DREI'98 Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polynomial Sequences of Binomial Type and Path Integrals
Preprint math/9808040, 1998 LEEDS-MATH-PURE-2001-31 Polynomial Sequences of Binomial Type and Path Integrals∗ Vladimir V. Kisil† August 8, 1998; Revised October 19, 2001 Abstract Polynomial sequences pn(x) of binomial type are a principal tool in the umbral calculus of enumerative combinatorics. We express pn(x) as a path integral in the “phase space” N × [−π,π]. The Hamilto- ∞ ′ inφ nian is h(φ)= n=0 pn(0)/n! e and it produces a Schr¨odinger type equation for pn(x). This establishes a bridge between enumerative P combinatorics and quantum field theory. It also provides an algorithm for parallel quantum computations. Contents 1 Introduction on Polynomial Sequences of Binomial Type 2 2 Preliminaries on Path Integrals 4 3 Polynomial Sequences from Path Integrals 6 4 Some Applications 10 arXiv:math/9808040v2 [math.CO] 22 Oct 2001 ∗Partially supported by the grant YSU081025 of Renessance foundation (Ukraine). †On leave form the Odessa National University (Ukraine). Keywords and phrases. Feynman path integral, umbral calculus, polynomial sequence of binomial type, token, Schr¨odinger equation, propagator, wave function, cumulants, quantum computation. 2000 Mathematics Subject Classification. Primary: 05A40; Secondary: 05A15, 58D30, 81Q30, 81R30, 81S40. 1 Polynomial Sequences and Path Integrals 2 Under the inspiring guidance of Feynman, a short- hand way of expressing—and of thinking about—these quantities have been developed. Lewis H. Ryder [22, Chap. 5]. 1 Introduction on Polynomial Sequences of Binomial Type The umbral calculus [16, 18, 19, 21] in enumerative combinatorics uses poly- nomial sequences of binomial type as a principal ingredient. A polynomial sequence pn(x) is said to be of binomial type [18, p. -
SETL for Internet Data Processing
SETL for Internet Data Processing by David Bacon A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Computer Science New York University January, 2000 Jacob T. Schwartz (Dissertation Advisor) c David Bacon, 1999 Permission to reproduce this work in whole or in part for non-commercial purposes is hereby granted, provided that this notice and the reference http://www.cs.nyu.edu/bacon/phd-thesis/ remain prominently attached to the copied text. Excerpts less than one PostScript page long may be quoted without the requirement to include this notice, but must attach a bibliographic citation that mentions the author’s name, the title and year of this disser- tation, and New York University. For my children ii Acknowledgments First of all, I would like to thank my advisor, Jack Schwartz, for his support and encour- agement. I am also grateful to Ed Schonberg and Robert Dewar for many interesting and helpful discussions, particularly during my early days at NYU. Terry Boult (of Lehigh University) and Richard Wallace have contributed materially to my later work on SETL through grants from the NSF and from ARPA. Finally, I am indebted to my parents, who gave me the strength and will to bring this labor of love to what I hope will be a propitious beginning. iii Preface Colin Broughton, a colleague in Edmonton, Canada, first made me aware of SETL in 1980, when he saw the heavy use I was making of associative tables in SPITBOL for data processing in a protein X-ray crystallography laboratory. -
Mathematics of Data Science
SIAM JOURNAL ON Mathematics of Data Science Volume 2 • 2020 Editor-in-Chief Tamara G. Kolda, Sandia National Laboratories Section Editors Mark Girolami, University of Cambridge, UK Alfred Hero, University of Michigan, USA Robert D. Nowak, University of Wisconsin, Madison, USA Joel A. Tropp, California Institute of Technology, USA Associate Editors Maria-Florina Balcan, Carnegie Mellon University, USA Vianney Perchet, ENSAE, CRITEO, France Rina Foygel Barber, University of Chicago, USA Jonas Peters, University of Copenhagen, Denmark Mikhail Belkin, University of California, San Diego, USA Natesh Pillai, Harvard University, USA Robert Calderbank, Duke University, USA Ali Pinar, Sandia National Laboratories, USA Coralia Cartis, University of Oxford, UK Mason Porter, University of Califrornia, Los Angeles, USA Venkat Chandrasekaran, California Institute of Technology, Maxim Raginsky, University of Illinois, USA Urbana-Champaign, USA Patrick L. Combettes, North Carolina State University, USA Bala Rajaratnam, University of California, Davis, USA Alexandre d’Aspremont, CRNS, Ecole Normale Superieure, Philippe Rigollet, MIT, USA France Justin Romberg, Georgia Tech, USA Ioana Dumitriu, University of California, San Diego, USA C. Seshadhri, University of California, Santa Cruz, USA Maryam Fazel, University of Washington, USA Amit Singer, Princeton University, USA David F. Gleich, Purdue University, USA Marc Teboulle, Tel Aviv University, Israel Wouter Koolen, CWI, the Netherlands Caroline Uhler, MIT, USA Gitta Kutyniok, University of Munich, Germany -
Digital Communication Systems 2.2 Optimal Source Coding
Digital Communication Systems EES 452 Asst. Prof. Dr. Prapun Suksompong [email protected] 2. Source Coding 2.2 Optimal Source Coding: Huffman Coding: Origin, Recipe, MATLAB Implementation 1 Examples of Prefix Codes Nonsingular Fixed-Length Code Shannon–Fano code Huffman Code 2 Prof. Robert Fano (1917-2016) Shannon Award (1976 ) Shannon–Fano Code Proposed in Shannon’s “A Mathematical Theory of Communication” in 1948 The method was attributed to Fano, who later published it as a technical report. Fano, R.M. (1949). “The transmission of information”. Technical Report No. 65. Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT. Should not be confused with Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with Shannon–Fano–Elias coding (also known as Elias coding), the precursor to arithmetic coding. 3 Claude E. Shannon Award Claude E. Shannon (1972) Elwyn R. Berlekamp (1993) Sergio Verdu (2007) David S. Slepian (1974) Aaron D. Wyner (1994) Robert M. Gray (2008) Robert M. Fano (1976) G. David Forney, Jr. (1995) Jorma Rissanen (2009) Peter Elias (1977) Imre Csiszár (1996) Te Sun Han (2010) Mark S. Pinsker (1978) Jacob Ziv (1997) Shlomo Shamai (Shitz) (2011) Jacob Wolfowitz (1979) Neil J. A. Sloane (1998) Abbas El Gamal (2012) W. Wesley Peterson (1981) Tadao Kasami (1999) Katalin Marton (2013) Irving S. Reed (1982) Thomas Kailath (2000) János Körner (2014) Robert G. Gallager (1983) Jack KeilWolf (2001) Arthur Robert Calderbank (2015) Solomon W. Golomb (1985) Toby Berger (2002) Alexander S. Holevo (2016) William L. Root (1986) Lloyd R. Welch (2003) David Tse (2017) James L. -
RIEMANN's HYPOTHESIS 1. Gauss There Are 4 Prime Numbers Less
RIEMANN'S HYPOTHESIS BRIAN CONREY 1. Gauss There are 4 prime numbers less than 10; there are 25 primes less than 100; there are 168 primes less than 1000, and 1229 primes less than 10000. At what rate do the primes thin out? Today we use the notation π(x) to denote the number of primes less than or equal to x; so π(1000) = 168. Carl Friedrich Gauss in an 1849 letter to his former student Encke provided us with the answer to this question. Gauss described his work from 58 years earlier (when he was 15 or 16) where he came to the conclusion that the likelihood of a number n being prime, without knowing anything about it except its size, is 1 : log n Since log 10 = 2:303 ::: the means that about 1 in 16 seven digit numbers are prime and the 100 digit primes are spaced apart by about 230. Gauss came to his conclusion empirically: he kept statistics on how many primes there are in each sequence of 100 numbers all the way up to 3 million or so! He claimed that he could count the primes in a chiliad (a block of 1000) in 15 minutes! Thus we expect that 1 1 1 1 π(N) ≈ + + + ··· + : log 2 log 3 log 4 log N This is within a constant of Z N du li(N) = 0 log u so Gauss' conjecture may be expressed as π(N) = li(N) + E(N) Date: January 27, 2015. 1 2 BRIAN CONREY where E(N) is an error term. -
Principles of Communications ECS 332
Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Communication Systems Office Hours: Check Google Calendar on the course website. Dr.Prapun’s Office: 6th floor of Sirindhralai building, 1 BKD 2 Remark 1 If the downloaded file crashed your device/browser, try another one posted on the course website: 3 Remark 2 There is also three more sections from the Appendices of the lecture notes: 4 Shannon's insight 5 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 6 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD- TV, and the California Institute for Telecommunic ations and Information Technology 7 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) Hello. I'm Claude Shannon a mathematician here at the Bell Telephone laboratories He didn't create the compact disc, the fax machine, digital wireless telephones Or mp3 files, but in 1948 Claude Shannon paved the way for all of them with the Basic theory underlying digital communications and storage he called it 8 information theory. C. E. Shannon (1916-2001) 9 https://www.youtube.com/watch?v=47ag2sXRDeU C. E. Shannon (1916-2001) One of the most influential minds of the 20th century yet when he died on February 24, 2001, Shannon was virtually unknown to the public at large 10 C. -
MIMO Wireless Communications Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami Paulraj and H
Cambridge University Press 978-0-521-13709-6 - MIMO Wireless Communications Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami paulraj and H. Vincent Poor Frontmatter More information MIMO Wireless Communications Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the design of wireless communication systems, and is already at the core of several wireless standards. Exploiting multi-path scattering, MIMO techniques deliver significant performance enhancements in terms of data transmission rate and interference reduction. This book is a detailed introduction to the analysis and design of MIMO wireless systems. Beginning with an overview of MIMO technology, the authors then examine the fundamental capacity limits of MIMO systems. Transmitter design, including precoding and space–time coding, is then treated in depth, and the book closes with two chapters devoted to receiver design. Written by a team of leading experts, the book blends theoretical analysis with physical insights, and highlights a range of key design challenges. It can be used as a textbook for advanced courses on wireless communications, and will also appeal to researchers and practitioners working on MIMO wireless systems. Ezio Biglieri is a professor in the Department of Technology at the Universitat Pompeu Fabra, Barcelona. Robert Calderbank is a professor in the Departments of Electrical Engineering and Mathematics at Princeton University, New Jersey. Anthony Constantinides is a professor in the Department of Electrical and Electronic Engineering at Imperial College of Science, Technology and Medicine, London. Andrea Goldsmith is a professor in the Department of Electrical Engineering at Stanford University, California. Arogyaswami Paulraj is a professor in the Department of Electrical Engineering at Stanford University, California. -
Computation and the Riemann Hypothesis: Dedicated to Herman Te Riele on the Occasion of His Retirement
Computation and the Riemann Hypothesis: Dedicated to Herman te Riele on the occasion of his retirement Andrew Odlyzko School of Mathematics University of Minnesota [email protected] http://www.dtc.umn.edu/∼odlyzko December 2, 2011 Andrew Odlyzko ( School of Mathematics UniversityComputation of Minnesota and [email protected] Riemann Hypothesis: http://www.dtc.umn.edu/ Dedicated toDecember2,2011 Herman te∼ Rieodlyzkole on) the 1/15 occasion The mysteries of prime numbers: Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every reason to believe that there are some mysteries which the human mind will never penetrate. To convince ourselves, we have only to cast a glance at tables of primes (which some have constructed to values beyond 100,000) and we should perceive that there reigns neither order nor rule. Euler, 1751 Andrew Odlyzko ( School of Mathematics UniversityComputation of Minnesota and [email protected] Riemann Hypothesis: http://www.dtc.umn.edu/ Dedicated toDecember2,2011 Herman te∼ Rieodlyzkole on) the 2/15 occasion Herman te Riele’s contributions towards elucidating some of the mysteries of primes: numerical verifications of Riemann Hypothesis (RH) improved bounds in counterexamples to the π(x) < Li(x) conjecture disproof and improved lower bounds for Mertens conjecture improved bounds for de Bruijn – Newman constant ... Andrew Odlyzko ( School of Mathematics UniversityComputation of Minnesota and [email protected] Riemann Hypothesis: http://www.dtc.umn.edu/ Dedicated toDecember2,2011 -
Bibliography
Bibliography [1] P. Agarwal, S. Har-Peled, M. Sharir, and Y. Wang. Hausdorff distance under translation for points, disks, and balls. Manuscript, 2002. [2] P. Agarwal and M. Sharir. Pipes, cigars, and kreplach: The union of Minkowski sums in three dimensions. Discrete Comput. Geom., 24:645–685, 2000. [3] P. K. Agarwal, O. Schwarzkopf, and Micha Sharir. The overlay of lower envelopes and its applications. Discrete Comput. Geom., 15:1–13, 1996. [4] Pankaj K. Agarwal. Efficient techniques in geometric optimization: An overview, 1999. slides. [5] Pankaj K. Agarwal and Micha Sharir. Motion planning of a ball amid segments in three dimensions. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 21–30, 1999. [6] Pankaj K. Agarwal and Micha Sharir. Pipes, cigars, and kreplach: The union of Minkowski sums in three dimensions. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 143–153, 1999. [7] Pankaj K. Agarwal, Micha Sharir, and Sivan Toledo. Applications of parametric searching in geometric optimization. Journal of Algorithms, 17:292–318, 1994. [8] Pankaj Kumar Agarwal and Micha Sharir. Arrangements and their applications. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 49–120. Elsevier, 1999. [9] H. Alt, O. Aichholzer, and G¨unter Rote. Matching shapes with a reference point. Inter- nat. J. Comput. Geom. Appl., 7:349–363, 1997. [10] H. Alt and M. Godau. Computing the Fr´echet distance between two polygonal curves. Internat. J. Comput. Geom. Appl., 5:75–91, 1995. [11] H. Alt, K. Mehlhorn, H. Wagener, and Emo Welzl. Congruence, similarity and symme- tries of geometric objects. -
Umbral Calculus and Cancellative Semigroup Algebras
Preprint funct-an/9704001, 1997 Umbral Calculus and Cancellative Semigroup Algebras∗ Vladimir V. Kisil April 1, 1997; Revised February 4, 2000 Dedicated to the memory of Gian-Carlo Rota Abstract We describe some connections between three different fields: com- binatorics (umbral calculus), functional analysis (linear functionals and operators) and harmonic analysis (convolutions on group-like struc- tures). Systematic usage of cancellative semigroup, their convolution algebras, and tokens between them provides a common language for description of objects from these three fields. Contents 1 Introduction 2 2 The Umbral Calculus 3 arXiv:funct-an/9704001v2 8 Feb 2000 2.1 Finite Operator Description ................... 3 2.2 Hopf Algebras Description .................... 4 2.3 The Semantic Description .................... 4 3 Cancellative Semigroups and Tokens 5 3.1 Cancellative Semigroups: Definition and Examples ....... 5 3.2 Tokens: Definition and Examples ................ 10 3.3 t-Transform ............................ 13 ∗Supported by grant 3GP03196 of the FWO-Vlaanderen (Fund of Scientific Research- Flanders), Scientific Research Network “Fundamental Methods and Technique in Mathe- matics”. 2000 Mathematics Subject Classification. Primary: 43A20; Secondary: 05A40, 20N++. Keywords and phrases. Cancellative semigroups, umbral calculus, harmonic analysis, token, convolution algebra, integral transform. 1 2 Vladimir V. Kisil 4 Shift Invariant Operators 16 4.1 Delta Families and Basic Distributions ............. 17 4.2 Generating Functions and Umbral Functionals ......... 22 4.3 Recurrence Operators and Generating Functions ........ 24 5 Models for the Umbral Calculus 28 5.1 Finite Operator Description: a Realization ........... 28 5.2 Hopf Algebra Description: a Realization ............ 28 5.3 The Semantic Description: a Realization ............ 29 Acknowledgments 30 It is a common occurrence in combinatorics for a sim- ple idea to have vast ramifications; the trick is to real- ize that many seemingly disparate phenomena fit un- der the same umbrella. -
USC Phi Beta Kappa Visiting Scholar Program
The Phi Beta Kappa chapter of the University of South Carolina is pleased to present Dr. Andrew Odlyzko as the 2010 Visiting Schol- ar. Dr. Odlyzko will present two main talks, both in Amoco Hall of the Swearingen Center on the USC campus: 3:30 pm, Thursday, 25 February 2010 Technology manias: From railroads to the Internet and beyond A comparison of the Internet bubble with the British Rail- way Mania of the 1840s, the greatest technology mania in history, provides many tantalizing similarities as well as contrasts. Especially interesting is the presence in both cases of clear quantitative measures showing a priori that these manias were bound to fail financially, measures that were not considered by investors in their pursuit of “effortless riches.” In contrast to the Internet case, the Railway Mania had many vocal and influential skeptics, yet even then, these skeptics were deluded into issuing warnings that were often counterproductive in that they inflated the bubble further. The role of such imperfect information dissemination in these two manias leads to speculative projections on how future technology bubbles will develop. 2:30 pm, Friday, 26 February 2010 How to live and prosper with insecure cyberinfra- structure Mathematics has contributed immensely to the development of secure cryptosystems and protocols. Yet our networks are terribly insecure, and we are constantly threatened with the prospect of im- minent doom. Furthermore, even though such warnings have been common for the last two decades, the situation has not gotten any better. On the other hand, there have not been any great disasters either. -
Scientific Workplace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra
Scientific WorkPlace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra (-l +lr,:znt:,-1 + 2r) ,..,_' '"""""Ke~r~UrN- r o~ r PooiliorK 1.931'J1 Po6'lf ·1.:1l26!.1 Pod:iDnZ 3.881()2 UfW'IICI(JI)( -2.801~ ""'"""U!NecteoZ l!l!iS'11 v~ 0.7815399 Animated plots ln spherical coordln1tes > To make an anlm.ted plot In spherical coordinates 1. Type an expression In thr.. variables . 2 WMh the Insertion poilt In the expression, choose Plot 3D The next exampfe shows a sphere that grows ftom radius 1 to .. Plot 3D Animated + Spherical The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in LAT£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 3D plots, create 3D implicit plots, and more. MuPAD' Pro MuPAD Pro is an integrated and open mathematical problem solving environment for symbolic and numeric computing. Visit our website for details. cK.ichan SOFTWARE , I NC. Visit our website for free trial versions of all our products. www.mackichan.com/notices • Email: info@mac kichan.com • Toll free: 877-724-9673 It@\ A I M S \W ELEGRONIC EDITORIAL BOARD http://www.math.psu.edu/era/ Managing Editors: This electronic-only journal publishes research announcements (up to about 10 Keith Burns journal pages) of significant advances in all branches of mathematics.