<<

GEOLO[KI ANALI BALKANSKOGA POLUOSTRVA BEOGRAD, decembar 2016 77 1–12 ANNALES GÉOLOGIQUES DE LA PÉNINSULE BALKANIQUE BELGRADE, December 2016

DOI: 10.2298/GABP1677001R

A review of Pb-Sb(As)-S, Cu(Ag)-Fe(Zn)-Sb(As)-S, Ag(Pb)-Bi(Sb)-S and Pb-Bi-S(Te) sulfosalt systems from the Boranja orefield, West

SLOBODAN A. RADOSAVLJEVIĆ1, JOVICA N. STOJANOVIĆ2, ALEKSANDAR M. PAČEVSKI3, ANA S. RADOSAVLJEVIĆ-MIHAJLOVIĆ2 &VLADAN D. KAŠIĆ2

Abstract. Recent mineralogical, chemical, physical, and crystallographic investigations of the Boranja ore- field showed very complex associations and assemblages where sulfosalts have significant role. The sulfosalts of the Boranja orefield can be divided in four main groups: (i) Pb-Sb(As)-S system with ±Fe and ±Cu; (ii) Cu(Ag)-Fe(Zn)-Sb(As)-S system; (iii) Ag(Pb)-Bi(Sb)-S; (iv) and Pb-Bi-S(Te) system. Spatially, these sulfosalts are widely spread, however, they are the most abundant in the following polymetallic deposits and ore zones: Cu(Bi)-FeS Kram-Mlakva; Pb(Ag)-Zn-FeS2 Veliki Majdan (Kolarica–Centralni revir–Kojići); Sb-Zn-Pb-As Rujevac; and Pb-Zn-FeS2-BaSO4 Bobija. The multi stage formation of , from skarn- hydrothermal to complex hydrothermal with various stages and sub-stages has been determined. All hydro- thermal stages and sub-stages of various polymetallic deposits and ore zones within the Boranja orefield are followed by a variety of sulfosalts. Key words: Sulfosalts, Boranja orefield, West Serbia.

Апстракт. Досадашња минералошка, хемијска, геохемијска и кристалографска проучавања показа- ла су да се у рудном пољу Борање јављају веома сложене минералне асоцијације и парагенезе, где у њеним полиметаличним минерализацијама доминирају минерали из групе сулфосоли. Сулфосоли из рудног поља Борање могу се поделити у четири веће групе: (i) систем Pb-Sb(As)-S, са ±Fe и ±Cu; (ii) систем Cu(Ag)-Fe(Zn)-Sb(As)-S; (iii) систем Ag(Pb)-Bi(Sb)-S; (iv) систем Pb-Bi-S(Te). Ове сулфосоли су просторно веома распрострањене, међутим, оне су најзаступљеније у следећим полиметаличним ле- жиштима и рудним зонама: Cu(Bi)-FeS Крам–Млаква; Pb(Ag)-Zn-FeS2 Велики Мајдан (Коларица–Цен- трални ревир–Којићи); Sb-Zn-Pb-As Рујевац; Pb-Zn-FeS2-BaSO4 Бобија. Утврђено је вишеетапно ства- рање минерала, где прва одговара скарн-хидротермалном а друга сложеном хидротермалном, са већим бројем стадијума и подстадијума. Сви стадијуми и подстадијуми хидротермалне етапе у минералним асоцијацијама различитих полиметаличних лежишта и рудних зона, праћени су појавом широке лепезе сулфосолних минерала.

Introduction ly represents semi- such as As, Sb, Bi and rarely Ge, or like Sn and rarely In; and S is S or rarely Sulfosalts are complex minerals with the Se or/and Te (ANTHONY et al. 1990; MOËLO et al. general formula: AmBnSp; where A represents a metal 2008). Formerly, it was believed that the sulfosalts such as Cu, Pb, Ag, Fe and rarely Hg, Zn, V; B usual- were salts of complex hypothetical thioantimonic or

1 Practical Unit, VK MINERAL, Ltd., Stanka Paunoviæa 68, 11090 Belgrade, Serbia. E-mail: [email protected] 2 Applied Mineralogy Unit, Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, p.o. box 390, 11000 Belgrade, Serbia. E-mail: [email protected] 3 University of Belgrade - Faculty of Mining and Geology, Department of Mineralogy, Crystallography, Petrology and Geochemistry, Djušina 7, 11000 Belgrade, Serbia. E-mail: [email protected] 2 SLOBODAN A. RADOSAVLJEVIĆ et al.

thioarsenic acids (e.g., HSbS2, H18As4S15, H3AsS3). crystallographic, geochemical and petrological stud- X-ray diffraction (XRD) analyses indicate that the ies yielded important results in defining mineral com- crystal structures of Pb-Sb-As-S sulfosalts are based positions of the mineralizations and surrounding rocks on structural fragments of simpler compounds such as (e.g. KARAMATA 1955; RADUKIĆ 1960; TOMIĆ 1962; ( sulfide; PbS) blocks and (antimo- BORODAEV 1978; JANKOVIĆ 1978; RADOSAVLJEVIĆ et ny trisulfide; Sb2S3) sheets (WERNICK 1960). No al. 1982). This study shows a synthesis of previous encompassing theory has been evolved to rationalize research of sulfosalts with revisited and new data. many of these curious compounds. The complexity of many of the structures evidently results from them having crystallized at low temperatures and the conse- Materials and methods of study quent high degree of ordering of the metal atoms. Syntheses of such compositions at higher temperature Polished sections were prepared for reflected-light usually result in structures simpler than the complicat- microscopy and Electron Probe Micro–analyses ed low-temperature forms. There are about 200 (EPMA), following standard preparation and polish- known sulfosalts (MOËLO et al. 2008). ing steps (PICOT & JOHAN 1982). The Carl-Zeiss These minerals were formed under the mutual influ- polarizing microscope, model JENAPOL-U equipped ence of different sulfantimonide, sulfarsenide, sulfsta- with 10×, 20×, 50×, 100× (oil immersion) objectives 1– nate, sulfbismuthinide, etc. anions (e.g. SbS2 , and a system for a photomicrography (“Axiocam 105 18– 3– 6– 1+; As4S15 , AsS3 , Bi2S6 ), with metal ions (e.g., Cu color” camera and “Carl Zeiss AxioVision SE64 Rel. 2+, Ag1+, Fe2+, Pb2+). These reactions occur only in 4.9.1.” software package with „Multiphase” module). mineralized solutions with increased alkalinity and EPMA were performed on a JEOL JSM-6610LV high concentration of H2S. Deposition of miargirite scanning electron microscope (SEM) connected with AgSbS2, Ag3SbS3 and Ag5SbS3 an INCA energy-dispersion X-ray analysis unit; EDX occur during mutual influence of sulfantimonide anions analytical system. An acceleration voltage of 20 kV with Ag1+. Interactions between already deposited sul- was used. The samples were coated with gold. The fides (galena, , etc.) and mineralized solu- following standards and analytical lines were used: tions (ascendant and/or descendent) may result in the FeS2 (FeKα, SKα), ZnS (ZnKα, SKα), Mn (MnKα), Ni formation of younger sulfosalts. The typical example of (NiKα), Co (CoKα), Cu (CuKα), InAs (AsKα,), InSb the reaction crystallization is contact between galena- (SbLα), SnO2 (SnLα), Ag2Te (AgLα), CdS (CdLα), chalcopyrite with sulfantimonide solutions when bour- HgS (HgMα), PbS (PbMα), and Bi (BiMα). EDX nonite PbCuSbS3 was deposited. The corrosive reaction detection limits were 2σ ~ 0.3 wt% (counting time 60 is characteristic for influence of sulfantimonide soluti- sec). General formulae were calculated according to ons along galena surfaces thus creating wool-like varie- ANTHONY et al. (1990). ty boulangerite Pb4Sb3S11 and/or Pb9Sb8S21 (RAMDOHR 1980; ANTHONY et al. 1990). Moreover, decrease of temperature and pressure led to decomposi- Occurrence and geological settings tion of high-temperature solid solutions when two or more stable sulfosalts phases were formed. This is parti- The Podrinje metallogenic district (PMD) belongs cularly visible in Pb-Ag-bearing sulfbismuthinide when to the Serbo-Macedonian Metallogenic Province complex exsolutions with lamellae structures were (SMMP) and includes several smaller orefields: Bora- deposited (i.e., phases along the lillianite-gustavite solid nja (Serbia), Cer (Serbia), and Srebrenica (Bosnia and solution Pb3Bi2S6-AgPbBi3S6) (COOK 1997). Herzegovina) (VANĐEL 1978; JANKOVIĆ 1990). The Bo- Although under exceptional circumstances some ranja orefield (BOF) covers an area of about 200 km2. sulfosalts may constitute Ag ores (i.e., , py- It is situated on the SE margin of the Oligocene grano- rargyrite, and stephanite), and other species have con- diorite pluton of Boranja (DELALOYE et al. 1989; stituted Ag ores (in minor amounts), Hg, Tl, As, and STEIGER et al. 1989), which belongs to the Dinaridic Sb (i.e., boulangerite, livingstonite, enargite, and ten- granitoid suite of the Late Paleogene – Early Neogene nantite- groups), their economic importan- age (CVETKOVIĆ et al. 2000), and is situated on a bor- ce is sometimes significant (Ag in the Pb-concentrate) der of three terranes – the Jadar block terrane (FILI- and sometimes trivial. Aside from mineralogical cu- POVIĆ 2005), the Vardar zone composite terrane and riosities, the sulfosalts are of interest because their the Drina–Ivanjica terrane (KARAMATA & KRSTIĆ electronic properties are related to those of semicon- 1996; KARAMATA et al. 1997). ductors (CHVILYOVA et al. 1988). It consists of Paleozoic, Mesozoic, and Tertiary for- The Boranja orefield (BOF) is well-known since mations (Fig. 1). Paleozoic is represented by Carbo- the Roman Empire and Medieval times and is still niferous sediments, mostly slates and sandstones of important factor of modern mining in this part of Ser- low-grade metamorphism, and limestones (“the Drina bia. Significant research began during the second half series”). Mesozoic complex consists of Triassic, Ju- of the 20th century. Comprehensive mineralogical, rassic and Cretaceous formations, mostly slates, lime- A review of Pb-Sb(As)-S, Cu(Ag)-Fe(Zn)-Sb(As)-S, Ag(Pb)-Bi(Sb)-S and Pb-Bi-S(Te) sulfosalt systems from the ... 3 stones, volcanic sediments, basic and ultrabasic rocks The outermost halo hosts several Sb deposits (Fig. (SIMIĆ 1957; ĐOKOVIĆ 1985; NEUBAUER 2002). 1). The most important are situated in the Brasi- Mineralization of the BOF is concentrically distrib- na–Zajača–Stolice–Dobri potok intrusive-volcanic uted around the Tertiary granodiorite of Boranja (Fig. zone with the following leading ore elements Sb, Pb, 1). Around the intrusion, in the skarn alteration halo, Zn, Fe, Ba, and F; in the Rujevac–Crvene stene–Vuja- several small Fe deposits occur (magnetite and pyr- noviča–Brezovica volcanogenic-sedimentary zone of rhotite), and less frequently Bi, W and Mo deposits Diabase-Chert Formation (DCF) with the following (, Vranovac). The Cu(Bi)-FeS Kram-Mla- metals: Sb, Pb, Zn, Fe, As, Ba, and Hg. The ore bod- kva ore zone belongs to small Cu polymetallic skarn ies occur as irregular pipes and lenses in silicified deposits (Fig. 1). Outwards the granodiorite, the Carboniferous limestones (BORODAEV 1978; JANKO- Pb(Ag)-Zn Veliki Majdan ore zone consists of ore VIĆ 1979; ĐURIČKOVIĆ 2005). bodies embedded in carbonates on the contact with Minerals of the BOF were deposited in several suc- quartz latite and Paleozoic slates (Fig. 1). The main cessive stages, which together correspond to a single mineral association includes pyrrhotite, , spha- regional-scale mineralization event that is related to lerite, galena, chalcopyrite, and Pb(Ag)-Sb sulfosalts the subvolcanic-plutonic intrusions of the Boranja in lesser amounts (ČIKIN et al. 1983). magmatic complex. This is well demonstrated by the

Fig. 1. Detailed geological and metallogenic map of the BOF (modified according to Basic Geological Map of Serbia, 1:100,000). Upper left corner shows exact location of BOF within Serbia (MONTHEL et al. 2002). 4 SLOBODAN A. RADOSAVLJEVIĆ et al. zonal arrangement of several metallic mineral associ- As deposit. In this deposit Pb was characteristically ations (Fe-Cu(Bi)→ Pb(Ag)-Zn→ Sb(As)-Pb-Zn→ deposited after Sb (BORODAEV 1978), which geneti- CaF2(Pb-Zn), with increasing distance from the cally deviates from other Sb deposits and occurrences Boranja granodiorite (RADOSAVLJEVIĆ et al. 2013A). within the SMMP. There are various of sulfosalts The Bobija polymetallic barite-sulfide deposit is belonging to the -Pb-Sb(As) sulfosalt-As situated in East slopes of Sokolske Mnt., which is mineral assemblage, which are very dominant. So far, some 15 km to the NE away from . The the following sulfosalts have been determined: zin- deposit itself consists of complex geological composi- kenite – Pb8.93(Sb18.94,As3.08)Σ22.02S42.02; fülöppite – tion mainly built of Paleozoic and Mesozoic sedi- Pb2.86(Sb7.01,As1.07)Σ8.08S15.06; plagionite – Pb4.97 ments (JANKOVIĆ 1990). The Bobija deposit is com- (Sb7.29, As0.76)Σ8.02S17.00; robinsonite (?); twinnite – posed of massive barite and sulfide FeS2-Pb-Zn-Cu Pb0.97(Sb1.42,As0.60)Σ2.02S4.00; and gratonite (determi- elongated lens-like ore bodies. Massive barite ore bo- ned only microscopically, RADOSAVLJEVIĆ 1988; 2012). dies are consisted of 50 to 90 wt% of BaSO4 (RADO- The most abundant sulfosalt of the sphalerite-Pb- SAVLJEVIĆ et al. 2013B). Sb(As) sulfosalt-As mineral assemblage is . It was first discovered by JANKOVIĆ et al. (1977) and MOËLO et al. (1983), and later supplemented by new Mineralogy of sulfosalts data by RADOSAVLJEVIĆ (1988), ZARIĆ et al. (1992), RADOSAVLJEVIĆ (2012), RADOSAVLJEVIĆ et al. (2012), The sulfosalts of the BOF can be divided in the four and RADOSAVLJEVIĆ et al. (2014a). It occurs in the fol- main groups: (i) Pb-Sb(As)-S system, with ±Fe and lowing mineral association: Pb-Sb(As) sulfosalts, ±Cu – zinkenite, fülöppite, plagionite, robinsonite, bou- sphalerite, , realgar, duranusite, native As, langerite, , , twinnite, geocronite stibarsen, dolomite, and quartz. It occurs as tabular, and gratonite; (ii) Cu(Ag)-Fe(Zn)-Sb(As)-S system – needle- and wool-like fibrous individuals (plumosite), tetrahedrite, , and Ag-bearing tetrahedrite; forming larger individual aggregates mostly in the (iii) Ag(Pb)-Bi(Sb)-S system – pyrargyrite, diaphori- interstices of the quartz matrix. Its central zones are te, , Sb-bearing schirmerite, Ag-bearing locally replaced by plagionite. Moreover, zinkenite nuffieldite, and fizélyite; (iv) Pb-Bi-S(Te) system – bur- intensively intersects, penetrates and overgrowths cat- saite, cannizzarite, cosalite, , ustarasite, and te- aclased sphalerite aggregates (Fig. 2f). It also contains tradymite. Spatially, these sulfosalts are widely inclusions of quartz and duranusite. When replacing spread, but they are most abundant in the following crystal aggregates of older stibnite, it is often penetrat- polymetallic deposits and ore zone: Cu(Bi)-FeS ed and overgrown along its edges by dolomite Kram–Mlakva, Pb(Ag)-Zn-FeS2 Veliki Majdan (Ko- metacrysts. Twinnite is characterized by polysynthet- larica–Centralni revir–Kojići), Sb-Zn-Pb-As Rujevac, ic twinning and commonly occurs as the youngest sul- and Pb-Zn-FeS2-BaSO4 Bobija (Fig. 1). Most of them fosalt along the edges of stibnite, lesser plagionite. are lead gray with a metallic luster, brittle and difficult Although it is mentioned in the literature (JANKOVIĆ et to distinguish without using XRD method and al. 1977), robinsonite was not confirmed in our study. Electron Microprobe analyses (EPMA). In addition, according to PRUSETH et al. (1997), robin- Their mutual structural and textural characteristics sonite is unstable at temperatures below 300 °C, con- are complex, and characterized by small grain size firming its absence in this deposit. (<5–100 µm), which beside intergrowths (effects of Besides major elements, EPMA of sulfosalts usual- reaction and/or corrosive processes, high-temperature ly show presence of As (up to 8.00 wt%), Ag (up to exsolution products, etc.) additionally makes it diffi- 0.04 wt%), Cu (up to 0.03 wt%) and Fe (up to 0.01 cult to single it out for crystallographic (XRD) and wt%). Hg, Zn, Cd, Bi and Tl were not detected chemical (spectrochemical and mass spectrometric) (RADOSAVLJEVIĆ 2012). investigations. Chemical composition of the minerals Pb-Sb(As) sulfosalts, associated to the Veliki Maj- was calculated according to ANTHONY et al. 1990. dan ore zone, include: jamesonite – Pb3.99(Fe1.00, Besides so far determined sulfosalts, new minerals Cu0.01)Σ1.01Sb6.00S14.00; boulangerite – Pb5.02Sb4.15 from the Pb-Ag-Bi-Sb-S system could be discovered S10.83; geocronite – Pb14.21(Sb3.05,As2.74)Σ5.79S23.00 (RADOSAVLJEVIĆ 1988). (Fig 2a); bournonite – Pb1.00Cu1.00(Sb0.94,As0.06)Σ1.00 S3.00; As-bournonite – Pb1.00(Cu0.97,Fe0.02)Σ0.99(Sb0.54, As0.48)Σ1.02S2.99; and accompanying the pyrite-galena- Sulfosalts of the Pb-Sb(As)-S system, sphalerite mineral assemblage (DIMITRIJEVIĆ & RAKIĆ with ±Fe and ±Cu 1978; RAKIĆ et al. 1984; RADOSAVLJEVIĆ et al. 1993; RADOSAVLJEVIĆ et al. 2013a). This sulfosalt group is most abundant occurring in The most abundant sulfosalt of the Veliki Majdan ore almost all deposits and mineralizations of the Boranja zone is jamesonite. It occurs as short-prismatic crystals, orefield. Sulfosalts of Pb-Sb(As) composition are the deposited in the interspaces of chalcopyrite and calcite most common in the Rujevac polymetallic Sb-Zn-Pb- aggregates. Bournonite most frequently occurs at the A review of Pb-Sb(As)-S, Cu(Ag)-Fe(Zn)-Sb(As)-S, Ag(Pb)-Bi(Sb)-S and Pb-Bi-S(Te) sulfosalt systems from the ... 5 grain boundaries between galena and chalcopyrite Sulfosalts of the Cu(Ag)-Fe(Zn)-Sb(As)-S replacing galena (Fig. 2b). It is Ag-free, and contains system As from 0.5 to 7.7 wt%. As-bearing bournonite also occurs in the epithermal Au-Te vein system of the Tetrahedrite is a Cu-Sb with fol- Sacarimb deposit in Romania (CIOBANU et al. 2005). lowing average crystallochemical formula: EPMA data yielded stoichiometric composition, with- (Cu,Ag)10(Fe,Zn)12Sb4S13. It is the Sb end-member of out presence of any other element except As. the continuous solid solution series with As-bearing Besides these Pb-Sb sulfosalts, new analyses con- tennantite. Other elements also substitute in the struc- firmed presence of a Sb-member with the highest Sb ture, most notably Fe and Zn, along with less common content (46.4–46.7 wt%) in the Centralni revir locali- Ag, Hg and Pb. Bismuth also substitutes Sb, and Bi- ty within the Veliki Majdan ore zone. EPMA yielded bearing tetrahedrite or annivite is a recognized variety. following average crystallochemical formula of fülöp- Tetrahedrite-group minerals occur in coarse crys- pite Pb3.02Sb7.97S15.01 (3 analyses). It is deposited in talline aggregates only within the Veliki Majdan ore interspaces between pyrite grains in short prismatic zone. These minerals are closely related to chalcopy- forms (Fig. 2c). Unlike fülöppite from the Rujevac rite and bournonite, forming part of the galena-spha- polymetallic deposit, this one is As-free. lerite mineral assemblage. Furthermore, they usually

Fig. 2. Reflected light and SEM (BSE) photomicrographs of different sulfosalts within the BOF: a. Galena overgrown by geo- cronite and needle-like boulangerite – Kolarica (SEM); b. Galena overgrown by bournonite and wooly boulangerite – Cen- tralni revir (SEM); c. Needle-like crystals of fülöppite embedded in dolomite matrix – Centralni revir (SEM); d. Intergrowth of tetrahedrite with galena which is almost completely replaced by bournonite in pyrite matrix – Kolarica (SEM); e. Col- loform formations of tennantite-tetrahedrite with zoned pyrite embedded in barite matrix – Bobija (SEM); f. Sphalerite over- grown by needle-like zinkenite – Rujevac (reflected light, air, II N); g. Ustarasite inclusions in galena embedded in pyrite matrix – Kolarica (SEM); h. Elongated and curved lamellae of Ag-bearing nuffieldite embedded in pyrite – Kolarica (SEM); i. Intergrowth of bursaite with cannizzarite with needle-like inclusions of tetradymite – Kram (reflected light, oil immersion, II N). Mineral abbreviations: Gn – Galena, Gc – geocronite, Bl – boulangerite, Br – bournonite, Fl – fülöppite, Dl – dolomite, Th – tetrahedrite, Py – pyrite, Tn-Th – tennantite-tetrahedrite, Bt – barite, Sl – sphalerite, Zk – zinkenite, Ut – ustarasite, Nf – nuffieldite, Bs – bursaite, Cn – cannizzarite, Td – tetradymite. 6 SLOBODAN A. RADOSAVLJEVIĆ et al.

cement older cataclastic pyrite aggregates. Tetrahedri- S13.02 (RADOSAVLJEVIĆ et al. 2013b). The Sb/(Sb+As) te-group minerals rim galena aggregates and are also atomic ratio ranges from 0.21 to 0.43 corresponding replaced by boulangerite. According to both, optical to a variety with an increased content of tennantite observations and measurements in polished sections component. These minerals show variable contents of (microhardness and reflectance spectra) and chemical Zn (4.3–6.0 wt%), and Fe (1.7-3.5 wt%). The analyses, two types of tetrahedrite-group minerals can Zn/(Fe+Zn+Mn+Hg) atomic ratio ranges between 0.5 be recognized (RADOSAVLJEVIĆ et al. 1986). and 0.7, which corresponds to a variety with an EPMA data showed that they belong to the Fe-bearing increased Zn content. tetrahedrite – (Cu9.17,Ag0.60)Σ9.77(Fe1.52,Zn0.60, Cd0.02)Σ2.14(Sb3.60,As0.27)Σ3.87S13.23 and Ag-bearing tetrahedrite – (Cu7.42,Ag2.16)Σ9.58(Zn1.13,Fe1.09, Sulfosalts of the Ag(Pb)-Bi(Sb)-S system Cd0.02)Σ2.24Sb4.16S13.02 solid solution series. Micro- hardness of tetrahedrite-group minerals increases with This group belongs to Ag-rich sulfosalts (pyrar- increasing content of Fe and decreasing content of Ag. gyrite family) and ternary sulfosalts (freieslebenite Tetrahedrite fills cracks and fissures within cataclastic family) (MOËLO et al. 2008). Within the Veliki Maj- pyrite. Tetrahedrites show variable contents of Zn and dan ore zone, pyrargyrite was determined only micro- Fe (2.2–4.2 and 3.4–5.4 wt%, respectively), whereas scopically, embedded in carbonate matrix accompa- some grains contain up to 13.1 wt% Ag. Ag-bearing nied with galena (RADOSAVLJEVIĆ 1988). tetrahedrite is characterized by a Ag/(Ag+Cu) atomic According to RADOSAVLJEVIĆ et al. (2013a), Ag con- ratio between 0.33 and 0.34. The tetrahedrite-group tent incorporated in the structure of galena amounts to minerals display Sb/(Sb+As) and Zn/(Zn+Fe) ratios approximately 15 wt%, while the rest is in a form of between 0.89 and 1.00 and between 0.27 and 0.31, micron (“visible”) and/or submicron (“invisible”) parti- respectively. cles of Ag minerals. The following Ag minerals Besides these tetrahedrite-group minerals, new diaphorite, fizélyite, freieslebenite, schirmerite, and analyses confirmed presence of a Sb-end-member Ag-bearing tetrahedrite were determined qualitatively with the lowest Ag content (0.8–1.1 wt%) in the into the insoluble residue using XRD method. Centralni revir locality (Veliki Majdan ore zone). Ore microscopic and EPMA investigations con- EPMA analyses yielded following average crystallo- firmed presence of schirmerite in the Veliki Majdan chemical formula: (Cu9.85,Ag0.16)Σ10.01(Zn1.46, ore zone (Kolarica locality). It is determined as Sb- Fe0.53)Σ1.99Sb4.01S13.00 (4 analyses). It usually crystal- bearing schirmerite with a following average crystal- lizes along galena grain boundaries in a form of elon- lochemical formula: (Ag1.96,Fe0.96)Σ2.91Pb6.11(Bi5.98, gated crystals, overgrown by bournonite (Fig. 2d). Sb0.84)Σ6.82S18.16 (5 analyses). Tetrahedrite shows uniform content of Zn and Fe Besides schirmerite, in the same locality a sulfosalt (5.1–6.0 and 1.5–2.2 wt%, respectively). Zn/(Fe+Zn) with a following chemical composition was deter- atomic ratio amounts between 0.73 and 0.76, which mined (in wt%): S (16.99–17.05), Fe (0.45–2.38), Ag corresponds to the variety with a higher Zn content. (5.52–6.27), Sb (2.83–6.80), Pb (33.42–36.84), Bi The mineralogical investigation confirmed that the (33.56–36.57). Cu, As and Te are below a detection Bobija deposit consists of a simple mineral associa- limit <0.3 wt%. It usually cements cracks and fissures tion composed of , sulfosalts (tetrahedrite-ten- of pyrite crystals and/or is deposited in them, mostly nantite group), native Ag, barite and gangue minerals. forming a very fine lamina or bent “comb-like” lamel- Tetrahedrites are significantly abundant in the ore. lae up to 100 µm in length (Fig. 2h). Luster is moder- According to the optical features they generally corre- ately high (~35–45 %), microhardness is higher than spond to tennantite, and partly to tetrahedrite. These galena with noticeable pale gray to gray-violet bire- minerals are often in association with pyrite, spha- flectance. According to optical and chemical character- lerite, and galena but in a lesser extent. Colloform istics this sulfosalt was defined as Ag-bearing nuffield- grains of tetrahedrite-tennantite composition are not ite with a following average crystallochemical formula: rare, and are separated from pyrite and sphalerite in Pb2(Ag0.72,Fe0.30)Σ1.02(Sb0.54,Pb0.24,Bi0.21)Σ1.00Bi2.00S6.98 the assemblage (Fig. 2e). Occurrence of disperse (4 analyses). According to these analyses Cu has been pyrite in tetrahedrite surfaces when it completely completely substituted by Ag and Fe (MOËLO et al. changes its optical features is not rare. Central parts of 1997; PRŠEK et al. 2006). these aggregates are sometimes seized by zoned pyrite. EPMA confirmed that tetrahedrite from Bobija is of Sulfosalts of the Pb-Bi-S(Te) system As-Sb composition with Ag, Hg, and Mn in small amounts (0.7–1.8 wt%, < 0.3–2.2 wt%, and < 0.3–0.5 This group belongs to lillianite homotypic series. wt%, respectively). The average EPMA yielded fol- The definition and crystal chemistry of this homolo- lowing crystallochemical formula: (Cu9.82,Ag0.16)Σ9.98 gous series were presented by MAKOVICKY (1977) and (Zn1.25,Fe0.64,Hg0.10, Mn0.02)Σ2.01(As2.60,Sb1.38)Σ3.98 MAKOVICKY & KARUP-MØLLER (1977a, 1977b). A review of Pb-Sb(As)-S, Cu(Ag)-Fe(Zn)-Sb(As)-S, Ag(Pb)-Bi(Sb)-S and Pb-Bi-S(Te) sulfosalt systems from the ... 7

Sulfosalts occurring in the Kram-Mlakva ore zone zarite. It occurs along sulfosalt aggregate rims as are related to the pyrite-chalcopyrite mineral assem- “jaggy” intergrowth forms. It is white, very similar to blage, and are represented by: bursaite - (Pb4.81,Fe0.03, galena with trace of cream. Reflection pleochroism is Cu0.08,Ag0.16)Σ5.08Bi3.87(S10.99,Te0.06)Σ11.05; canniz- weak and distinct only in oil, light gray to light green. zarite - (Pb3.05,Ag0.02)Σ3.07Bi4.00S8.93; cosalite - The anisotropy is noticeable, but very distinct in oil (Pb1.95,Cu0.08)Σ2.03(Bi1.92,Sb0.01)Σ1.93S5.05; aikinite - with strong illumination. Reflectance and hardness (Cu0.97,Fe0.02)Σ0.99(Pb0.98,Ag0.05)Σ1.03Bi0.95S3.03; are lower than in bursaite and cannizzarite (RADOSA- ustarasite (Pb1.16,Ag0.02)Σ1.20(Bi3.70,Sb2.18,Cu0.06, VLJEVIĆ 1988). Fe0.02)Σ5.96S9.84; and tetradymite (Bi1.83,Pb0.07, Aikinite is the least abundant. It occurs in a form of Cu0.01)Σ1.91Te1.99S1.10. These cannot be mutually ma- elongated crystals, in a contact with bursaite and chal- croscopically distinguished owing to their very small copyrite. Hardness is the highest of all sulfosalts of this grain-size. Aggregates were embedded in garnet-cal- group. It is white with a light tint of cream. Reflection cite matrix. Well-developed crystals have not been pleochroism is distinct in air, in oil very striking, light observed, only spherical and spindle-like forms up to yellow to gray. Anisotropy is also distinct in air, in oil 10 µm in length. In addition, fewer occurrences of rather high. It is determined on a basis of optical and these sulfosalts were also determined in the Kolarica chemical measurements (RADOSAVLJEVIĆ 1988). locality (Veliki Majdan ore zone), associated with Ustarasite occurs only in the Kolarica locality (Ve- pyrrhotite-sphalerite-galena mineral assemblage (RA- liki Majdan ore zone) mostly as mutually parallel thin DOSAVLJEVIĆ-MIHAJLOVIĆ et al. 1998, 2007; RADOSA- needle-like crystals (up to 100 µm in length), and ra- VLJEVIĆ et al. 2013a). rely as rhombohedral crystals embedded in older gale- Bursaite is characterized by complex intergrowths na and carbonate matrix (Fig. 2g). It is an exsolution that appear along cracks and fissures of chalcopyrite product of galena and Bi-Sb-Ag complex compounds. and silicates in a form of lath-like grains (Fig. 2i). In Bireflectance is noticeable, //N strong luster like gale- comparison to the other accompanying Pb-Bi sulfos- na, ⊥ N darker with gray tint (quite to that of falkman- alts, it is harder. It often contains inclusions of native ite), microhardness similar to cosalite, and anisotropy Bi as exsolution products. According to MOELO et al. is strong without internal reflections (RADOSAVLJEVIĆ (2008), bursaite has been discredited as a mineral et al. 2013a). species. From the Sn-W deposit (Shumilovskoe local- Tetradymite also occurs in sulfosalt aggregates in ity) MOZGOVA et al. (1988) described an almost iden- form of fine needles. It is white, with faint yellowish tical mineral to the one from the Kram-Mlakva ore tinge (Fig. 2i). Bireflection is weak, hardly visible at zone. In their detailed mineralogical work on bursaite grain boundaries, light yellow to creamy. The aniso- and cannizzarite the authors proposed that bursaite tropy is distinct, and reflectance is high (R ~ 60 %). It should be retained as an intergrowth of two lillianite- is determined on a basis of optical and chemical meas- related phases, each with distinct unit-cell parameters. urements (RADOSAVLJEVIĆ-MIHAJLOVIĆ et al. 2007). The EPMA composition, which represents a compos- ite of two phases, indicates a Pb deficiency (n ≈ 3.83). Minerals of bursaite composition from four known General genetic and localities (Uludag-Turkey, Shumilovskoe-Russia, paragenetic characteristics Cofer-Virginia, and Kram-Mlakva-Serbia) still have a problem of unsolved . However, our Temperature of deposition of Pb-Zn mineral associ- new evidences, led to confirm that bursaite is un- ations in the BOF range from 480–160 ºC (RADOSA- doubtfully a distinct mineral. Unfortunately, numer- VLJEVIĆ et al. 2012). Galena and sphalerite of this ore- ous attempts to determine the crystal structure using field were formed in high-, middle- and low-tempera- XRD on both single-crystal and powdered samples ture hydrothermal stage, while Pb-Zn mineral associa- from the Kram–Mlakva ore zone were not successful, tions of the Pb(Au)-Zn-FeS2 Veliki Cip and CaF2-Pb- due to a very low crystallinity degree (RADOSAVLJE- Zn deposits unquestionably correspond to the VIĆ-MIHAJLOVIĆet al. 2007). high- (480 ºC) and low-temperature hydrothermal stage Cannizzarite reflectance is moderately high, but (230 ºC), respectively. In addition, the Pb(Ag)-Zn-FeS2 lower than bursaite (Fig. 2i). Reflection pleochroism Veliki Majdan ore zone corresponds to the temperature is distinct, light gray to creamy. The anisotropy is range from 450 to 370 ºC that is between high- and strong, similar to bursaite, and hardness is consider- medium-temperature hydrothermal stages. Temperatu- ably lowered (similar to galena). According to optical re decreases moving further from the Tertiary granodi- (reflectance, bireflectance, anisotropy) and physical orite of Boranja according to the following sequence: (hardness) characteristics the investigated sulfosalt Kolarica–Centralni revir–Kojići. Moreover, in the Ra- corresponds to cannizzarite. It is determined on a vnaja deposit, NIKOLIĆ & GATTER (1986) determined basis of optical, crystallographic and chemical meas- two temperature intervals of formation of fluorite urements (RADOSAVLJEVIĆ-MIHAJLOVIĆ et al. 2007). (275–245 ºC and 205–160 ºC), and density of fluids Cosalite is less abundant than bursaite and canniz- (0.98–0.80 g/cm3). In addition, temperature range of 8 SLOBODAN A. RADOSAVLJEVIĆ et al. deposition from 280 to 160 ºC was obtained on quartz the three major geotectonic units: the Vardar ophiolite and sphalerite from the Sb-Pb-Zn-As Rujevac deposit zone, the Serbo-Macedonian massif, and the inner using cryometric method (MUDRINIĆ 1984). Dinarides. It covers a small part of eastern Bosnia and Judging by the look of the exsolution structures of Herzegovina (B&H), larger parts of Serbia and the various compositions established in all levels of ore Former Yugoslav Republic of Macedonia (FYRM), deposits, the temperature of crystallization of all skarn, and also extends towards Bulgaria and Greece. The high-, and middle-temperature hydrothermal associa- SMMP contains numerous volcanic-intrusive com- tions was identical to formation of isometric coarse- plexes of calcalkaline and shoshonitic affinity. These crystalline grain-like structures. However, low-temper- igneous complexes are directly associated with the ature hydrothermal associations characterize fine- development of numerous deposits and metal occur- grained colloform and gel-like textures with regular rences; primarily as Pb, Zn, Sb, then Cu and Mn, and appearance of recrystallization (RADOSAVLJEVIĆ 1988). to a lesser extent Fe, Bi, Ag, Hg, U, Sn, and W. Based on paragenetic relations into the polymetal- Polymetallic deposits of the BOF are genetically lic deposits of the BOF, the beginning of crystalliza- connected to the Tertiary granodiorite complex. It tion is connected to the low partial pressure fS2, and consists of a large number of Pb-Zn and Sb sulfide deposition of low sulfidization minerals (pyrrhotite, deposits, and in a lesser extent Cu, As, Bi and Ag. Fe-rich sphalerite, tetrahedrite group of minerals, Pb- Magnetite deposits of lesser importance, connected to Sb and Pb-Bi sulfosalts, etc.). Minerals of high sul- Ca-skarn stage, were formed along the contact of fidization (transformation of pyrrhotite into pyrite, Triassic limestones and quartz diorite. Minerals of the pyrite, Fe-poor sphalerite, antimonite, realgar, etc.) BOF are characterized by very diverse types and are began to crystalize with temperature decrease, partial consisted of sulfides, sulfosalts, native metals, wolfra- pressure fS2 increase, and spatial distancing from the mates, molybdates, oxides, silicates and hydroxides. Tertiary granodiorite of Boranja. Deposition areas The sulfosalts of the BOF can be divided in four were carbonates (mostly Triassic limestones) and sili- main groups: (i) Pb-Sb(As)-S system, with ±Fe and cates (dacite, andesite, slates), but in a lesser extent ±Cu; (ii) Cu(Ag)-Fe(Zn)-Sb(As)-S system; (iii) (RADOSAVLJEVIĆ et al. 2013a). Ag(Pb)-Bi(Sb)-S system; (iv) Pb-Bi-S(Te) system. is important and genetically significant metal These are most abundant in following polymetallic which content varies from 10 to 820 g/t in the BOF. Its deposits and ore zones: Cu(Bi)-FeS Kram–Mlakva, transport was achieved by polysulfide solutions Pb(Ag)-Zn-FeS2 Veliki Majdan (Kolarica–Centralni enriched with Pb, Bi, Sb, and As. However, a possibil- revir–Kojići), Sb-Zn-Pb-As Rujevac, and Pb-Zn-FeS2- ity of carbonate-bicarbonate and halogen complex BaSO4 Bobija. Among over a hundred ore and rock- solutions should not be excluded. The best correlation forming minerals from this area a considerable number is between Ag and Pb (r=0.828 significant at the 95 % of new minerals from the aspects of supplementing sys- confidence level), while among other elements it does tematics of mineralogy of Serbia have been discovered. not exist. This is expected since galena is the main Pb-Sb sulfosalt mineral assemblages are wide- Ag-bearing mineral, while occurrence of Ag minerals spread throughout SMMP, where following orefields (Ag-tetrahedrite, pyrargyrite, electrum, and native and ore zones are distinguished by its diversity: Ag) is limited (RADOSAVLJEVIĆ 1988). Besides Ag, Kopaonik (Rajićeva Gora, Belo Brdo, Rogozna, etc.), typomorphic elements as Bi and Sb are significantly Kratovo–Zletovo, Toranica, Sasa, Bučim, Alšar, etc. abundant in galena. Complex investigations of galena (e.g. JANKOVIĆ & ZARIĆ 1980; JANKOVIĆ 1993; SER- from various deposits yielded that it frequently occurs AFIMOVSKI & ALEKSANDROV 1995; ALEKSANDROV et in a form of isostructural solid solutions with diapho- al. 1990A; ALEKSANDROV et al. 1990B; SERAFIMOVSKI rite, fizélyite, freieslebenite, and schirmerite (e.g. et al. 1990; SERAFIMOVSKI et al. 2006; SERAFIMOVSKI WERNICK 1960; ONTOYEV & KORSAKOVA 1967; HODA et al. 2013; SERAFIMOVSKI et al. 2015; RADOSAVLJEVIĆ & CHANG 1975; WANG 1999; CHUTAS et al. 2008). & DIMITRIJEVIĆ 2001; VOUDOURIS et al. 2008; RADO- Crystallization of minerals in the BOF occurred in SAVLJEVIĆ & STOJANOVIĆ 2013; RADOSAVLJEVIĆ et al. several successive stages, which together correspond 2014B). Besides the BOF, similar Pb-Bi(Sb) sulfosalt to the unique mineralization cycle. According to the mineral assemblages have been determined in the deposited minerals it can be concluded that hydrother- , the Šumadija Metallogenic District, mal solutions descend from common magmatic cham- Rudnik orefield (STOJANOVIĆ et al. 2006) and Golija ber connected to the Tertiary granodiorite of Boranja orefield (STAJEVIĆ & ZARIĆ 1984). According to the (RADOSAVLJEVIĆ et al. 2013a). mineral compositions, they are close to the Uludag orefield, Bursa Province, Turkey (VAN DER KAADEN 1958; MAKOVICKY & KARUP-MØLLER 1977), the Conclusions Stanos shear-zone related deposit, Chalkidiki, North- ern Greece (VOUDOURIS et al. 2013), and in the Trepča The areal extent of the SMMP covers around deposit, Stari Trg, Kosovo, Serbia (KOŁODZIEJCZYK et 30,000 km2 in the territory of Serbia and extends over al. 2015), belonging to the Alpine metallogenic belt. A review of Pb-Sb(As)-S, Cu(Ag)-Fe(Zn)-Sb(As)-S, Ag(Pb)-Bi(Sb)-S and Pb-Bi-S(Te) sulfosalt systems from the ... 9

Also, these mineral assemblages are very similar to Maramureþ, Romania. Mineralogical Magazine, 61: the Larga hydrothermal systems in Romania (Carpa- 387–409. thian-Balkan metallogenic province - COOK & CIOBA- COOK, N.J. & CIOBANU, C.L. 2004. Bismuth tellurides and NU 2004). Moreover, in comparison to the other met- sulphosalts from the Larga hydrothermal system. allogenic district within the SMMP, the mineral asso- Metaliferi Mts., Romania: Paragenesis and genetic sig- ciations of the BOF are distinguished by a variety of nificance. Mineralogical Magazine, 68: 301–321. Ag(Pb)-Bi(Sb) sulfosalts. CVETKOVIĆ, V. KNEŽEVIĆ, V. & PÉCSKAY, Z. 2000. Tertiary igneous formations of the Dinarides, Vardar zone and adjacent regions: from recognition to petrogenetic impli- Acknowledgments cations. In: KARAMATA, S. & JANKOVIĆ, S. (eds), Geo- logy and Metallogeny of the Dinarides and the Vardar This paper is a result of the study of the OI-176016 Zone, 245–253, Banja Luka–Sarajevo. Project (Magmatism and geodynamics of the Balkan Pe- ČIKIN, M. GUTOVIĆ, M. NOVAKOVIĆ, R. STARČEVIĆ, Z. & ninsula from Mesozoic to present day: significance for the ŽIVKOVIĆ, S. 1983. Some characteristics of Pb-Zn ore in formation of metallic and non-metallic mineral deposits), Kolarica ore bearing structure of in Veliki Majdan de- by the Ministry of Education, Science and Technological posits. Proceedings of 3rd Conference on the Pb-Zn de- Development of the Republic of Serbia, which financially posits of Yugoslavia, Srebrenica, 1–13 (in Serbian). supported it. The authors would like to express their deep- DELALOYE, M. LOVRIĆ, A. KARAMATA, S. 1989. Age of Terti- est gratitude to the Editor-in-chief Professor NEVENKA ary granitic rocks of Dinarides and Vardar zone. In: Exten- ĐERIĆ for her editorial support, Professor TODOR SERAFI- ded Abstracts, XIV Congress CBGA, Sofia, 1186–1189. MOVSKI (University Goce Delčev, Štip, Macedonia) and DIMITRIJEVIĆ, R. & RAKIĆ, S. 1978. Jamesonite from Veliki anonymous reviewer for their valuable comments and sug- Majdan mine. Comptes Rendus, des séances de la So- gestions. The development of this paper benefited substan- ciété Serbie de géologie pour l’année 1977, Belgrade, tially from their comments 41–45 (in Serbian). ĐOKOVIĆ, I. 1985. Application of structural analysis to sol- References ve material-Paleozoic formations in Drina-Ivanjica area. Geološki anali Balkanskoga poluostrva, 49: 11–160 (in ALEKSANDROV, M. MANKOV, S. SERAFIMOVSKI, T. 1990a. Serbian, English abstract). Ag-bearing minerals from the Pb-Zn deposit Sasa – ĐURIČKOVIĆ, A. 2005. Formation of minerals in Eastern Macedonia. XII Kongres na geolozite na Jugo- the Podrinje metallogenetic province. Vesnik (Bulletin), slavija, Ohrid, 86–102 (in Macedonian). Geologie, Hydrogeologie et Geologie D’Ingenier, 55: ALEKSANDROV, M. MANKOV, S. & SERAFIMOVSKI, T. 1990b. 221–-248 (in Serbian, English summary). The new type of Bi-mineralization from the Sasa deposit FILIPOVIĆ, I. 2005. Spatial distribution of geological reso- – Eastern Macedonia. XII Kongres na geolozite na Jugo- urces in northwestern Serbia (Jadar block terrane) and its slavija, Ohrid, 103–115 (in Macedonian). relation to tectonic structures. Geološki anali Balkansko- ANTHONY, J.W. BIDEAUX, R.A. BLADH, K.W. & NICHOLS, ga poluostrva, 66: 17–20. M.C. 1990. Handbook of Mineralogy. Vol. I. Elements. HODA, S.N. & CHANG, L.L.Y. 1975. Phase Relations in the Sulfides. Sulfosalts. 588 pp. Mineral Data Publishing, systems PbS-Ag2S-Sb2S3 and PbS-Ag2S-Bi2S3. Ameri- Tucson, AZ. can Mineralogist, 60: 621–633. BORODAEV, Y.S. 1978. Mineral associations in the system JANKOVIĆ, S. MOZGOVA, N.N. & BORODAEV, Y.S. 1977. The Pb-Sb-S on deposits of various types. Geol Ore Deposit, complex antimony lead- deposit at Rujevac/Yugo- 20 (1): 52–63 (in Russian). slavia; its specific geochemical and mineralogical fea- CHUTAS, I.N. KRESS, C.V. GHIORSO, S.M. & SACK, O.R. 2008. tures. Mineralium Deposita, 12 (3): 381–392. A solution model for high-temperature PbS-AgSbS2- JANKOVIĆ, S. 1979. Antimony deposits in southeastern Eu- AgBiS2 in galena. American Mineralogist, 93: 1630-1640. rope. Vesnik (Bulletin), Géologie, Hydogéologie et Géo- CHVILYOVA, T.N. BEZSMERTNAYA, M.S. SPIRIDONOV, E.M. logie D’Ingénier, Belgrade, Series A, 37: 25–48. AGROSKIN, A.S. PAPAYAN, G.V. VINOGRADOVA, R.A. LE- JANKOVIĆ, S. & ZARIĆ, P. 1980. Metallogenetic features of BEDEVA, S.I. ZAV’YALOV, E.N. FILIMONOVA, A.A. PETROV, the antimony mineralization in the SE Kopaonik-Yugo- V.K. RAUTIAN, L.P. & VESHNIKOVA, O.L. 1988. Hand- slavia (Rajićeva Gora ore field). Trans. Fac. Min. Geol. book of determination the ore minerals in reflected light. 22: 43–56, (in Serbian, English summary). 588 pp. Nedra, Moscow (in Russian). JANKOVIĆ, S. 1990. The ore deposits of Serbia: Regional CIOBANU, C.L. COOK, N.J. CAPRARU, N. DAMIAN, G. & CRI- metallogenic settings, environments of deposition, and STEA, P. 2005. Mineral assemblages from the vein sal- types. 760 pp. Faculty of Mining and Geology, Belgrade band at Sacarimb, Golden Quadrilateral, Romania: I. (in Serbian, English summary). Sulphides and sulphosalts. Geochemistry, Mineralogy JANKOVIĆ, S. 1993. Metallogenetic features of the Alšar and Petrology, 43: 47–55. epithermal Sb-As-Tl-Au deposit (The Serbo-Macedo- COOK, N.J. 1997. Bismuth and bismuth-antimony sulphos- nian metallogenic province). Neues Jahrbuch für Mine- alts from Neogene vein mineralisation, Baia Borþa area, ralogie Abhandlungen, 166: 25–41. 10 SLOBODAN A. RADOSAVLJEVIĆ et al.

KARAMATA, S. 1955. Petrological study of magmatic and NIKOLIĆ, D. & GATTER, I. 1986. Genetic interpretation of contact-metamorphic rocks of Boranja. Gl. Prir. Muz. the results of microthermometric studies on the li- Srp. Zemlje, Belgrade, Series A, 6: 1–130 (in Serbian). quid/gas inclusion of flourites from Ravnaja (Yugosla- KARAMATA, S. STEIGER, R. DJORDJEVIĆ, P. & KNEŽEVIĆ, V. via). Unv. Scient., Budapest, T. XXVI: 3–12. 1990. New data on the origin of granitic rocks from NEUBAUER, F. 2002. Contrasting Late Cretaceous with Neo- western Serbia. Bulletin, Académie Serbe des Sciences et gene ore provinces in the Alpine–Balkan–Carpathi- des Arts. Classe des Sciences Mathématiques et Natu- an–Dinaride collision belt. In: BLUNDELL, D.J. NEUBAUER, relles. Sciences Naturelles, 32: 1–9. F. & QUADT, A. (eds.), The Timing and Location of Major KARAMATA, S. & KRSTIĆ, B. 1996. Terranes of Serbia and Ore Deposits in an Evolving Orogen, Geological Society, neighboring areas. In: KNEŽEVIĆ-ÐORĐEVIĆ, V. & KR- London, Special Publications, 204: 81–102. STIĆ, B. (eds), Terranes of Serbia. Faculty of Mining and ONTOYEV, D.O. & KORSAKOVA, N. 1967. Bi- and Ag-bear- Geology, University of Belgrade, 25–40. ing galena from the Dshchidsko ore filed (Western KOŁODZIEJCZYK, J. PRŠEK, J. MELFOS, V. VOUDOURIS, CH.P. Zabaikalye). Dok. AN SSSR, 174 (1): 201–204 (in MALIQI, F. & KOZUB-BUDZYŃ, G. 2015. Bismuth minerals Russian). from the Stari Trg deposit (Trepča, Kosovo). Neues Jahr- PICOT, P. JOHAN Z. 1982. Atlas of Ore Minerals. Elsevier, buch für Mineralogie Abhandlungen, 192 (3): 317–333. Amsterdam. MAKOVICKY, E.G. & KARUP-MØLLER, S. 1977A. Chemistry PRELEVIĆ, D. FOLEY, S.F. CVETKOVIĆ, V. & ROMER, R. L. and crystallography of the lillianite homologous series, 2004. Origin of Minette by Mixing of Lamproite and I. General properties and definitions. Neues Jahrbuch Dacite Magmas in Veliki Majdan. Serbia. Journal of für Mineralogie Abhandlungen, 130: 264–287. Petrology, 45 (4): 759–792. MAKOVICKY, E.G. & KARUP-MØLLER, S. 1977B. Chemistry PRŠEK, J. MAKOVICKY, E. CHOVAN, M. & SMIRNOV, A. 2006. and crystallography of the lillianite homologous series. A note on the chemical composition of nuffieldite solid- II. Definition of new minerals: eskimoite, vikingite, solution from sulphide mineralizations in the western Car- ourayite and treasurite. Redefinition of schirmerite and pathians, Slovakia. Mineralogia Polonica, 37 (1): 51–60. new data on the lillianite–gustavite solid-solution series. PRUSETH, K.L. MISHRA, B. & BERNHARDT, H.J. 1997. Phase Neues Jahrbuch für Mineralogie Abhandlungen, 131: relations in the Cu2S-PbS-Sb2S3 system; an experimen- 56–82. tal appraisal and application to natural polymetallic sul- MAKOVICKY, E. 1977. Chemistry and crystallography of the fide ores. Economoc Geology, 92: 720–732. lillianite homologous series. III. Crystal chemistry of lil- RADUKIĆ, M. 1960. Mineral parageneses in the Lipnička lianite homologues. Related phases. Neues Jahrbuch für Glava skarn on the southern slopes of Boranja (western Mineralogie Abhandlungen, 131: 187–207. Serbia). Geološki anali Balkanskoga poluostrva, 27: MOËLO, Y. BORODAEV, Y.S. & MOZGOVA, N.N. 1983. The 417–427, (in Serbian, English abstract). twinnite- zinkenite-plagionite association from the Sb- RADOSAVLJEVIĆ-MIHAJLOVIĆ, A. RADOSAVLJEVIĆ, S. NIKO- Pb-Zn deposit, Rujevac, Yugoslavia. Bulletin de Minéra- LIĆ, M. & ZARIĆ, P. 1998. Lead-bismuth mineralization logie, 106 (5): 505–510, (in France, English summary). in the Boranja orefield, western Serbia. Proceedings of MOËLO, Y. MEERSCHAUT, A. & MAKOVICKY, E. 1997. the XIII Congress of Geologists of Yugoslavia, Herceg Refinement of the crystal structure of nuffieldite, Novi, Montenegro, book 4: 695–699, (in Serbian, En- Pb2Cu1.4(Pb0.4Sb0.2)Bi2S7: structural relationships and glish abstract). genesis of complex lead sulfosalt structures. Canada RADOSAVLJEVIĆ-MIHAJLOVIĆ, S.A. STOJANOVIĆ, N.J. DIMI- Mineralogy, 35: 1497–1508. TRIJEVIĆ, Ž.R. & RADOSAVLJEVIĆ, A.S. 2007. Rare Pb-Bi MOËLO, Y. MAKOVICKY, E.G. MOZGOVA, N.N. JAMBOR, L.J. sulfosalt mineralization from the Boranja orefield (Po- COOK, N. PRING, A. PAAR, W. NICKEL, H.E. GRAESER, S. drinje district, Serbia). Neues Jahrbuch für Mineralogie KARUP-MØLLER, S. BALIĆ-ŽUNIĆ, T. MUMME, G.W. FI- Abhandlungen, 184 (2): 217–224. LIPPO, V.F. TOPA, D. BINDI, L. BENTE, K. & SHIMIZU, M. RADOSAVLJEVIĆ, S. ŽIVKOVIĆ, S. & ŠEŠIĆ, M. 1982. The dis- 2008. Sulfosalt systematics: a review Report of the sul- tribution of silver in the ore of lead and zinc in Veliki fosalt sub-committee of the IMA/COM. European Jour- Majdan mine. Proceedings of the X Anniversary of the nal of Mineralogy, 20: 7–46. Congress of Geologists of Yugoslavia, Budva, Monte- MONTHEL, J. VADALA, P. TOŠOVIĆ, R. et al. 2002. Mineral negro, book 2: 299-303 (in Serbian, English abstract). deposits and mining districts of Serbia: compilation map RADOSAVLJEVIĆ, S. RAKIĆ, S. ŠTRUMBERGER, V. DIMITRIJEVIĆ, and GIS databases. 1–67 pp. BRGM/RC-51448-FR. R. & CVETKOVIĆ, LJ. 1986. Minerals of silver in the Pb- MOZGOVA, N. ORGANOVA, N. BORODAEV, Y. RYABEVA, G. Zn deposits of the Podrinje-Kolubara region. Proceeding SIVTSOV, V. GETMANSKAYA, I. & KUZMINA, V. 1988. New of the XI Congress of Geologists of Yugoslavia, Tara, data on cannizzarite and bursaite. Neues Jahrbuch für Serbia, Book 4: 77–88 (in Serbian, English abstract). Mineralogie Abhandlungen, 158: 293–309. RADOSAVLJEVIĆ, A.S. 1988. Nature of silver in Pb-Zn depo- MUDRINIĆ, Č. 1984. The origin of the ore components and sits on the Podrinje metallogenic district, Serbia: Mine- the geochemical characteristics of the antimony deposits ralogy and genetic features. 256 pp. PhD Thesis, Faculty of Serbia and Macedonia (Yugoslavia). Proc. of the Sixth of Mining and Geology University of Belgrade, Serbia, Quadrennial IAGOD Symposium, Stuttgart, 161–167. (in Serbian, English abstract). A review of Pb-Sb(As)-S, Cu(Ag)-Fe(Zn)-Sb(As)-S, Ag(Pb)-Bi(Sb)-S and Pb-Bi-S(Te) sulfosalt systems from the ... 11

RADOSAVLJEVIĆ, S. DIMITRIJEVIĆ, R. CVETKOVIĆ, LJ. & SERAFIMOVSKI, T. MANKOV, S. & CIFLIGANEC, V. 1990. Bi- ŠTRUMBERGER, V. 1993. Mineralogical and crystallo- Se mineralization from the Cu deposit Bučim-Radoviš. graphic characteristics of bournonite from Veliki Majdan XII Kongres na geolozite na Jugoslavija, Ohrid, 73–85 Pb-Zn mine. Proceedings of the II Conference of Serbian (in Macedonian). Crystallographic Society, Belgrade, 54–55 (in Serbian, SERAFIMOVSKI, T. & ALEKSANDROV, M. 1995. Lead-zinc English abstract). deposits and occurrences in the Republic of Macedonia. RADOSAVLJEVIĆ, S. & DIMITRIJEVIĆ, R. 2001. Mineralogical Special Issue 4: 387 pp. Faculty of Mining and Geology, data and paragenetic association for semseyite from Štip (in Macedonian). Srebrenica ore field, Bosnia and Herzegovina. Neues Jb. SERAFIMOVSKI, T. TASEV, G. & LAZAROV, P. 2006. Au-Ag- Mineral. Monat., 146–156. Te-Bi-Se minerals associated with porphyry min- RADOSAVLJEVIĆ, S. STOJANOVIĆ, J. RADOSAVLJEVIĆ-MIHAJ- eralization in the Buchim copper mine, Republic of LOVIĆ, A. & KAŠIĆ, V. 2008. Lead Sulfbismuthide Mine- Macedonia. Au-Ag-Te-Se deposits IGCP Project 486, ralization at Boranja Orefield. West Serbia. Proceedings Field Workshop, Izmir, Turkey, 154–158. of 40th International October Conference on Mining and SERAFIMOVSKI, T. TASEV, G. & STEFANOVA, V. 2013. Rare Metallurgy, Sokobanja, Serbia, 86–90. mineral phases related with major sulphide minerals in RADOSAVLJEVIĆ, A.S. STOJANOVIĆ, N.J. & PAČEVSKI, M.A. the Bučim porphyry copper deposit, R. Macedonia. Geo- 2012. Hg-bearing sphalerite from the Rujevac polyme- logica Macedonica, 27 (1): 43–54. tallic ore deposit, Podrinje Metallogenic District, Serbia: SERAFIMOVSKI, T. TASEV, G. & STEFANOVA, V. 2015. Mineral Compositional variations and zoning. Chemie der Erde- assemblages group of major and associated mineral Geochemistry, 72: 237–244. phases in the Kadiica porphyry copper deposit, Eastern RADOSAVLJEVIĆ, S. 2012. The polymetallic Pb-Sb-Zn-As Macedonia. Geologica Macedonica, 29 (2): 183–196. Rujevac deposit, orefield Boranja, western Serbia: Mi- SIMIĆ, V. 1957. Contribution to the knowledge of the lower neral paragenesis and association. 63 pp. Study - Pro- Podrinje. Vesnik zavoda za geološka i geofizička istra- ject OI-176016, Technical documentation of Institute for živanja, vol. XIII, Belgrade (in Serbian). Technology Nuclear and other row Materials (ITNMS), STAJEVIĆ, B. & ZARIĆ, P. 1984. General characteristics of Belgrade (in Serbian). the ore paragenetic associations at Golija. Proceeding of RADOSAVLJEVIĆ, A.S. STOJANOVIĆ, N.J. RADOSAVLJEVIĆ-MI- the II Symposium of the Yugoslav Association of Mine- HAJLOVIĆ, S.A. & KAŠIĆ, V. 2013a. Polymetallic Minera- ralogy, Kopaonik, 251–260 (in Serbian). lization of the Boranja Orefield, Podrinje Metallogenic STEIGER, R.H. KNEŽEVIĆ, V. & KARAMATA, S. 1989. Origin District, Serbia: Zonality, Mineral Associations and Gene- of some granitic rocks from the Southern Margin of the tic Features. Periodico di Mineralogia, 82 (1): 61–87. Pannonian basin in Western Serbia, Yugoslavia. Terra RADOSAVLJEVIĆ, S. VUKOVIĆ, N. STOJANOVIĆ, J. PAČEVSKI, Abstracts, EUG 5, 1: 52–53. A. RADOSAVLJEVIĆ-MIHAJLOVIĆ, A. & KAŠIĆ, V. 2013b. STOJANOVIĆ, J. RADOSAVLJEVIĆ, S. KARANOVIĆ, LJ. & Polymetallic barite-sulfide deposit Bobija, Triassic vol- CVETKOVIĆ, LJ. 2006. Mineralogy of W-Pb-Bi ores from canogenic-sedimentary zone of Podrinje, western Ser- Rudnik Mt., Serbia. Neues Jahrbuch für Mineralogie bia: Mineralogy and chemism of sulfides. Proceedings Abhandlungen, 182 (3): 299–306. of 45th International October Conference on Mining and TOMIĆ, R. 1962. The contact-metasomatic deposits in the Metallurgy, Bor, Serbia, 531–534. area granodiorite massif of Boranja. Referati V saveto- RADOSAVLJEVIĆ, S. & STOJANOVIĆ, J. 2013. Sulfosalt miner- vanja, Belgrade, book II: 167–165 (in Serbian). als from the Srebrenica Orefield, Podrinje Metallogenic VAN DER KAADEN, J. 1958. On the genesis and mineraliza- District, East Bosnia. Tehnika RGM, Beogrd, 64 (1), tion of the tungsten deposit Uludag, Province of Bursa - 51–56 (in Serbian, English abstract). Turkey. Bulletin of the Mineral Research and Explo- RADOSAVLJEVIĆ, A.S. STOJANOVIĆ, N.J. RADOSAVLJEVIĆ- ration Institute of Turkey Foreign Edition, 50: 33–42. MIHAJLOVIĆ, S.A. & VUKOVIĆ, N. 2014a. Rujevac Sb- VANĐEL, V. 1978. Serbian-Macedonian metallogenic zones Pb-Zn-As polymetallic deposit, Boranja orefield, west- most important lead-zinc area Yugoslavia. Authorised ern Serbia: native and arsenic mineralization. manuscript – II Counselling of the Pb-Zn deposits of Mineralogy and Petrology, 108: 111–122. Yugoslavia, Štip, Macedonia, 1–7 (in Serbian). RADOSAVLJEVIĆ, S. STOJANOVIĆ, J. VUKOVIĆ, N. RADOSA- VOUDOURIS, P. MELFOS, V. SPRY, P.G. BONSALL, T. TARKIAN, VLJEVIĆ-MIHAJLOVIĆ, A. & KAŠIĆ, V. 2014b. Pb(Ag)-Zn M. SOLOMOS, C. 2008. Carbonatereplacement Pb-Zn- deposits within the Rogozna orefield, Serbia: Ore miner- Ag±Au mineralization in the Kamariza area, Greece: alogy and paragenetic settings. Proceedings. of IOC 46, mineralogy and thermochemical conditions of forma- Bor Lake, Serbia, 453–456. tion. Mineralogy and Petrology, 94: 85–106. RAKIĆ, S. RADOSAVLJEVIĆ, S. & DIMITRIJEVIĆ, R. 1984. VOUDOURIS, P. SPRY, P.G. MAVROGONATOS, C. SAKELLARIS, Boulangerite and lead-bismuth sulfosalt of Veliki Maj- G.A. BRISTOL, S.K. MELFOS, V. & FORNADEL, A. 2013. dan Pb-Zn deposit. Annual reports of works JAM, Bismuthinite derivatives, lillianite homologues, and bis- Belgrade, 45–51 (in Serbian, English abstract). muth sulfotellurides as indicators of gold mineralization RAMDOHR, P. 1980. The Ore Minerals and their Inter- at the Stanos shear-zone related deposit, Chalkidiki, growths. 1205 pp. Pergamon Press, in two volumes. northern Greece. Canadian Mineralogist 51: 119–142. 12 SLOBODAN A. RADOSAVLJEVIĆ et al.

WANG, N. 1999. An experimental study of some solid solu- сада одређеним минералима: (i) систем Pb-Sb(As)- tions in the system Ag2S-PbS-Bi2S3 at low temperatures. S, са ±Fe и ±Cu – цинкенит, филопит, плагионит, Neues Jahrbuch für Mineralogie Monatshefte, 223–240. робинсонит, буланжерит, џемсонит, бурнонит, As- WERNICK, J.H. 1960. Constitution of the AgSbS2-PbS, бурнонит, твинит, геокронит и гратонит; (ii) си- AgBiS2-PbS and AgBiS2-AgBiSe2 systems. American стем Cu(Ag)-Fe(Zn)-Sb(As)-S – тетредрит, те- Mineralogist, 45: 591–598. нантит, и Ag-тетредрит; (iii) систем Ag(Pb)-Bi(Sb)- ZARIĆ, P. RADOSAVLJEVIĆ, S. DIMITRIJEVIĆ, R. & CVET- S – пираргирит, дифорит, фрајслебенит, Sb-шир- KOVIĆ, LJ. 1992. Zinkenite from the polymetallic Ruje- мерит, Ag-њуфилдит и физелит; (iv) систем Pb-Bi- vac deposits. Proceedings of the I Conference of Serbian S(Te) - бурсаит, каницарит, козалит, ајкинит, Crystallographic Society, Belgrade, 54–55, (in Serbian, устарасит и тетрадимит. English abstract). Ове сулфосоли су просторно широко распро- страњене у оквиру рудног поља Борање, међутим, оне су најзаступљеније у следећим полимета- Резиме личним лежиштима и рудним зонама: Cu(Bi)-FeS Крам-Млаква; Pb(Ag)-Zn-FeS2 Велики Мајдан (Ко- Преглед сулфосолне групе минерала у ларица–Централни ревир–Којићи); Sb-Zn-Pb-As Pb-Sb(As)-S, Cu(Ag)-Fe(Zn)-Sb(As)-S, Рујевац; Pb-Zn-FeS2-BaSO4 Бобија. Осим ових, до Ag(Pb)-Bi(Sb)-S и Pb-Bi-S(Te) сада откривених сулфосоли, са сигурношћу постоји системима са рудног поља Борање, вероватноћа откривања и нових минерала из ове Западна Србија групе, а нарочито треба очекивати код познатог сулфосолног система Pb-Ag-Bi-Sb-S. Од преко сто- У Српско-македонској металогенетској провин- тинак одређених рудних и нерудних минерала на цији (СММП), која просторно захвата мањи део овом подручју, откривен је и знатан број нових ми- Источне Босне, веће делове Србије и Македоније, нерала са аспеката допуњавања систематике мине- и наставља даље према Бугарској и Грчкој, јављају ралогије Србије, и шире. У овој студији изложена је се бројне и простране масе вулкано-плутонских синтеза досадашњих резултата истраживања на комплекса калко-алкалне магме. Површина њихо- минералима из групе сулфосоли, која су већим вог развића у Србији износи око 30.000 km2 и про- делом публикована од стране аутора, међутим, овде стире се преко три крупне геотектонске јединице: су дати допуњени, а такође, и нови подаци. Унутрашњи Динариди, Вардарска тектонска зона Pb-Sb сулфосолне минералне парагенезе најза- и Српско-македонска маса. У вези са овим маг- ступљеније су у скоро целој СММП, где се по матским комплексима, директним или индирек- својој разноликости ових минерала издвајају: руд- тним, дошло је до стварања бројних лежишта и но поље Сребренице, Копаоничка рудна зона појава метала, у првом реду Pb, Zn, Sb, затим Cu, (Рајићева Гора, Бело Брдо, Црнац, и др.), рудна Mn, у мањој мери Fe, Bi, Ag, Hg, U, Sn и W. поља Кратово-Злетово, Тораница, Саса, Бучим и Подрињска металогенетска област припада Алшар (Македонија), и друга. Поред рудног поља СММП. Мање металогенетске јединице су издво- Борање, сличне Pb-Bi сулфосолне минералне јене у оквиру следећих рудних поља: Цер (Северна парагенезе утврђени су у рудним пољима Рудника Србија), Борања (Западна Србија) и Сребреница (Шумадија) и Голије (Копаоник). (Источна Босна). Полиметалична лежишта у руд- Поред рудног поља Борање, сличне Pb-Bi(Sb) ном пољу Борање генетски су везана за терци- сулфосолне минералне парагенезе утврђене су у јарни гранодиоритски комплекс. Састоје се од ве- рудним пољима Рудника и Голије. Према мине- ликог броја сулфидних лежишта са Pb-Zn, и Sb; и ралном саставу, она су у веома сличне рудном у мањој мери са Cu, As, Bi и Ag. Међу њима, пољу Улудаг (Бурса, Турска), минерализацијама јављају се мања значајна лежишта магнетита, која на Станос (Халкидики, Северна Грчка) и рудном су у вези са скарновском етапом. Скарнови су пољу Трепча (Стари Трг, Косово, Србија), која су калцијског типа, а формирани су дуж контаката такође део алпске металогенетске јединице. Та- тријаских кречњака и кварц диорита. У рудном по- кође, ове Pb(Ag)-Bi сулфосолне минералне параге- љу Борање, рудни и нерудни минерали одликују се незе веома су сличне хидротермалним системима веома разноврсним врстама и састоје се од Ларга у Румунији (Карпато-балканска метало- сулфида, сулфосоли, самородних метала, волфра- генетска провинција). На крају, у поређењу са мата, молибдата, оксида, силиката и хидроксида. осталим областима у СММП, минералне асоци- Минерале из групе сулфосоли, који се јављају у јације рудног поља Борања одликује се са једин- лежиштима и појавама рудног поља Борање, могу ственим минералима и варијететима из посебне се поделити у четири веће групе, са следећим до групе Ag(Pb)-Bi(Sb) сулфосоли.