Role of Spectrin Mutations in Spinocerebellar Ataxia Type 5 (SCA5)

Total Page:16

File Type:pdf, Size:1020Kb

Role of Spectrin Mutations in Spinocerebellar Ataxia Type 5 (SCA5) Role of Spectrin Mutations in Spinocerebellar Ataxia Type 5 (SCA5) A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Damaris Nadia Lorenzo Vila IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ADVISOR: Laura P. W. Ranum, Ph.D. August, 2009 © DAMARIS NADIA LORENZO VILA, 2009 AKNOWLEDGEMENTS I will take this opportunity to recognize a group of people who has been instrumental during my years as a Graduate Student. Specially, I would like to thank my advisor, Dr. Laura P. W. Ranum, for her encouragement and support. I am very grateful to Laura for her faith in me and my work, and for providing me with the tools and guidance to become an independent scientist. I also would like to thank all past and present members of the Ranum lab for both professional and personal relationships. They are extremely cooperative, friendly, and fun to work with. I am specially thankful to Karen Armbrust and Katie Dick for providing the human β-III spectrin clones and for many useful discussions about SCA5. I want to thank Marcy Weatherspoon for her help with the SSCP screen and Sarah Kreykes for her help collecting DNA samples and clinical information from ataxia families. I am indebted to Dr. Tom Hays for all his enthusiasm and guidance with the fly project and to all the members of the Hays lab for sharing their expertise, time, and resources with me. In particular, I am greatly thankful to Sarah Mische for her help with the initial characterization of the SCA5 flies and Yungui He for his help with cell culture and anything else I needed in the lab. I extend my most special gratitud to Mingang Li for his friendship, for teaching me a great deal of fly genetics, and for his constant help in the fly room and through each experiment. Lastly, I want to thank my husband Ismael and my son Edgar for their unlimited love and dedication and my dad, sister, family, and friends for their continuous encouragement. i ABSTRACT Spinocerebellar ataxia type 5 (SCA5) is a dominant neurodegenerative disorder caused by mutations in the SPBTN2 gene encoding the cytoskeletal protein β-III spectrin. To get insight into the biology of the disease and the normal function of β-III spectrin, and to estimate the frequency of SCA5 mutations among ataxia patients, I used a forward human genetic approach to identify novel SPTBN2 mutations. Screening of the SPTBN2 gene in a cohort of families with dominant ataxia of unknown etiology and a large group of ataxia samples identified seventeen novel variants not found in the general population. Putative mutations were identified in the areas comprising the second calponin homology domain, spectrin repeat two to four, and the ninth spectrin repeat of β-III spectrin. To investigate the downstream effects of the American and German SCA5 mutations in neurons, I established a series of transgenic Drosophila models that express human β-III- spectrin or fly β-spectrin proteins containing SCA5 mutations. Through genetic and functional analyses I show that expression of mutant spectrin in the eye causes a progressive neurodegenerative phenotype and expression in larval neurons results in posterior paralysis, reduced synaptic terminal growth, and axonal transport deficits. These phenotypes are genetically enhanced by both dynein and dynactin loss-of-function mutations. I have additionally used the SCA5 fly models to conduct modifier screens and identify genes and biological pathways that may contribute to SCA5 pathogenesis. These studies revealed genetic interactors implicated in a wide range of biological functions including intracellular transport, synapse formation and function, protein homeostasis, and transcription regulation. ii TABLE OF CONTENTS Acknowledgements____________________________________________________ i Abstract ______________________________________________________________ii Table of Contents ______________________________________________________iii List of Figures _________________________________________________________v List of Tables _________________________________________________________vii Abbreviations _________________________________________________________viii Chapter 1: Introduction to the spinocerebellar ataxias and SCA5 I. The spinocerebellar ataxias ___________________________________1 II. Spinocerebellar ataxia type 5 _________________________________4 A. Genetics of SCA5 _______________________________________4 B. Clinical, anatomical, and neuropathological features of SCA5 ____ 6 III. The spectrin cytoskeleton ____________________________________ 7 A. Structural components ____________________________________7 B. Functions ______________________________________________9 IV. Introduction to human β-III spectrin ____________________________12 A. Expression pattern and functional domains___________________ 12 B. Proposed functional roles_________________________________ 13 V. Conclusions _______________________________________________15 VI. Overall Aims and Hypotheses _________________________________16 Chapter 2: Identification of novel SCA5 mutations I. Introduction _______________________________________________25 iii II. Results ___________________________________________________27 III. Discussion ________________________________________________33 Chapter 3: Establishment and characterization of transgenic SCA5 models in Drosophila I. Introduction _______________________________________________44 II. Results ___________________________________________________46 III. Discussion ________________________________________________54 Chapter 4: Genetic screen for modifiers of SCA5-induced neurodegeneration in Drosophila I. Introduction _______________________________________________80 II. Results ___________________________________________________82 III. Discussion ________________________________________________88 Chapter 5: Conclusions and Future Directions I. Future Directions __________________________________________102 Chapter 6: Materials and Methods I. Identification of novel SCA5 mutations________________________ _106 II. Drosophila SCA5 models ___________________________________108 III. SCA5 modifier screen_______________________________________117 References ____________________________________________________________121 iv LIST OF FIGURES Chapter 1 Figure 1- SCA5 mutations _____________________________________________ 17 Figure 2- Cerebellar atrophy in SCA5 ____________________________________ 18 Figure 3- ß-III spectrin expression in control and American SCA5 cerebellar tissue 19 Figure 4- The spectrin tetramer __________________________________________ 20 Figure 5- Functions of human β-III spectrin ________________________________ 22 Chapter 2 Figure 6- Summary of mutations in the SPTBN2 gene _______________________ 37 Figure 7- Novel mutations in the ninth spectrin repeat of β-III spectrin __________ 38 Figure 8- Evolutionary conservation of novel SPTBN2 mutations _______________ 39 Chapter 3 Figure 9- Homology between human β-III spectrin and Drosophila β-spectrin ____ 60 Figure 10- Constructs generated to express human β-III spectrin in flies _________ 61 Figure 11- Eye phenotype of flies expressing mutant β-III spectrin _____________ 62 Figure 12- Mutant β-III spectrin causes a progressive eye phenotype ____________ 64 Figure 13- β-III spectrin incorporates into α/β spectrin complexes in Drosophila __ 65 Figure 14- Constructs generated to overexpress endogenous fly β-spectrin _______ 66 Figure 15- Human β-III spectrin and fly β-spectrin share functional pathways _____ 67 Figure 16- Spectrin mutations affects synaptic terminal size at the NMJ _________ 68 Figure 17- Spectrin mutations cause larval posterior paralysis _________________ 70 Figure 18- Spectrin mutations cause accumulation of synaptic proteins __________ 71 Figure 19- Spectrin mutations disrupt vesicle transport _______________________ 73 v Figure 20- Genetic interaction between spectrin and dynein pathways ___________ 74 Chapter 4 Figure 21- Third chromosome deficiencies modify the SCA5 eye phenotype ______ 92 Figure 22- Genomic region containing putative SCA5 interactors ______________ 93 Figure 23- P-element screen identifies SCA5 genetic interactors _______________ 94 Figure 24- Functional activities of modifiers of SCA5 neurodegeneration ________ 95 vi LIST OF TABLES Chapter 1 Table 1- Summary of SCAs classification_________________________________ 23 Table 2- Clinical features of SCA5 _______________________________________ 24 Chapter 2 Table 3- Summary of novel mutations in the SPTBN2 gene ___________________ 41 Table 4- Families with novel SPTBN2 mutations identified by SSCP analysis _____ 42 Table 5- Summary of novel SNPs in SPTBN2 ______________________________ 43 Chapter 3 Table 6- Analysis of synaptotagmin-GFP vesicles motions in segmental nerves ___ 77 Table 7- Analysis of synaptobrevin-GFP vesicles motions in segmental nerves ____ 78 Chapter 4 Table 8- Third chromosome deficiencies modify the SCA5 eye phenotype _______ 96 Table 9- Secondary screen defines regions containing genetic interactors ________ 97 Table 10- Activities of genetic modifiers of SCA5 neurodegeneration ___________ 98 Table 11- Lethal phase analysis for SCA5genetic interactors __________________ 101 Chapter 6 Table 12- Primer sequences and PCR conditions for mutation screening_________119 vii ABREVIATIONS ADCA ________________________autosomal dominant cerebellar ataxia ARP1 _________________________actin related protein 1 ABD _________________________actin binding
Recommended publications
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Extraction of Dynamic Patterns from Static Rna Expression Data: an Application to Hematological Neoplasms
    EXTRACTION OF DYNAMIC PATTERNS FROM STATIC RNA EXPRESSION DATA: AN APPLICATION TO HEMATOLOGICAL NEOPLASMS Relatore: Barbara Di Camillo Correlatore: Dott.ssa Alessandra Trojani Laureando: Giulia Bianchi ANNO ACCADEMICO 2012/2013 Nothing worth gaining was ever gained without effort. Theodore Roosevelt Index Section 1 INTRODUCTION 1 1.1. Extraction of temporal dynamics from gene expression data 2 1.2. Chronic Lymphocytic Leukemia 3 1.3. IgM Monoclonal Gammopathy of Undetermined Significance and Waldenstrӧm’s Macroglobulinemia 4 Section 2 DATA 7 2.1. CLL Data set 8 2.2. WM/MGUS Data set 8 Section 3 SAMPLE PROGRESSION DISCOVERY 10 3.1. Methods 10 3.2. SPD step by step 12 3.2.1. Input format 12 3.2.2. Gene filtering 12 3.2.3. Clustering 13 3.2.4. Construct MSTs – Compare modules and MSTs 14 3.2.5. Identify modules similar in terms of progression 16 3.3. Results and discussion 17 Section 4 PARAMETER SETTING 19 4.1. Input configuration 19 4.2. Result evaluation 20 4.3. Conclusions 26 Section 5 APPLICATION TO CHRONIC LYMPHOCYTIC LEUKEMIA 28 5.1. Gene selection 28 5.2. SPD results 29 Section 6 APPLICATION TO WALDENSTRÖM’S MACROGLOBULINEMIA AND IgM MGUS 39 6.1. Gene selection 39 6.2. SPD results 40 Section 7 DISCUSSION 45 Acknowledgements 49 Section 8 REFERENCES 51 Section 9 APPENDIX 55 i Section 1 INTRODUCTION Development and evolution of a disease are dynamic processes that, from a molecular point of view, involve changes in some gene expression levels in the involved organs and cells. A possible approach to study the behavior of such dynamic phenomena is to sample individuals, tissues or other relevant units at subsequent time-points throughout the progression.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Spectrin Binding Motifs Control Scribble Cortical Dynamics And
    1 2 3 Spectrin binding motifs control Scribble cortical 4 dynamics and polarity function 5 6 Batiste Boëda and Sandrine Etienne Manneville 7 8 Institut Pasteur (CNRS URA 3691-INSERM), France 9 Correspondance to Sandrine Etienne-Manneville. Cell Polarity, Migration and Cancer Unit, 10 Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France; Phone: +33 1 4438 9591; 11 FAX: +33 1 4568 8548. 12 e-mail: [email protected] 13 14 Competing interests statement: 15 The authors declare that no competing interests exist. 16 17 1 18 Abstract 19 The tumor suppressor protein Scribble (SCRIB) plays an evolutionary conserved role in 20 cell polarity. Despite being central for its function, the molecular basis of SCRIB 21 recruitment and stabilization at the cell cortex is poorly understood. Here we show that 22 SCRIB binds directly to the CH1 domain of spectrins, a molecular scaffold that 23 contributes to the cortical actin cytoskeleton and connects it to the plasma membrane. 24 We have identified a short evolutionary conserved peptide motif named SADH motif 25 (SCRIB ABLIMs DMTN Homology) which is necessary and sufficient to mediate protein 26 interaction with spectrins. The SADH domains contribute to SCRIB dynamics at the 27 cell cortex and SCRIB polarity function. Furthermore, mutations in SCRIB SADH 28 domains associated with spina bifida and cancer impact the stability of SCRIB at the 29 plasma membrane, suggesting that SADH domain alterations may participate in human 30 pathology. 31 32 33 34 35 36 37 2 38 Introduction 39 The protein SCRIB has been implicated in a staggering array of cellular processes 40 including polarity, migration, proliferation, differentiation, apoptosis, stemcell 41 maintenance, and vesicle trafficking [1].
    [Show full text]
  • Nesprins: from the Nuclear Envelope and Beyond
    expert reviews http://www.expertreviews.org/ in molecular medicine Nesprins: from the nuclear envelope and beyond Dipen Rajgor and Catherine M. Shanahan* Nuclear envelope spectrin-repeat proteins (Nesprins), are a novel family of nuclear and cytoskeletal proteins with rapidly expanding roles as intracellular scaffolds and linkers. Originally described as proteins that localise to the nuclear envelope (NE) and establish nuclear-cytoskeletal connections, nesprins have now been found to comprise a diverse spectrum of tissue specific isoforms that localise to multiple sub-cellular compartments. Here, we describe how nesprins are necessary in maintaining cellular architecture by acting as essential scaffolds and linkers at both the NE and other sub-cellular domains. More importantly, we speculate how nesprin mutations may disrupt tissue specific nesprin scaffolds and explain the tissue specific nature of many nesprin-associated diseases, including laminopathies. The eukaryotic cytoplasm contains three major composed of three α-helical bundles with a left- types of cytoskeletal filaments: Filamentous- handed twist, and its primary function is to actin (F-actin), microtubules (MTs) and provide docking sites for proteins and other intermediate filaments (IFs). These components higher order complexes (Refs 3, 4). Although are organised in a manner that provides the cell most SR proteins contain CHDs, some possess with an internal framework fundamental for motifs which can interact with other cytoskeletal many processes, such as controlling cellular components, allowing linkage of SR-associated shape, polarity, adhesion and migration, complexes to filamentous structures other than cytokinesis, inter- and intracellular F-actin. In addition, these motifs allow cross- Nesprins: from the nuclear envelope and beyond communication and trafficking of organelles, linking between different filaments and dynamic vesicles, proteins and RNA (Refs 1, 2).
    [Show full text]
  • Myopathy Genes (HGNC) Neuropathy (HGNC) Neuromuscular Disease
    Myopathy Genes Neuropathy Neuromuscular Disease (HGNC) (HGNC) (HGNC) ABHD5 ABCA1 ADCK3 ACTG2 ACO2 AGRN AGK AGXT ALS2 ALDOA AIFM1 ANG AMER1 ALAD AP4B1 ANO5 AMACR AP4E1 AR AP1S1 AP4M1 AUH APTX AP4S1 B4GALT1 AR AP5Z1 CACNA1S ATL3 ATM CASQ1 B4GALNT1 ATXN10 CCDC78 BAG3 ATXN7 CHCHD10 BRP44L BEAN1 CHRNA1 C12orf65 C9orf72 CHRNB1 C19orf12 CACNB4 CHRND C1NH CAPN3 CHRNE CECR1 CHAT CLPB CISD2 CHKB COL6A1 CLCF1 CHMP2B COL6A2 CLCN2 CHRNG COL6A3 CLP1 CLCN1 COLQ CMT2G COL9A3 CTNS CMT2H COQ2 DGUOK CMTDIA COQ6 DNA2 CMTX2 COQ9 DNAJB6 CMTX3 COX15 DNAJC19 COASY CPT1A DNM2 COX6A1 CYP7B1 DPM2 CPOX DAG1 DYSF CYP27A1 DDHD2 EMD CYP2U1 DOK7 EPG5 DARS2 DPAGT1 FAM111B DCAF8 DPM3 FBXL4 DDHD1 DUX4 FKBP14 DFNX5 ECEL1 FKRP DHTKD1 ERBB3 FLH1 DIAPH3 ERLIN2 FLNC DNAJB2 FA2H HNRNPA1 DNAJC3 FKTN HNRNPDL ELOVL5 FUS HNRPA2B1 ERCC8 G6PC KLHL40 FAH GFPT1 KLHL41 FAM126A GLE1 LAMA2 FBN1 GYS2 LDB3 FMR1 HSPD1 LMOD3 FXN IFRD1 MEGF10 GALC INF2 MGME1 GBE1 ISPD MTAP GJC2 ITGA7 MTMR14 GP1BA ITPR1 MYF6 HADHA KCNA1 MYH14 HADHB KCNC3 MYLK2 HFE KCNE3 NARS2 HINT1 KCNJ18 NEB HK1 KCNJ2 ORAI1 HMBS KIAA0196 PRKAG2 HSD17B4 KIF21A PTEN HSN1B L1CAM RBCK1 IARS2 LAMB2 RET IGHMBP2 LARGE RMND1 KCNJ10 MCCC2 SCN4A KIF5A MRE11A SERAC1 LRSAM1 MRPL3 SGCA LYST MTO1 SIL1 MANBA MTPAP SPEG MARS MTTP STAC3 MTATP6 MUSK STIM1 MYH14 MYBPC3 SYNE1 MYOT MYH3 SYNE2 NAMSD MYH8 TAZ NF2 NF1 TIA1 NGLY1 NIPA1 TMEM43 NMSR NOP56 TNPO3 NOTCH3 OPTN TNXB OPA1 PDSS2 TPM2 OPA3 PDYN TRPV4 OTOF PFN1 UBA1 PDK3 PHKA2 VCP PDSS1 PHKG2 XDH PEX10 PHOX2A ACADS PEX2 PIP5K1C ACADVL PMM2 PLEC ACTA1 PNPLA6 PLP1 AGL PPOX POMGNT1 AMPD1 PRICKLE1
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • Mutation Analysis of Genes Within the Dynactin Complex in a Cohort of Hereditary Peripheral Neuropathies
    Clin Genet 2016: 90: 127–133 © 2015 John Wiley & Sons A/S. Printed in Singapore. All rights reserved Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12712 Original Article Mutation analysis of genes within the dynactin complex in a cohort of hereditary peripheral neuropathies a a Tey S., Ahmad-Annuar A., Drew A.P., Shahrizaila N., Nicholson G.A., S. Tey , A. Ahmad-Annuar , Kennerson M.L. Mutation analysis of genes within the dynactin complex in A.P. Drewb, N. Shahrizailac, , a cohort of hereditary peripheral neuropathies. G.A. Nicholsonb d and Clin Genet 2016: 90: 127–133. © John Wiley & Sons A/S. Published by M.L. Kennersonb,d John Wiley & Sons Ltd, 2015 aDepartment of Biomedical Science, The cytoplasmic dynein–dynactin genes are attractive candidates for Faculty of Medicine, University of Malaya, b neurodegenerative disorders given their functional role in retrograde Kuala Lumpur, Malaysia, Northcott transport along neurons. The cytoplasmic dynein heavy chain (DYNC1H1) Neuroscience Laboratory, ANZAC Research Institute, and Sydney Medical gene has been implicated in various neurodegenerative disorders, and School, University of Sydney, Sydney, dynactin 1 (DCTN1) genes have been implicated in a wide spectrum of Australia, cDepartment of Medicine, disorders including motor neuron disease, Parkinson’s disease, spinobulbar Faculty of Medicine, University of Malaya, muscular atrophy and hereditary spastic paraplegia. However, the Kuala Lumpur, Malaysia, and dMolecular involvement of other dynactin genes with inherited peripheral neuropathies Medicine Laboratory, Concord Hospital, (IPN) namely, hereditary sensory neuropathy, hereditary motor neuropathy Sydney, Australia and Charcot–Marie–Tooth disease is under reported. We screened eight genes; DCTN1-6 and ACTR1A and ACTR1B in 136 IPN patients using Key words: Charcot–Marie–Tooth – whole-exome sequencing and high-resolution melt (HRM) analysis.
    [Show full text]
  • (New Ref)-CG-MS
    Send Orders for Reprints to [email protected] 522 Current Genomics, 2018, 19, 522-602 REVIEW ARTICLE Early Life Stress and Epigenetics in Late-onset Alzheimer’s Dementia: A Systematic Review Erwin Lemche* Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK Abstract: Involvement of life stress in Late-Onset Alzheimer’s Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have suc- cessfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper- phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of auto- phagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal stud- ies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in A R T I C L E H I S T O R Y previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epi- Received: July 01, 2017 genomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation Revised: July 27, 2017 mechanisms were published for the compiled loci.
    [Show full text]
  • Actinin-4 Reveals a Mechanism for Regulating Its F-Actin-Binding Affinity
    Disease-associated mutant ␣-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity Astrid Weins*, Johannes S. Schlondorff*, Fumihiko Nakamura†, Bradley M. Denker*, John H. Hartwig†, Thomas P. Stossel†, and Martin R. Pollak*‡ *Renal and †Translational Medicine Divisions, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved August 23, 2007 (received for review March 16, 2007) ␣-Actinin-4 is a widely expressed protein that employs an actin- them cell motility, endocytosis, and adhesion (7–9). Cultured binding site with two calponin homology domains to crosslink podocytes deficient in one of the nonmuscle isotypes, ␣-actinin-4, actin filaments (F-actin) in a Ca2؉-sensitive manner in vitro.An exhibit defective substrate adhesion (10), which is consistent with inherited, late-onset form of kidney failure is caused by point the well documented localization of ␣-actinin at focal adhesion sites mutations in the ␣-actinin-4 actin-binding domain. Here we show (11), and is therefore probably responsible for the impaired trans- that ␣-actinin-4/F-actin aggregates, observed in vivo in podocytes lational locomotion of the ␣-actinin-4-deficient cells (7). of humans and mice with disease, likely form as a direct result of Five distinct point mutations in the ␣-actinin-4 head domain the increased actin-binding affinity of the protein. We document causing focal segmental glomerulosclerosis in affected humans all that exposure of a buried actin-binding site 1 in mutant ␣-actinin-4 mediate increased actin binding (12, 13). However, this effect has causes an increase in its actin-binding affinity, abolishes its Ca2؉ not yet been studied in detail, and the mechanism of disease has so regulation in vitro, and diverts its normal localization from actin far remained elusive.
    [Show full text]