ISIMA Lectures on Celestial Mechanics. 1 Scott Tremaine, Institute for Advanced Study July 2014

Total Page:16

File Type:pdf, Size:1020Kb

ISIMA Lectures on Celestial Mechanics. 1 Scott Tremaine, Institute for Advanced Study July 2014 ISIMA lectures on celestial mechanics. 1 Scott Tremaine, Institute for Advanced Study July 2014 The roots of solar system dynamics can be traced to two fundamental discoveries by Isaac Newton: first, that the acceleration of a body of mass m subjected to a force F is d2r F = ; (1) dt2 m and second, that the gravitational force exerted by a point mass m2 at position r2 on a point mass m1 at r1 is G m1m2(r2 − r1) F = 3 : (2) jr2 − r1j Newton's laws have now been superseded by the equations of general relativity, but remain accurate enough to describe all planetary system phenomena when they are supple- mented by small relativistic corrections. For general background on this material look at any mechanics textbook. The standard advanced reference is Murray and Dermott, Solar System Dynamics. 1. The two-body problem The simplest significant problem in celestial mechanics, posed and solved by Newton but often known as the two-body problem (or Kepler's problem), is to determine the orbits of two particles of masses m1 and m2 under the influence of their mutual gravitational attraction. From (1) and (2) the equations of motion are 2 2 d r1 G m2(r2 − r1) d r2 G m1(r1 − r2) 2 = 3 ; 2 = 3 : (3) dt jr2 − r1j dt jr1 − r2j We change variables from r1 and r2 to m1r1 + m2r2 R ≡ ; r ≡ r2 − r1; (4) m1 + m2 R is the center of mass of the two particles and r is the relative position. These equations can be solved for r1 and r2 to yield m2 m1 r1 = R − r; r2 = R + r: (5) m1 + m2 m1 + m2 { 2 { Taking the second time derivative of the first of equations (4) and using equations (3), we obtain d2R = 0; (6) dt2 which implies that the center of mass travels at uniform velocity, a result that is a consequence of the absence of any forces from external sources. Taking the second derivative of the second of equations (4) yields d2r G M = − r; (7) dt2 r3 where r = jrj and we have introduced M ≡ m1 + m2 to denote the total mass of the two particles. Equation (7) equally well describes the motion of a particle of negligible mass (a test particle) subject to the gravitational attraction of a fixed point mass M. Equation (7) can also be written as d2r = −rΦ ; (8) dt2 K where ΦK (r) = −G M=r is the Kepler potential. The solution of equation (7) is known as the Kepler orbit. The angular momentum per unit mass is dr L = r × : (9) dt Then dL dr dr d2r G M = × + r × = − r × ^r = 0: (10) dt dt dt dt2 r2 Thus the angular momentum is conserved; moreover, since the angular momentum vector is normal to the plane containing the test particle's position and velocity vectors, the test particle must be confined to a plane (the orbital plane). 1.1. The shape of the Kepler orbit We let (r; ) denote polar coordinates in the orbital plane, with increasing in the direction of motion of the orbit; writing r = r^r and using the relations d^r=dt = _ ^ and d ^ =dt = − _^r, the equation of motion (7) becomes dΦ (r) r¨ − r _ 2 = − K ; 2r _ _ + r ¨ = 0: (11) dr { 3 { The second equation may be multiplied by r and integrated to yield r2 _ = constant = L; (12) where L = jLj. This is just a restatement of the conservation of angular momentum. We may use equation (12) to eliminate _ from the first of equations (11), L2 dΦ r¨ − = − K : (13) r3 dr Multiplying byr _ and integrating yields L2 1 r_2 + + Φ (r) = E; (14) 2 2r2 K where E is a constant that is equal to the energy per unit mass of the test particle. We can also use equation (12) to write d d L d = _ = ; (15) dt d r2 d applying this relation in equation (14) yields L2 dr 2 L2 + + Φ (r) = E: (16) 2r4 d 2r2 K Equation (14) implies that 2G M L2 r_2 = 2E + − : (17) r r2 As r ! 0, the right side approaches −L2=r2 which is negative, while the left side is positive. Thus there must be a point of closest approach of the test particle to the central body, which is known as the periapsis or pericenter1. The periapsis distance q is given implicitly by the conditionr _ = 0, which yields the quadratic equation 2G M L2 2E + − = 0: (18) q q2 In the opposite limit, r ! 1, the right side of equation (17) approaches 2E. Since the left side is positive, when E < 0 there is a maximum distance Q that the particle can achieve, which is known as the apoapsis or apocenter, and is determined by solving equation (18) 1For specific central bodies other names are used, such as perihelion (Sun), perigee (Earth), perijove (Jupiter), periastron (a star), etc. \Periapse" is incorrect|an apse is not an apsis. { 4 { with Q replacing q. Orbits with E < 0 are referred to as bound orbits since there is an upper limit to their distance from the central body. Particles on unbound orbits, with E ≥ 0, have no apoapsis and eventually travel arbitrarily far from the central body. To solve equation (13) we introduce the variable u ≡ 1=r, and change the independent variable from t to using the relation (15). With these substitutions,r ¨ = −L2u2d2u=d 2, so equation (13) becomes d2u 1 dΦ + u = − K : (19) d 2 L2 du 2 Since ΦK = −G M=r = −G Mu, the right side is equal to a constant, G M=L , and the equation is easily solved to yield 1 G M u = = [1 + e cos( − $)]; (20) r L2 where e ≥ 0 and $ are constants of integration. We replace the angular momentum L by another constant of integration, a, defined by the relation2 L2 = G Ma(1 − e2); (21) so that the shape of the orbit is given by a(1 − e2) r = ; (22) 1 + e cos f where f = − $ is known as the true anomaly3. The closest approach of the two bodies occurs at azimuth = $ and hence $ is known as the azimuth of periapsis. The periapsis distance is q = a(1 − e): (23) Substituting this result and equation (21) into (18) reveals that the energy is simply related to the constant a: G M E = − : (24) 2a Bound orbits have E < 0, so that a > 0 by equation (24) and hence e < 1 by equation (21). The apoapsis distance is obtained from equation (22) with f = π and is given by Q = a(1 + e): (25) 2The combination a(1 − e2) is sometimes called the semilatus rectum. 3The term \anomaly" is used to refer to any angular variable that is zero at periapsis and increases by 2π as the particle travels from periapsis to apoapsis and back. { 5 { The azimuth of the apocenter is = $ + π; thus the periapsis and the apoapsis are joined by a straight line known as the line of apsides. Equation (22) describes an ellipse with one focus at the origin. Its major axis is the line of apsides and has length q + Q = 2a; thus the constant a is known as the semi-major axis. The semi-minor axis of the ellipse is easily determined as the maximum perpendicular distance of the orbit from the line of 2 2 1=2 apsides, b = maxf [a(1 − e ) sin f=(1 + e cos f)] = a(1 − e ) . The eccentricity of the ellipse, (1 − b2=a2)1=2, is therefore equal to the constant e. The radial velocity is found by differentiating equation (22) and using the relation f_ = L=r2 (eq. 15): (G M)1=2e sin f r_ = : (26) [a(1 − e2)]1=2 Unbound orbits have E > 0, a < 0 and e > 1. In this case equation (22) describes a hyperbola with focus at the origin and asymptotes at azimuth = $ ± cos−1(−1=e). The constants a and e are still commonly referred to as semi-major axis and eccentricity even though these terms have no direct geometric interpretation. In the special case E = 0, a is infinite and e = 1, so equation (22) is undefined; however, in this case equation (18) implies that the periapsis distance q = L2=(2G M) so that equation (20) implies 2q r = ; (27) 1 + cos f which describes a parabola. 1.2. Motion in the Kepler orbit The period P of a bound orbit is the time taken to travel from periapsis to apoapsis and back. Since d =dt = L=r2, we have R t2 dt = L−1 R 2 r2d ; the integral on the right side t1 1 is twice the area contained in the ellipse between azimuths 1 and 2, which leads to the simple result that P = 2A=L where A is the area of the ellipse. Combining the geometrical result that the area is A = πab = πa2(1 − e2)1=2 with equation (21) we obtain a3 1=2 P = 2π ; (28) G M the period, like the energy, depends only on the semi-major axis. The mean motion or mean rate of change of azimuth, usually written n and equal to 2π=P , thus satisfies n2a3 = G M; (29) { 6 { which is Kepler's third law. If the particle passes through periapsis at t = t0, the dimen- sionless variable t − t ` = 2π 0 = n(t − t ) (30) P 0 is referred to as the mean anomaly. The position and velocity of a particle in the orbital plane at a given time t are specified by four orbital elements: two specify the size and shape of the orbit, which we can take to be e and a (or e and n, q and Q, L and E, etc.); one specifies the orientation of the orbit ($); and one specifies the location or phase of the particle in its orbit (f, `, or t0).
Recommended publications
  • Appendix a Orbits
    Appendix A Orbits As discussed in the Introduction, a good ¯rst approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational ¯eld of a spherical planet. This leads to the classical two-body problem. Since we use the term body to refer to a spacecraft of ¯nite size (as in rigid body), it may be more appropriate to call this the two-particle problem, but I will use the term two-body problem in its classical sense. The basic elements of orbital dynamics are captured in Kepler's three laws which he published in the 17th century. His laws were for the orbital motion of the planets about the Sun, but are also applicable to the motion of satellites about planets. The three laws are: 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times. 3. The square of the period of a planet is proportional to the cube of its mean distance to the sun. The ¯rst law applies to most spacecraft, but it is also possible for spacecraft to travel in parabolic and hyperbolic orbits, in which case the period is in¯nite and the 3rd law does not apply. However, the 2nd law applies to all two-body motion. Newton's 2nd law and his law of universal gravitation provide the tools for generalizing Kepler's laws to non-elliptical orbits, as well as for proving Kepler's laws.
    [Show full text]
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • A Study of Ancient Khmer Ephemerides
    A study of ancient Khmer ephemerides François Vernotte∗ and Satyanad Kichenassamy** November 5, 2018 Abstract – We study ancient Khmer ephemerides described in 1910 by the French engineer Faraut, in order to determine whether they rely on observations carried out in Cambodia. These ephemerides were found to be of Indian origin and have been adapted for another longitude, most likely in Burma. A method for estimating the date and place where the ephemerides were developed or adapted is described and applied. 1 Introduction Our colleague Prof. Olivier de Bernon, from the École Française d’Extrême Orient in Paris, pointed out to us the need to understand astronomical systems in Cambo- dia, as he surmised that astronomical and mathematical ideas from India may have developed there in unexpected ways.1 A proper discussion of this problem requires an interdisciplinary approach where history, philology and archeology must be sup- plemented, as we shall see, by an understanding of the evolution of Astronomy and Mathematics up to modern times. This line of thought meets other recent lines of research, on the conceptual evolution of Mathematics, and on the definition and measurement of time, the latter being the main motivation of Indian Astronomy. In 1910 [1], the French engineer Félix Gaspard Faraut (1846–1911) described with great care the method of computing ephemerides in Cambodia used by the horas, i.e., the Khmer astronomers/astrologers.2 The names for the astronomical luminaries as well as the astronomical quantities [1] clearly show the Indian origin ∗F. Vernotte is with UTINAM, Observatory THETA of Franche Comté-Bourgogne, University of Franche Comté/UBFC/CNRS, 41 bis avenue de l’observatoire - B.P.
    [Show full text]
  • A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
    A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star.
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • Flight and Orbital Mechanics
    Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics AE2-104, lecture hours 21-24: Interplanetary flight Ron Noomen October 25, 2012 AE2104 Flight and Orbital Mechanics 1 | Example: Galileo VEEGA trajectory Questions: • what is the purpose of this mission? • what propulsion technique(s) are used? • why this Venus- Earth-Earth sequence? • …. [NASA, 2010] AE2104 Flight and Orbital Mechanics 2 | Overview • Solar System • Hohmann transfer orbits • Synodic period • Launch, arrival dates • Fast transfer orbits • Round trip travel times • Gravity Assists AE2104 Flight and Orbital Mechanics 3 | Learning goals The student should be able to: • describe and explain the concept of an interplanetary transfer, including that of patched conics; • compute the main parameters of a Hohmann transfer between arbitrary planets (including the required ΔV); • compute the main parameters of a fast transfer between arbitrary planets (including the required ΔV); • derive the equation for the synodic period of an arbitrary pair of planets, and compute its numerical value; • derive the equations for launch and arrival epochs, for a Hohmann transfer between arbitrary planets; • derive the equations for the length of the main mission phases of a round trip mission, using Hohmann transfers; and • describe the mechanics of a Gravity Assist, and compute the changes in velocity and energy. Lecture material: • these slides (incl. footnotes) AE2104 Flight and Orbital Mechanics 4 | Introduction The Solar System (not to scale): [Aerospace
    [Show full text]
  • Instructor's Guide for Virtual Astronomy Laboratories
    Instructor’s Guide for Virtual Astronomy Laboratories Mike Guidry, University of Tennessee Kevin Lee, University of Nebraska The Brooks/Cole product Virtual Astronomy Laboratories consists of 20 virtual online astronomy laboratories (VLabs) representing a sampling of interactive exercises that illustrate some of the most important topics in introductory astronomy. The exercises are meant to be representative, not exhaustive, since introductory astronomy is too broad to be covered in only 20 laboratories. Material is approximately evenly divided between that commonly found in the Solar System part of an introductory course and that commonly associated with the stars, galaxies, and cosmology part of such a course. Intended Use This material was designed to serve two general functions: on the one hand it represents a set of virtual laboratories that can be used as part or all of an introductory astronomy laboratory sequence, either within a normal laboratory setting or in a distance learning environment. On the other hand, it is meant to serve as a tutorial supplement for standard textbooks. While this is an efficient use of the material, it presents some problems in organization since (as a rule of thumb) supplemental tutorial material is more concept oriented while astronomy laboratory material typically requires more hands-on problem-solving involving at least some basic mathematical manipulations. As a result, one will find material of varying levels of difficulty in these laboratories. Some sections are highly conceptual in nature, emphasizing more qualitative answers to questions that students may deduce without working through involved tasks. Other sections, even within the same virtual laboratory, may require students to carry out guided but non-trivial analysis in order to answer questions.
    [Show full text]
  • Elliptical Orbits
    1 Ellipse-geometry 1.1 Parameterization • Functional characterization:(a: semi major axis, b ≤ a: semi minor axis) x2 y 2 b p + = 1 ⇐⇒ y(x) = · ± a2 − x2 (1) a b a • Parameterization in cartesian coordinates, which follows directly from Eq. (1): x a · cos t = with 0 ≤ t < 2π (2) y b · sin t – The origin (0, 0) is the center of the ellipse and the auxilliary circle with radius a. √ – The focal points are located at (±a · e, 0) with the eccentricity e = a2 − b2/a. • Parameterization in polar coordinates:(p: parameter, 0 ≤ < 1: eccentricity) p r(ϕ) = (3) 1 + e cos ϕ – The origin (0, 0) is the right focal point of the ellipse. – The major axis is given by 2a = r(0) − r(π), thus a = p/(1 − e2), the center is therefore at − pe/(1 − e2), 0. – ϕ = 0 corresponds to the periapsis (the point closest to the focal point; which is also called perigee/perihelion/periastron in case of an orbit around the Earth/sun/star). The relation between t and ϕ of the parameterizations in Eqs. (2) and (3) is the following: t r1 − e ϕ tan = · tan (4) 2 1 + e 2 1.2 Area of an elliptic sector As an ellipse is a circle with radius a scaled by a factor b/a in y-direction (Eq. 1), the area of an elliptic sector PFS (Fig. ??) is just this fraction of the area PFQ in the auxiliary circle. b t 2 1 APFS = · · πa − · ae · a sin t a 2π 2 (5) 1 = (t − e sin t) · a b 2 The area of the full ellipse (t = 2π) is then, of course, Aellipse = π a b (6) Figure 1: Ellipse and auxilliary circle.
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • TOPICS in CELESTIAL MECHANICS 1. the Newtonian N-Body Problem
    TOPICS IN CELESTIAL MECHANICS RICHARD MOECKEL 1. The Newtonian n-body Problem Celestial mechanics can be defined as the study of the solution of Newton's differ- ential equations formulated by Isaac Newton in 1686 in his Philosophiae Naturalis Principia Mathematica. The setting for celestial mechanics is three-dimensional space: 3 R = fq = (x; y; z): x; y; z 2 Rg with the Euclidean norm: p jqj = x2 + y2 + z2: A point particle is characterized by a position q 2 R3 and a mass m 2 R+. A motion of such a particle is described by a curve q(t) where t runs over some interval in R; the mass is assumed to be constant. Some remarks will be made below about why it is reasonable to model a celestial body by a point particle. For every motion of a point particle one can define: velocity: v(t) =q _(t) momentum: p(t) = mv(t): Newton formulated the following laws of motion: Lex.I. Corpus omne perservare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare 1 Lex.II. Mutationem motus proportionem esse vi motrici impressae et fieri secundem lineam qua vis illa imprimitur. 2 Lex.III Actioni contrarium semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi. 3 The first law is statement of the principle of inertia. The second law asserts the existence of a force function F : R4 ! R3 such that: p_ = F (q; t) or mq¨ = F (q; t): In celestial mechanics, the dependence of F (q; t) on t is usually indirect; the force on one body depends on the positions of the other massive bodies which in turn depend on t.
    [Show full text]
  • Interplanetary Trajectories in STK in a Few Hundred Easy Steps*
    Interplanetary Trajectories in STK in a Few Hundred Easy Steps* (*and to think that last year’s students thought some guidance would be helpful!) Satellite ToolKit Interplanetary Tutorial STK Version 9 INITIAL SETUP 1) Open STK. Choose the “Create a New Scenario” button. 2) Name your scenario and, if you would like, enter a description for it. The scenario time is not too critical – it will be updated automatically as we add segments to our mission. 3) STK will give you the opportunity to insert a satellite. (If it does not, or you would like to add another satellite later, you can click on the Insert menu at the top and choose New…) The Orbit Wizard is an easy way to add satellites, but we will choose Define Properties instead. We choose Define Properties directly because we want to use a maneuver-based tool called the Astrogator, which will undo any initial orbit set using the Orbit Wizard. Make sure Satellite is selected in the left pane of the Insert window, then choose Define Properties in the right-hand pane and click the Insert…button. 4) The Properties window for the Satellite appears. You can access this window later by right-clicking or double-clicking on the satellite’s name in the Object Browser (the left side of the STK window). When you open the Properties window, it will default to the Basic Orbit screen, which happens to be where we want to be. The Basic Orbit screen allows you to choose what kind of numerical propagator STK should use to move the satellite.
    [Show full text]