnode haveafairlysignificantvariancefromtheirdesiredvalues.Theinclinationvariesroughly 0.05°fromthedesired90°value,andtheascendingnodedeviatesfromtheSun synchronouspathbyapproximately0.1°.Whilebothofthesevariationswouldbe tolerable,andasshowninFigure5.19thedesiredfinalcostateisachieved,Figure5.20 showsthatthecontrolaccelerationsareanorderofmagnitudelargerthanthe accelerationsrequiredforcontrollingeitherelementalone.Figure5.21containsaplotof thecontrolforcemagnitudeforthissimulationwherea1000kgspacecraftmassis assumed,andshowsthattherequiredcontrolforceisnearly400Nlargerthanthose presentedintheprevioussections.

Figure5.21.ControlForceMagnitudeforCombinedAscendingNodeandInclination Control

Therefore,inordertodecreasethecontrolforcetoamagnitudewhereitwouldbe consideredlowthrust,averylargecontrolweightingwouldhavetobeused.Asshownin thecasestudiespresentedinSections5.1and5.2,thislargecontrolweightingwillleadto

73 theascendingnodeandinclinationvariationsinFigure5.18becomingsubstantially larger. Itistheorizedthatthisdifficultywithcontrollingboththeascendingnodeand inclinationstemsfromthefactthateachelementhasadifferentrequirementintermsof theforceneededforcontrol.Forexample,sincethenaturalmotionoftheinclinationisto oscillate,controllingtheinclinationrequiresanoscillatingtorquethatwillcontinuously bedrivingtheinclinationaboveandbelow90°.Thenaturalmotionoftheascendingnode alsotendstomakelargeoscillationsaboutitsinitialvalue,asshowninFigures3.53.10, whichmeansitwillconstantlytendtodeviatefromthedesiredSunsynchronouspath. Therefore,controllingtheascendingnoderequiresatorquethatwillconstantlyrotateitin theSunsynchronousdirection.Sincecontrollingtheascendingrequiresarelatively constanttorqueandcontrollingtheinclinationrequiresanoscillatingtorque,itisthought thatattemptingtocontrolbothorbitalelementsatthesametimewillleadtodifficulties. However,despitethesedifficulties,itisnoticedfromFigure5.1thatwhen performingascendingnodeonlycontroltheinclinationstillstaysfairlycloseto90°, deviatingbyonlyapproximately0.1°.Therefore,eveniftheascendingnodeistheonly orbitalelementcontrolled,apolarorbitisstillobtained.Also,theinclinationwouldstill becorrectedbacktothedesired90°whenControllerBisusedacrossequatorcrossings, soitisexpectedthatinlongdurationsimulationstheinclinationwillnotdeviate substantiallymorethan0.1°. Fromtheknowledgegainedfromthisanalysis,itwasdecidedthatfurtherlong termsimulationswouldincorporateascendingnodeonlycontrolinordertoachievea polar,Sunsynchronousorbit.SinceControllerAwillbeoperatingwiththeinclination weight w1 settozero,thepoleswillnolongerbeaproblematicregionandControllerB willonlyneedtobeusedforequatorcrossings. 5.4 LONG TERM SIMULATIONS 5.4.1. Difficulties at Ascending Nodes of 0° and 180°. Afterperforming simulationsoverarangeofascendingnodes,itwasfoundthatcontrollabilitydifficulties appearwhentheascendingnodewithrespecttotherotatingframeisnear0°or180°.As withequatorcrossings,whenenteringoneoftheseregionstheascendingnodewillbegin

74 toenteruncontrolledoscillations.However,unlikeequatorcrossings,thetimespentin theseregionsissubstantialandontheorderof0.8days(19.2hours).Thisisan excessivelylargetimespanforControllerBtobeused,andthereforeadifferenttypeof methodmustbeusedfortheseregions. ThereasonforthecontroldifficultiesintheseregionscanbeseenfromEquations (4.484.53).Whentheascendingnodewithrespecttotherotatingframeisequalto0°or 180°,the xˆ axislieswithintheorbitplane.Sincetheangularmomentumvector his alwaysdirectedperpendiculartotheorbitplane,thisimpliesthatthecomponentofthe angularmomentumvectorinthe xˆ direction( hx )isequaltozero.The xˆ componentof theangularmomentumvectorcomesintoEquations(4.484.53)throughtheauxiliary ∂L(x,u t), variable A.ItcanbeseenfromEquations(4.484.53)thatwhen A =0, = 0 . ∂x Therefore,theascendingnodewillexperienceuncontrolledoscillationswhenpassing throughtheseregions.However,thisisstrictlyapropertyofthemathematicsandthe mannerinwhichthecostfunctionisdesigned.Thereisnophysicalreasonforwhythe ascendingnodeshouldbeanymoredifficulttocontrolat0°thanatanyotherangle. Sincetherotatingframe xˆ axisrotatesmuchfasterwithrespecttotheinertial framethantheSunsynchronousascendingnode,therotationrateoftheascendingnode withrespecttotherotatingframewillbenearlyequaltothe xˆ axisrotationrate.In particular,theascendingnodewithrespecttotherotatingframewillrotate360°in approximately27.3days.Therefore,a0°or180°crossingwilloccurroughlyevery13.65 days. Asstatedpreviously,ControllerBcannotbeusedintheseregionsduetothelong timespan,soadifferenttypeofmethodmustbeused.Itwasdecidedthat4°beforethe ascendingnodewithrespecttotherotatingframereachesa0°or180°value,Controller Awillmakeaswitchfromascendingnodeonlytoinclinationonlycontrol.Oncethe ascendingnodehaspassedeitherpointby4°,aswitchwillbemadebacktoascending nodeonlycontrol.Itshouldbenotedthatsincetheseregionsinvolveinclinationonly control,ControllerBwillhavetobeusedaroundequatorcrossingsratherthanpole crossings.

75

5.4.2. Simulations. Havingdevisedapropercontrolschemeandidentifiedallthe problematicregions,itisnowpossibletoperformsimulationsthatgaugethecontrollers’ effectivenessatmaintainingalongtermpolar,Sunsynchronousorbit.Asidefrom equatorcrossingsandregionswheretherotatingascendingnodeisnear0°or180°,these simulationsinvolveControllerAperformingascendingnodeonlycontrol. Theinitialorbitalelementsforthesimulationpresentedinthissectioncanbe foundinTable5.4.Onceagain,theseinitialorbitalelementsarechosentospecifya100 kmaltitude,nearlycircularpolarorbit. Table5.4.InitialOrbitalElementsforLongTermControlSimulation OrbitalParameter Value

Semimajoraxis, ai 1837.4km

Eccentricity, ei 0.0013

Inclination, ii 90°

AscendingNode, i 45°

ArgumentofPeriapsis, ωi 15°

TrueAnomaly, ν i 80° A50daysimulationwasperformedusingtheinitialorbitalelementsdefinedin Table5.4andthecoefficientsinthelunargravitymodelupto25x25,andcanbefoundin Figures5.225.24.Figure5.22containsaplotoftheorbitalelementtrajectories,Figure 5.23showstheevolutionofthecontrolforces,andFigure5.24showsthetotalcontrol forcemagnitude.

76

Figure5.22.OrbitalElementTrajectoriesforLongTermControlSimulation

Figure5.23.ControlForceEvolutionforLongTermControlSimulation

77

Figure5.24.TotalControlForceMagnitudeforLongTermControlSimulation AsshowninFigure5.22,theascendingnodeiscorrectlyrotatedapproximately 50°in50days.Also,theinclinationismaintainedcloseto90°,withamaximum deviationofapproximately0.3°.Therefore,alongtermpolar,Sunsynchronousorbithas beensuccessfullyachieved.Also,itcanbeseenfromFigure5.22thattherearefour pointsatwhichtherotatingascendingnodeisequalto0°or180°andaswitchismadeto inclinationonlycontrol.Theseregionsareseenasspansacrosswhichtheinclinationis controlledmuchcloserto90°andtheascendingnodeperformsaslightvariationfromthe Sunsynchronouspath.Itcanalsobeseen,uponcomparisontoFigure3.10,thatthe semimajoraxisandeccentricityfollowtheiruncontrolledtrajectoriesandarethusnot affectedbythecontinuousthrusting. Figures5.23and5.24showthatthisSunsynchronousorbitisachievedusinglow thrustlevels.Inparticular,themaximumcontrolforceinthe xˆ and yˆ directionsis approximately0.76N.ItisalsoseenfromFigure5.23thatthereisaslightcontrolforce inthe zˆ direction.Thisoccursduetothefactthattheinclinationisnotexactlyequalto 90°. HavingproventhatalongtermSunsynchronousorbitcanbeachieved,itisnow ofinteresttocheckhowclosethespacecraftwillgettothelunarsurfaceandifitwill

78 eventuallyimpact.Inthisregard,aplotwasmadewhichshowstheevolutionofthe periapsisaltitudefortheabovesimulation.Theperiapsisaltitudeisdefinedby

hp = rp − RMoon = a 1( − e) −1737 4. (5.1) TheperiapsisisthepointontheorbitatwhichthespacecraftisclosesttotheMoon’s surface,andisthereforeanindicationoftheriskofimpact.Theplotoftheperiapsis altitudeevolutioncanbefoundinFigure5.25.

Figure5.25.PeriapsisAltitudeEvolutionforLongTermControlSimulation AsshowninFigure5.25,theperiapsisaltitudedecreasessignificantlyduringthe simulation,decreasingapproximately40kmin50days.Thisdecreaseintheperiapsis altitudeisdirectlyaffectedbythehighlynonsphericallunargravityfield,andisnot relatedtothecontinuousthrustingthatisbeingperformedtocontroltheinclinationand ascendingnode.ThiscanbeseenbycomparingFigure5.25toFigure3.11,whichshows

79 thattheperiapsisaltitudeevolutionforthecontrolledcaseisthesameasforthe uncontrolledcase. FromthetrajectorypresentedinFigure5.25,itcanbeseenthateventhougha polar,Sunsynchronousorbitwasachieved,thespacecraftwilleventuallyimpactthe Moonunlessaninplanecontrolforceismadetoarrestthedecreaseinperiapsisaltitude. Itshouldbeemphasized,however,thatthespacecraftwouldcrashinthesameamountof timeeveniftheinclinationandascendingnodewerenotcontrolled.

80

6. CONCLUSIONS Thisthesispresentsamethodforcreatingandmaintainingapolar,Sun synchronouslunarorbitusingcontinuouslowthrustsystems.Thistypeoforbitwouldbe verybeneficialforalunarmappingmissionbyprovidingforconstantlightingconditions. A50daysimulationispresentedwhichshowsthataSunsynchronousorbitcanbe maintainedforlongerdurationmissions,assumingthatlowthrusthardwareisavailable thatcouldbeusedforsuchatimespan. Also,ithasbeenshownthatoptimalcontroltheorycanbeusedtocontrolvarious orbitalelements.Theuseofatransitionmatrixalgorithmforsolvingtheoptimalcontrol problemhasbeenvalidated,andthealgorithmquicklyconvergestotheoptimaltrajectory providedthatasufficientguessfortheinitialcostatesisonhand. Finally,thisthesisilluminatesmanyoftheeffectsofthehighlynonsphericallunar gravityfieldonalunarorbiter.Inparticular,ithasbeenfoundthatthelunargravityfield willproducealargedecreaseintheperiapsisaltitudeforlongtermmissions.Ithasalso beenshownthattheargumentofperiapsiswillgothroughlargeoscillationsduetothe nonsphericalgravityfield.Forlowaltitudeorbits,thesphericalMoonassumptionwill leadtolargeinaccuracies.However,ithasbeenshownthatthelunargravityfieldcanbe accuratelymodeledusingonlythecoefficientsinthelunargravitymodelupto25x25.

81

7. FUTURE WORK Whiletheresultspresentedinthisthesisareverypromising,therearestillmany areasthatwouldbenefitfromfuturework.Thissectionoutlinessomepossible improvementstothisworkthatwillbeconductedinthenearfuture. First,futuredevelopmentsinthisworkwillinvolvethesearchfordifferent controlmethods.Thetransitionmatrixalgorithmusedinthisworkisusefulforspecial cases,butisnotsufficientlyrobusttoadmitsingularregionsortrajectoriesinwhicha guessfortheinitialcostatesisnotobvious.Sincethealgorithmisineffectiveduring singularregions,controllerswitcheshavetobeperformedandthegeneratedtrajectories areonlysuboptimal.Therefore,asearchwillbemadefora“direct”optimalcontrol method.Currentdirectmethodsexistthatcandealwithsingularregions,andtherefore trueoptimaltrajectoriesmaybefound.Also,bynotnecessarilyrequiringaccuratefirst guessesfortheinitialcostates,adirectmethodcouldleadtoamuchmorerobust controller. Thisworkcanalsobeimprovedbysearchingforacontrolmethodthatismore representationalofcurrentlowthrusthardware.Thecontrolmethodpresentedinthis thesisassumesthataconstantlychangingthrustlevelisavailablecontinuouslyinall threedirections.However,manycurrentlowthrustdevicescanonlyproduceaconstant lowthrustlevel.Therefore,amorerealisticmethodwouldinvolveassumingaconstant thrustmagnitudeandswitchingthethrusters“on”and“off”asneeded.Forthisreason, futureworkwillinvolvethestudyof“bangbang”controllers. WhileaSunsynchronousorbitwassuccessfullyobtained,ithasalsobeenshown thatinordertokeepthespacecraftfromeventuallycrashingintotheMoonsomeinplane controlforcewillneedtobemade.Thiscouldbedonebyincludingotherelementssuch asthesemimajoraxisandtheeccentricityintothecostfunction,whichwouldminimize thevariationsineachelementandpreventtheperiapsisaltitudefromdecreasing.Also, includingaterminvolvingtheargumentofperiapsisintothecostfunctionwould minimizeitsvariationandleadtoaconstantlocationfortheperiapsis.Forthesereasons, futureeffortsinthisworkwillinvolvetheinclusionofadditionalorbitalelementsintothe costfunction.AsidefromcreatingalongtermSunsynchronouswithaconstantperiapsis

82 altitude,theoveralloffuturedevelopmentswillbetoshowthatoptimalcontroltheory canbeusedtocontrolanygeneralorbit. Finally,futureeffortswillinvolvecontinuouslyincreasingthefidelityofthe dynamicmodel.Onewayinwhichthefidelitycouldbeincreasedwouldbetoadd additionalperturbationstotheequationsofmotion,suchassolarradiationpressureand Jupiter’sgravity.Also,withmanylunarmissionsoccurringinthenearfuture,therewill beanimprovingbaseofknowledgeofthelunargravityfield.Currentlunargravity modelswillbeupdatedbasedoninformationgainedfromthesemissions.Therefore, futureeffortswillinvolveupdatingthelunargravitymodelusedinthisworktocoincide withcurrentadvancesinlunargravitymodels.

83

APPENDIXA. CONVERSIONFROMORBITALELEMENTSTOCARTESIANCOORDINATES

84

Formanycomputerapplications,itisnecessarytoconvertbetweenclassical orbitalelementsandCartesiancoordinates.Thisisduetothefactthatorbitalelements giveaverygoodvisualindicationofthesizeandorientationofanorbit,whileCartesian coordinatesaremoreusefulmathematicallywhenattemptingtoformdifferential equationsforthemotionofasatellite.Mostcomputerapplicationsbeginwithspecifying theinitialstateofthesatelliteintermsoforbitalelements,andthenconvertthoseorbital elementsintoCartesiancoordinatesinordertoprovidedifferentialequationsthatcanbe integrated.Finally,afterintegrationthestatesarethentypicallyconvertedbackinto orbitalelementstoform.ThisAppendixbeginswithabriefoverviewoforbitalelements, andthendescribesthetransformationfromorbitalelementstoCartesiancoordinatesand viceversa. Sixorbitalelementsareneededtofullydescribethemotionofasatellite,and theseorbitalelementscanbedividedintotwocategories:inplaneorbitalelementsand outofplaneorbitalelements.Theinplaneorbitalelementsdescribethesizeandshape oftheorbit,whiletheoutofplaneorbitalelementsdescribetheorientationoftheorbit planewithrespecttosomespecifiedcoordinatesystem.Abasicunderstandingofbothof thesetypesoforbitalelementsisnecessaryforanalyzingthethreedimensionalmotionof asatellite. FigureA.1isasketchofatypicalellipticalorbit,andindicatessomeofthe primaryinplaneorbitalelements.

r r

ν

r a e

ra rp

FigureA.1.GeneralEllipticOrbit

85

Theattractingbodyislocatedattheprimaryfocusoftheellipse,andtheperiapsis andapoapsisarethepointsontheorbitthatareclosesttoandfarthestfromtheattracting body,respectively.Anorbitalelementthatdescribesthesizeoftheorbitisthesemimajor axis a,whichasshowninFigureA.1isequaltohalfofthedistancebetweenperiapsis andapoapsis.AnotherimportantorbitalelementshowninFigureA.1isthetrueanomaly ν.Thetrueanomalylocatesthesatelliteintheorbitalplaneandistheangular displacementmeasuredfromperiapsistothepositionvectoralongthedirectionofmotion [37].Onefinalinplaneorbitalelementistheeccentricity ewhichindicatestheorbit’s shape,orinotherwordsits“roundness”or“flatness.”Aneccentricityofzero correspondstoacircularorbit,whileaneccentricityofonecorrespondstoaparabolic r orbit.AsshowninFigureA.1,theeccentricityvector e isavectorfromtheattracting bodytotheorbit’speriapsis. Thesemimajoraxis,eccentricity,andtrueanomalydefinethesizeandshapeof theorbitplane.However,inordertoobtaintheorientationoftheorbitplanewithrespect tosomefixedcoordinatesystem,threeoutofplaneorbitalelementsmustbedefined. FigureA.2givesasketchofanarbitrarilyorientedorbitplanewithrespecttoafixedset ofaxes,andindicatesthethreeoutofplaneelements. zˆ r h r e i

ω

yˆ r n xˆ FigureA.2.OrientationofanOrbitPlaneWithRespecttoaFixedCoordinate System OneoftheoutofplaneorbitalelementsseeninFigureA.2istherightascension oftheascendingnode(RAAN), .TheRAANisdefinedastheanglefromthe xˆ axisto

86 thepointatwhichtheorbitintersectstheequatorgoingfromsouthtonorth.Thispointat whichtheequatorandorbitplanemeetiscalledtheascendingnode.AsshowninFigure A.1,theascendingnodeisalsoidentifiedbythenodevector n,whichisavectorfrom theorigintotheascendingnode. AnotheroutofplaneorbitalelementseenfromFigureA.1istheargumentof periapsis, ω .Theargumentofperiapsisisdefinedastheangle,measuredalongtheorbit, fromtheascendingnodetotheorbit’speriapsis. Thefinaloutofplaneorbitalelementistheinclination i.Theinclinationis definedastheanglebetweenthe zˆ axisandtheangularmomentumvector h,whichisa vectorthatisalwaysperpendiculartotheorbitplane.Inotherwords,theinclination indicateshowinclinedtheorbitplaneiswithrespecttotheequator.Aninclinationof 0°correspondstoanequatorialorbit,whileaninclinationof90°correspondstoapolar orbit. Havinggivenabriefdescriptionofthesixorbitalelements,itisnowdesiredto findamethodforconvertingfromorbitalelementsintoCartesiancoordinates.Thebasic goalofthisconversionmethodisassuch:

 a  x   y  e     i  z Given ,determine    &  x ω y&   υ     z& AmajorityoftheequationsusedintheanalysisthatfollowsaretakenfromVallado[37]. Beginthetransformationbydefiningthepositionmagnitude r as a(1−e 2 ) r = (A.1) 1+ ecos()υ Now,usingtheenergyequation V 2 Ε = − = − (A.2) 2a 2 r thevelocitymagnitude V canbefoundas

2 V = − (A.3) r a

87 where isthegravitationalparameter,whichwillvarydependingonwhichbodyis beingorbited. Next,definethemeanmotionas

n = (A.4) a 3 andtheeccentricanomalyas

− 5.  υ 1+ e   E = 2tan −1 tan  (A.5)        2 1−e   Thederivativeoftheeccentricityanomaly, E& ,canbefoundas n E& = (A.6) 1− ecos()E Nowdefinethevectors P and Q

cos(ω)cos()−sin(ω)cos(i)sin()   P = cos()()()()()ω sin +sin ω cos i cos  (A.7)  sin()()ω sin i  −sin(ω)cos()−cos(ω)cos(i)sin()   Q = −sin()()()()()ω sin + cos ω cos i cos  (A.8)  cos()()ω sin i  UsingthevectorsdefinedbyEquations(A.7)and(A.8),thepositionandvelocityvectors ofthespacecraftinCartesiancoordinatescannowbefoundthrough x   2 r = y = a()cos()E −e P + a 1e sin()E Q (A.9) z

x&  & & 2 & V = y = −asin()E EP + a e1 cos()E EQ (A.10) z& TherearealsotimeswhereitisneededtoconvertasystembasedinCartesian coordinatesintoorbitalelements.Asexplainedpreviously,mostdynamicmodelsinvolve integratingequationsofmotionsdefinedintermsofCartesiancoordinates,andafterthe

88 integrationthosecoordinatesaretransformedintoorbitalelementswhenplottingthe results.Thereforeitisdesiredtofindasecondmethodthatwillperformthereverseofthe methodpresentedabove.Theobjectiveofthissecondmethodisassuch:

x  a  y      e  z  i  Given ,determine  &   x  y& ω     υ z&   Beginthissecondtransformationbydeterminingthepositionvectorandvelocity vectormagnitudes

r = x 2 + y 2 + z 2 (A.11)

V = x& 2 + y& 2 + z& 2 (A.12) Now,Equation(A.2)canbesolvedforthesemimajoraxisas r a = (A.13) 2 − rV 2

Next,determinethemagnitudeoftheangularmomentumvector h = h = r ×V (A.14)

UsingEquations(A.14)and(A.2),theeccentricitycanbefoundas

2Εh 2 e = 1+ (A.15) 2

Definethenodevector nas r r h n = zˆ× r (A.16) h

Therightascensionoftheascendingnodecannowbefoundthrough

 xˆ ⋅n  −1   (A.17) = cos    n 

89

Sincethearccosinefunctionwillalwaysreturnananglebetween0°and360°,aquadrant checkmustbeperformedtoensurethecorrectistaken.ItcanbeseenfromFigureA.2 thatifthe yˆ componentofthenodevector nisnegative,thenmustbebetween180° and360°.Thereforethefollowingmethodwillleadtothecorrectvalueforfrom Equation(A.17):

[If(n y < 0 ),then=360°]

Next,theinclinationcanbefoundas

 zhˆ  −1   (A.18) i = cos    h  Sincetheinclinationisdefinedasananglebetween0°and180°noquadrantcheckis neededforEquationA.18. Theeccentricityvectorcanbedeterminedby   V 2 − r −()r ⋅V V r r e =   (A.19) Withtheeccentricityvectorknown,theargumentofperiapsiscanbefoundas

 n⋅e  −1   (A.20) ω = cos    n e  Theargumentofperiapsisisdefinedasananglebetween0°and360°,soaquadrant checkmustbeperformed.AsseeninFigureA.2,ifthe yˆ componentoftheeccentricity vector e isnegative,then ω isbetween180°and360°.Thisleadstothefollowing quadrantcheckfortheargumentofperiapsis:

[Ifey < 0 ,then ω =360°ω ] Finally,thetrueanomalycanbefoundas

 er  −1   (A.21) ν = cos    e r  Thisanglemustalsobeputthroughaquadrantcheck.Inordertodetermineaproper quadrantcheckforthetrueanomaly,thepropertiesofthedotproductbetweenthe positionandvelocityvectorscanbeanalyzed.Inparticular,theproductisalwayspositive

90 whenthespacecraftisgoingawayfromperiapsisandnegativewhengoingtowards periapsis.Therefore,thefollowingquadrantcheckcanbeused: [If (r ⋅V )= 0 ,thenν=360°ν]

91

APPENDIXB. CONVERSIONFROMTHEROTATINGFRAMETOTHEINERTIALFRAME

92

AsdiscussedinSection3,thecoordinatesystemonwhichtheequationsof motionarebaseduponisarotatingselenographicframe.However,thispresents problemswhentryingtodefineaSunsynchronousorbit,assuchanorbitrequiressome inertial xˆ axistomeasuretheascendingnodefrom.Therefore,aninertialframealso needstobespecifiedfromwhichtheascendingnodecanbemeasuredfrom.This appendixdefinesaninertialframethatcanbeusedforthispurpose,andalsodetailsa methodforconvertingbetweentherotatingandinertialcoordinatesystems. TheinertialframechoseninvolvestheplacementoftheMoonandEarthatthe startoftheintegration.Inparticular,theinertialxaxis, xˆ I ,isdefinedtobealongthe initialEarthMoonline.Theinertialzaxis, zˆI ,goesthroughtheMoon’snorthpoleand the yˆ I axiscompletestherighthandedcoordinatesystem.Inotherwords,theinertial frameischosenastheinitialselenographiccoordinatesaxes.Itshouldbenotedthatsince thisinertialframeisdefinedbasedontheinitialpositionsoftheEarthandMoon,the orientationoftheinertialframemaybedifferentintegrations.Basically,theorientationof theinertialframewilldependonthestartingJuliandatefortheintegration. Inordertoformaconversionmethod,thepropertiesoftheselenographic coordinateframemustbeanalyzed.AsstatedinSection3,theselenographic xˆ s axisis alwayspointedtowardsEarth,andthereforetheaxisrotatesastheMoonrevolvesabout theEarth.OneoftheinterestingpropertiesoftheMoonisthatitrevolvesabouttheEarth atthesamespeedaswhichitrotates.Itisbecauseofthispropertythatthesamefaceof theMoonisalwaysseenfromEarth,andwhythereiscurrentlyasparseamountofdata forthebacksideoftheMoon.Thelunarrotationrate,called ωm ,isroughlyconstantat

6 2.661699x10 rad/sec.Therefore,afteranamountoftime t,the xˆ s axiswillhave rotatedbyanangle ωmt .ThisrotationangleisshowninFigureB.1.

93

ωm (t f −t0 )

FigureB.1.AngleofMoon’sRevolutionaboutEarth

Aproductoftheconstantrotationrate ωm isthattheanglebetweenthe xand y axesfortheinertialandselenographiccoordinateframeswillalwaysbeequalto ωmt ,as showninFigureB.2.

zˆI ,zˆs

yˆ s ωmt ωmt

xˆ I

yˆ I xˆ s FigureB.2.ConversionBetweenRotationalandInertialCoordinates

94

Withtheaboveknowledge,adirectioncosinematrixcanbemadethatwillallow aconversionbetweentheselenographicframeandtheinertialframe.Firstdefinethe angle

= ωmt (B.1) Usingtheangle ,thedirectioncosinematrixcanbefoundas cos() −sin() 0   DCM = sin()() cos 0 (B.2)  0 0 1

Now,givenapositionvector rs definedwithrespecttotheselenographicframe,the correspondingpositionvectorintheinertialframeis

rI = [DCM ]rs (B.3) Inordertoconvertavelocityvectorfromtheselenographicframetotheinertial frame,thebasickinematicequation(BKE)mustbeused.Givenavelocityvector Vs in theselenographicframe,thecorrespondingvelocityvectorintheinertialframeisfound as

VI =VS + ωm ×rs (B.4)

Notingthat ωm = ωm zˆ ,Equation(B.4)canalsobewrittenas & & xI  xs  xs  y&  = y&  +ω zˆ×y  (B.5)  I   s  m  s  & & z I  zs  z s  Finally,carryingoutthecrossproductinEquationB.5andusingthestatespaceformat definedinSection3,thethreeinertialvelocitycomponentsare & xI = x4 −ωm x2 (B.6) & yI = x5 +ωm x1 (B.7) & z I = x6 (B.8)

95

BIBLIOGRAPHY [1] Boain,RonaldJ.“ABC’sofSunSynchronousOrbitMissionDesign,” AAS/AIAASpaceFlightMechanicsConference,2005. [2] Wilson,FredC.“RecentAdvancesinSatellitePropulsionandAssociatedMission Benefits,”AIAAInternationalCommunicationsSatelliteSystemConference, 2006. [3] Spores,R.A.,BirkanM.,“TheUSAFElectricPropulsionProgram,”35 th Joint PropulsionConferenceandExhibit,LosAngeles,CA,1999,AIAAJournal ,99 2162. [4] Brophy,JohnR.“StatusoftheDawnIonPropulsionSystem,”AIAA InternationalCommunicationsSatelliteSystemConference,2004, AIAAJournal, 20043433. [5] Brophy,JohnR.“DevelopmentandTestingoftheDawnIonPropulsionSystem,” AIAA/ASME/SAE/ASEEJointPropulsionConferenceandExhibit ,2006, AIAA Journal ,20064319. [6] Jacobson,DavidT.,Manzella,DavidH.“50 kWClassKryptonHallThruster Performance,” AIAAJournal ,20034550. [7] Pierson,BionL.,andKluever,CraigA.“ThreeStageApproachtoOptimalLow ThrustEarthMoonTrajectories,” JournalofGuidance,Control,andDynamics , Vol.17,No.6,1994. [8] Kluever,CraigA.,Pierson,BionL.,“OptimalLowThrustThreeDimensional EarthMoonTrajectories,” JournalofGuidance,Control,andDynamics ,Vol.18, No.4,1995. [9] Kluever,CraigA.“OptimalEarthMoonTrajectoriesUsingCombinedChemical ElectricPropulsion,” JournalofGuidance,Control,andDynamics ,Vol.20,No. 2,1997. [10] Herman,AlbertL.,Conway,BruceA.“Optimal,LowThrust,EarthMoonOrbit Transfer,” JournalofGuidance,Control,andDynamics ,Vol.21,No.1,1998. [11] Kim,Mischa.“ContinuousLowThrustTrajectoryOptimization:Techniquesand Applications,”PhDDissertation,VirginiaPolytechnicInstitute,2005. [12] Thorne,JamesD.“OptimalContinuousThrustOrbitTransfers,”PhD Dissertation,AirForceInstituteofTechnology,1996.

96

[13] Thorne,JamesD.,Hall,ChristopherD.“MinimumTimeContinuousThrust OrbitTransfersUsingtheKustaanheimoStiefelTransformation,”Journalof Guidance,Control,andDynamics ,1997,Vol.20,No.4. [14] Whiting,JamesK.“OrbitalTransferTrajectoryOptimization,”MastersThesis, MassachusettsInstituteofTechnology,2004. [15]Hunziker,RaulR,“LowThrustStationKeepingGuidancefora24Hour Satellite,” AIAAJournal, Vol.8,No.7,pp.11861192,1970. [16]Oleson,StevenR.,Myers,RogerM.,Kluever,CraigA.“AdvancedPropulsion forGeostationaryOrbitInsertionandNorthSouthStationKeeping,” Journalof SpacecraftandRockets ,Vol.34,No.1,1997. [16] Oleson,StevenR.,Myers,RogerM.,Kluever,CraigA. [17] Chan,J.,Ariasti,A.,HurDiaz,S“Comparisonsoftwostationkeepingstrategies forionicpropulsionsystems,”FlightMechanicsSymposiumatNASAGoddard SpaceFlightCenter , October2830,2003. [18] Losa,Damiana,“ElectricStationKeepingofGeostationarySatellites:a DifferentialInclusionApproach,”44 th IEEEConferenceonDecisionandControl, December,2005. [19] Conway,BruceA.,Larson,K.M,“CollocationVersusDifferentialInclusionin DirectOptimization,”JournalofGuidance,Control,andDynamics ,Vol.21,No. 5,1998. [20] Edelbaum,TheodoreN.“OptimalLowThrustRendezvousandStationKeeping,” JournalofSpacecraftandRockets, Vol.40,No.6,1964. [21 ] Billik,B.H.,“SomeOptimalLowAccelerationRendezvousManeuvers,” AIAA Journal ,Vol.2,No.3,pp.510516,1964. [22] Euler,E.“OptimalLowThrustRendezvousControl,” AIAAJournal ,Vol.7,No. 6,pp.11401144,JanJune1969. [23] Dittberner,W.,Stuhlinger,E.,“RendezvousMissionstoMinorPlanetswith ElectricallyPropelledSpacecraft,”AIAAInternationalElectricPropulsion Conference,Oct.30Nov1,1979. [24] Aleshin,M.,andGuelman,M.,“OptimalPowerLimitedRendezvouswithFixed TerminalApproachDirection,” JournalofGuidance,Control,andDynamics , Vol.19,No.5,pp.11241133,1996.

97

[25 ] Guelman,M.,Aleshin,M.“OptimalBoundedLowThrustRendezvouswith FixedTerminalApproachDirection,” JournalofGuidance,Control,and Dynamics ,Vol.24,No.2,pp.378385,MarchApril2001. [26] Park,S.Y.,andJunkins,JohnL.,“OrbitalMissionAnalysisforaLunarMapping Satellite,” TheJournaloftheAstronauticalSciences ,Vol.43,No.2,pp.207217, AprilJune1995. [27] Ramanan,R.V.,andAdimurthy,V,“AnAnalysisofNearCircularLunar MappingOrbits,” JournalofEarthSystemSciences ,pp.619626,Dec.2005. [28] Kaufman,B.,Middour,J.,andRichon,K.,“MissionDesignoftheClementine SpaceExperiment,” AAS95124,February,1995. [29] Richon,KarenV.,andNewman,LauriKraft,“FlightDynamicsSupportforthe ClementineDeepSpaceProgramScienceExperiment(DSPSE)Mission,” AdvancesintheAstronauticalSciences ,Vol.90,No.2,pp.20452064,1995. [30 ] Folta,DavidandBeckman,Mark,“TheLunarProspectorMission:Resultsof TrajectoryDesign,QuasiFrozenOrbits,ExtendedMissionTargeting,andLunar TopographyandPotentialModels,” AdvancesintheAstronauticalSciences ,Vol. 103,No.2,pp.15051523,1999. [31 ] Folta,D.,Galal,K.,andLozierD.,“LunarProspectorFrozenOrbitMission Design,”AstrodynamicsSpecialistConference,AIAA984288,1998. [32] Beckman,Mark,andFolta,David,“MissionDesignoftheFirstRoboticLunar ExplorationProgramMission:TheLunarReconnaissanceOrbiter,”AAS/AIAA AstrodynamicsSpecialistConference,AAS05300,2005. [33] Beckman,Mark,“MissionDesignfortheLunarReconnaissanceOrbiter,”29 th AnnualAASGuidanceandControlConference,February2006. [34] Escobal,PedroR. MethodsofAstrodynamics .JohnWiley&Sons,1969. [35] Skinner,DavidL.“QUICK–AnInteractiveSoftwareEnvironmentfor Engineering,” AIAAComputersinAerospaceConference ,AIAA19893051,pp. 542563,1998. [36] Skinner,DavidL.“SpacecraftDesignApplicationsofQUICK,” Aerospace DesignConference, AIAA19921111. [37] Vallado,DavidA. FundamentalsofAstrodynamicsandApplications ,Microcosm Press,SecondEdition,2004.

98

[38] Konopliv,A.S.“RecentGravityModelsasaResultoftheLunarProspector Mission,” Icarus ,Volume150,Issue1,pp.118,2001. [39] Shampine,L.F.andM.K.Gordon, ComputerSolutionofOrdinaryDifferential Equations:theInitialValueProblem ,W.H.Freeman,SanFrancisco,1975. [40] Forsyth,A.R.,CalculusofVariations ,Dover,1960. [41] Bryson,A.,andHo,Yuchi, AppliedOptimalControl ,Taylor&Francis,Revised Edition,1975. [42] Lewis,Frank,andSyrmos,Vassilis, OptimalControl ,WileyInterscience,Second Edition,1995. [43] Betts,JohnT.,“SurveyofNumericalMethodsforTrajectoryOptimization,” AIAAJournalofGuidance,Control,andDynamics ,Vol.21,No.2,pp.193207, MarchApril1998. [44] Hargraves,C.R.,Paris,S.W.,“DirectTrajectoryOptimizationUsingNonlinear ProgrammingandCollocation,” JournalofGuidance,Control,andDynamics , Vol.10,No.4,pp.338342,1987.

99

VITA NathanRobertHarlwasborninFarmington,MissourionMay11,1983toFred HarlandNancyYount.HegraduatedfromValleyR6HighSchoolinCaledonia, MissouriasValedictorianinthespringof2001andenrolledattheUniversityof MissouriRollaforthefollowingfall.InMayof2005,hegraduatedwithaBachelorsof SciencedegreeinAerospaceEngineeringfromUMR.HelaterreceivedhisMasters degreeinAerospaceEngineeringfromUMRinMayof2007.WhileatUMR,Nathan wasathreeyearmemberofUMR’snewspaper, TheMissouriMiner ,workingasthe NewsEditorandManagingEditor.HealsoservedasamemberofAIAA,SigmaGamma Tau,andtheMRSATsatellitedesignteam.