Colletotrichum: Lifestyles, Biology, Morpho-Species, Species Complexes and Accepted Species

Total Page:16

File Type:pdf, Size:1020Kb

Colletotrichum: Lifestyles, Biology, Morpho-Species, Species Complexes and Accepted Species Mycosphere 12(1): 519–669 (2021) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/12/1/7 Colletotrichum: lifestyles, biology, morpho-species, species complexes and accepted species Jayawardena RS1,3, Bhunjun CS1,3, Hyde KD1,2,3,4*, Gentekaki E1,3 and Itthayakorn P2 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 2Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, People’s Republic of China Jayawardena RS, Bhunjun CS, Hyde KD, Gentekaki E, Itthayakorn P 2021 – Colletotrichum: lifestyles, biology, morpho-species, species complexes and accepted species. Mycosphere 12(1), 519–669, Doi 10.5943/mycosphere/12/1/7 Abstract Colletotrichum is an important plant pathogenic genus that has undergone tremendous taxonomic changes. Species of Colletotrichum also occur as endophytes, saprobes and rarely entomopathogens. The current understanding of Colletotrichum taxonomy and application of various techniques in defining species within the genus is discussed in this paper. Here we provide a review of lifestyles, infection mechanisms, life cycle, host-specificity, classification history and techniques defining Colletotrichum species and the relation to speciation. Misidentifications and mistakes during species introduction are discussed and recommendations are provided for valid species publication. We provide an account of 248 currently accepted species with molecular data, which falls into 14 species-complexes and 13 singleton species. An updated account of Colletotrichum species is provided. Species are listed alphabetically in each species complex and annotated with their habitat, host, geographic distribution, phylogenetic position and typification details. Tables of host specific (152 species) and geographically endemic Colletotrichum species (19 species) are provided. A table of 450 morpho-species is provided for the first time gathering all data to one place, allowing mycologists to check before publishing a new species. Phylogenetic trees are provided for the whole genus and each species complex. Genes and combinations of genes that can be used for the identification of the species complexes are suggested. Future directions for the advancement of this genus are discussed. Keywords – Host-specificity – Morpho-species – Pathogens – Singleton – Taxonomy Introduction Colletotrichum is the sole member of Glomerellaceae (Glomerellales, Sordariomycetes), and was introduced by Corda (1831) (Réblová et al. 2011, Maharachchikumbura et al. 2015, 2016, Hyde et al. 2020). Many species of this genus are important pathogens, while some are endophytes and saprobes (Cannon et al. 2012, Hyde et al. 2014, 2020, Jayawardena et al. 2016a, 2020). At the time of the first monographic treatment of Colletotrichum (von Arx 1957b), around 750 names existed (Cannon et al. 2012). von Arx (1957b) reduced this to 11 taxa based on morphological characters. Sutton (1980) accepted 22 species, while Sutton (1992) accepted 39 species based on Submitted 16 January 2021, Accepted 29 March 2021, Published 7 May 2021 Corresponding Author: K.D. Hyde – e-mail – [email protected] 519 morphological and cultural characteristics. Misidentification of Colletotrichum species occurs frequently due to only a few distinctive morphological characters being available for identification (Hyde et al. 2009a, Cannon et al. 2012, Jayawardena et al. 2016a). Hyde et al. (2009b) provided the first comprehensive overview of this genus with 66 names in common use and 19 doubtful names and also highlighted the need to revise this genus by using molecular methods (Hyde et al. 2009a). This study laid the foundation for the ongoing polyphasic research approaches on Colletotrichum (Cannon et al. 2012, Damm et al. 2012a, b, 2013, 2014, 2019, Weir et al. 2012, Liu et al. 2014, Jayawardena et al. 2016a, 2020). Here we provide a review of lifestyles, infection mechanisms, life cycle, host-specificity, classification history and techniques for defining Colletotrichum species. We also discuss whether the scientific community has introduced too many species based on examples. This study uses Jayawardena et al. (2016a) as the starting point for accepted species, and also includes published records since that study. An overview of the currently accepted species in the genus along with their hosts, geographic distribution, phylogenetic position and sexual morphs are provided. Updated phylogenetic trees for the whole genus and the species complexes are also provided. When possible, the use of specific gene regions necessary to distinguish the species within the different species complexes is mentioned. Lifestyles Plant pathogenic fungi may have different lifestyles and infection mechanisms to colonise their hosts (Agrios 2005). Lifestyle patterns in Colletotrichum can be broadly categorised as endophytic, hemibiotrophic, necrotrophic, latent or quiescent (Perfect et al. 1999, Peres et al. 2005, Cannon et al. 2012, Barimani et al. 2013, de Silva et al. 2017). Hemibiotrophy is the most common among the above lifestyles (Cannon et al. 2012, Jayawardena et al. 2016a, de Silva et al. 2017). Being a complex genus, Colletotrichum has different lifestyles that vary between groups of species, many of which can switch between lifestyles (Promputtha et al. 2007, O’Connell et al. 2012). Most plant pathogenic taxa can change their relationships with the host at different stages of their life cycle. The physiological maturity and resistance of the hosts, environmental factors and virulence genes of the fungal taxa underpin the change (O’Connell et al. 2012, Stergiopoulos & Gordon 2014). Species of Colletotrichum undergo major transformations in cell morphology and infection mode when switching lifestyles (O’Connell et al. 2012). Specific gene families and biochemical interactions, such as the production of enzymes and secondary metabolites (Gan et al. 2016), regulate the lifestyle patterns of Colletotrichum species. Genomic- and transcriptomic-based research during the past decade has provided valuable insights into the relationship between genetics and lifestyles of Colletotrichum (Gan et al. 2013, 2016, 2019, Zeilinger et al. 2016). These studies have uncovered information on the evolution of lifestyles and their functional relationships and have also identified potential targets for control and management (Crouch et al. 2014). The available genomic data of Colletotrichum species comes from representatives of six independent species complexes (acutatum, destructivum, gloeosporioides, graminicola, orbiculare and spaethianum) and include endophytes, foliar and fruit pathogens (Liang et al. 2018). Comparative analyses of these genomes have revealed that Colletotrichum species may tailor their plant cell wall degrading enzymes and proteinases according to their lifestyle (O’Connell et al. 2012, Baroncelli et al. 2016, Hacquard et al. 2016). These genomes are also recorded to code for enzymes that catalyse the biosynthesis of secondary metabolites and are expressed in a phase-specific fashion (O’Connell et al. 2012). Understanding different lifestyles of Colletotrichum and interactions with their hosts is important for plant biosafety and quarantine purposes (Bourget et al. 2013). However, changes in lifestyle patterns during the life cycle of a Colletotrichum species make detection and control difficult (de Silva et al. 2017). It is important to realize that export/import provide venues for species of Colletotrichum to disperse in asymptomatic plant materials over long distances and may result in the introduction of a completely new disease to a country. Therefore, understanding the lifestyles of this genus is important when considering quarantine measures and world trade 520 (Newton et al. 2010, de Silva et al. 2017). In this section, we review the different lifestyles in Colletotrichum with examples. Biotrophic and hemibiotrophic lifestyles In a biotrophic lifestyle, the pathogen remains inside the living plant tissue and actively absorbs nutrients without killing the plant cells (Mendgen & Hahn 2002). Different strategies to avoid defence responses of the host, such as masking of invading hyphae or active suppression of the defence, are essential for a biotrophic parasitic lifestyle (Münch et al. 2008). Without a biotrophic phase, the initial death of host cells could lead to recognition and initiation of host defence responses that could inhibit fungal growth (Münch et al. 2008). Even though Colletotrichum is not considered a true biotroph, many species do have a biotrophic stage in their life cycle, which is followed by a necrotrophic lifestyle, and is referred to as hemibiotrophic. This strategy may also contribute to the prominence of Colletotrichum species as symptomless endophytes in living plant tissues (Rojas et al. 2010, Cannon et al. 2012). Nascent colonies of many species of Colletotrichum enter a biotrophic phase, while infected tissues remain externally symptomless. This period may be short (1-3 days) or extended (probably dormant) (Prusky & Plumbley 1992, Cannon et al. 2012). When Colletotrichum enters the necrotrophic stage, it results in the death of a significant number of plant cells, which is followed by the emergence of symptoms (Cannon et al. 2012, Jayawardena et al. 2016a). Depending on host development
Recommended publications
  • Soil Response to Cropping Sequences and Grazing Under Integrated Crop-Livestock System Hanxiao Feng South Dakota State
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2017 Soil Response to Cropping Sequences and Grazing Under Integrated Crop-livestock System Hanxiao Feng South Dakota State Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Agronomy and Crop Sciences Commons, and the Soil Science Commons Recommended Citation Feng, Hanxiao, "Soil Response to Cropping Sequences and Grazing Under Integrated Crop-livestock System" (2017). Theses and Dissertations. 2160. https://openprairie.sdstate.edu/etd/2160 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. SOIL RESPONSE TO CROPPING SEQUENCES AND GRAZING UNDER INTEGRATED CROP-LIVESTOCK SYSTEM BY HANXIAO FENG A thesis submitted in partial fulfillment of the requirement for the Master of Science Major in Plant Science South Dakota State University 2017 iii ACKNOWLEDGEMENTS Foremost, I would like to express my grateful thanks to my advisor, Dr. Sandeep Kumar for his continuous encouragement, useful suggestion, great patience, and excellent guidance throughout the whole study process. Without his support and help, careful review, and critical recommendation on several versions of this thesis manuscript, I could not finish this paper and my MS degree. I would also like to offer my sincere gratitude to all committee members, Dr. Shannon Osborne, Dr.
    [Show full text]
  • Cherry Leaf Spot
    CHERRY LEAF SPOT 695 maturely defoliated produced fewer blossoms the following year, the flowers were poorly developed and slower in opening, fewer cherries ripened, and the cherries were smaller. Many fruit spurs died, and the crop was greatly reduced on the spurs that survived. By reducing shoot growth and spur Cherry development, the defoliation lowered the yield for several years. Following the worst outbreak of Leaf Spot cherry leaf spot on record in the Cum- berland-Shenandoah Valley in 1945, thousands of sour cherry trees died and F. H. Lewis many others had severe injuries. In Virginia on trees defoliated in Cherry leaf spot, caused by the para- May and June of 1945, the average sitic fungus Coccomyces hiemalis^ is one of weight of the buds in late summer was the major factors that determine the 90 milligrams.' The buds on trees that cost of producing cherries and the had retained their foliage averaged 147 yield and quality of the fruit. milligrams in weight. The smaller buds The disease occurs on the sour did not have enough vitality to survive cherry, Prunus cerasus, sweet cherry, P, the winter. All unsprayed trees died. avium, and the mahaleb cherry, P, None of the trees died in one orchard mahaleb, wherever they are grown where sprays had delayed defoliation under conditions that favor the sur- 4 weeks or more. vival of the fungus. That includes our Heavy early defoliation in West Vir- eastern and central producing areas ginia in 1945 stimulated the produc- and the more humid areas in the West. tion of secondary growth on 64 percent Because it has been most serious on of the terminals about 2 weeks after sour cherry in the Eastern and Central harvest.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • 1 Etiology, Epidemiology and Management of Fruit Rot Of
    Etiology, Epidemiology and Management of Fruit Rot of Deciduous Holly in U.S. Nursery Production Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shan Lin Graduate Program in Plant Pathology The Ohio State University 2018 Dissertation Committee Dr. Francesca Peduto Hand, Advisor Dr. Anne E. Dorrance Dr. Laurence V. Madden Dr. Sally A. Miller 1 Copyrighted by Shan Lin 2018 2 Abstract Cut branches of deciduous holly (Ilex spp.) carrying shiny and colorful fruit are popularly used for holiday decorations in the United States. Since 2012, an emerging disease causing the fruit to rot was observed across Midwestern and Eastern U.S. nurseries. A variety of other symptoms were associated with the disease, including undersized, shriveled, and dull fruit, as well as leaf spots and early plant defoliation. The disease causal agents were identified by laboratory processing of symptomatic fruit collected from nine locations across four states over five years by means of morphological characterization, multi-locus phylogenetic analyses and pathogenicity assays. Alternaria alternata and a newly described species, Diaporthe ilicicola sp. nov., were identified as the primary pathogens associated with the disease, and A. arborescens, Colletotrichum fioriniae, C. nymphaeae, Epicoccum nigrum and species in the D. eres species complex were identified as minor pathogens in this disease complex. To determine the sources of pathogen inoculum in holly fields, and the growth stages of host susceptibility to fungal infections, we monitored the presence of these pathogens in different plant tissues (i.e., dormant twigs, mummified fruit, leaves and fruit), and we studied inoculum dynamics and assessed disease progression throughout the growing season in three Ohio nurseries exposed to natural inoculum over two consecutive years.
    [Show full text]
  • Endophytic Colletotrichum Species from Bletilla Ochracea (Orchidaceae), with Descriptions of Seven New Speices
    Fungal Diversity (2013) 61:139–164 DOI 10.1007/s13225-013-0254-5 Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new speices Gang Tao & Zuo-Yi Liu & Fang Liu & Ya-Hui Gao & Lei Cai Received: 20 May 2013 /Accepted: 1 July 2013 /Published online: 19 July 2013 # Mushroom Research Foundation 2013 Abstract Thirty-six strains of endophytic Colletotrichum ornamental plants and important research materials for coevo- species were isolated from leaves of Bletilla ochracea Schltr. lution between plants and fungi because of their special sym- (Orchidaceae) collected from 5 sites in Guizhou, China. biosis with mycorrhizal fungi (Zettler et al. 2004; Stark et al. Seventeen different species, including 7 new species (namely 2009; Nontachaiyapoom et al. 2010). Recently, the fungal C. bletillum, C. caudasporum, C. duyunensis, C. endophytum, communities in leaves and roots of orchid Bletilla ochracea C. excelsum-altitudum and C. guizhouensis and C. ochracea), have been investigated and the results indicated that there is a 8 previously described species (C. boninense, C. cereale, C. high diversity of endophytic fungi, including species from the destructivum, C. karstii, C. liriopes, C. miscanthi, C. genus Colletotrichum Corda (Tao et al. 2008, 2012). parsonsiae and C. tofieldiae) and 2 sterile mycelia were iden- Endophytic fungi live asymptomatically and internally with- tified. All of the taxa were identified based on morphology and in different tissues (e.g. leaves, roots) of host plants (Ganley phylogeny inferred from multi-locus sequences, including the and Newcombe 2006; Promputtha et al. 2007; Hoffman and nuclear ribosomal internal transcribed spacer (ITS) region, Arnold 2008).
    [Show full text]
  • In Vitro Efficacy of Fungicides and Bioagents Against Wilt of Pigeonpea Caused by Neocosmospora Vasinfecta
    RESEARCH ARTICLE SCIENCE INTERNATIONAL DOI: 10.17311/sciintl.2015.82.84 In vitro Efficacy of Fungicides and Bioagents Against Wilt of Pigeonpea Caused by Neocosmospora vasinfecta 1R.R. Khadse, 1G.K. Giri, 2S.A. Raut and 1B.B. Bhoye 1Department of Plant Pathology, Dr. Panjabrao Deashmukh Krishi Vidyapeeth, Akola, India 2Mahatma Phule Agricultural University, Rahuri, Dist Ahmednagar, India ABSTRACT Background: Pigeon pea (Cajanus cajan) is one of the important leguminous crop of the tropics and subtropics and is infected by the wilt pathogen Neocosmospora vasinfecta in addition to Fusarium udum. Objective: Hence, the study was undertaken to see the in vitro effect of different fungicides (Thiram 75 WP, Carbendazim 50 WP, Chlorothalonil 75 WP, Metalaxyl MZ 72 WP, Thiram+Cabendazim (2:1), Carbendazim+mancozeb 75 WP, Tricyclazole+Mancozeb 80 WP, Zineb+Hexaconazole 72 WP) and bioagents (Trichoderma harzianum, Pseudomonas fluorescens, Bacillus subtilis) against the pathogen. Methodology: The efficacy of fungicides was assayed by poisoned food technique and of bioagents was assayed by dual culture technique. Results: It was found that among eight fungicides tested carbendazim (0.1%), combination of carbendazim+mancozeb (0.2 %) and thiram+carbendazim 2:1 (0.3%) exhibited cent per cent inhibition of N. vasinfecta, other fungicides were also significant over control. Whereas among bioagents tested, Trichoderma herzianum (50.30%) showed maximum per cent growth inhibition of the pathogen followed by Bacillus subtilis (41.47%). Conclusion: Thus it was proved that the fungicides viz. carbendazim, combinations of carbendazim+mancozeb and thiram+carbendazim as well as bioagent, T. herzianum were effective against Neocosmospora wilt of pigeon pea under in vitro condition.
    [Show full text]
  • Inventory of Taxa for the Fitzgerald River National Park
    Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract ..............................................................................................................................
    [Show full text]
  • I POTENSI Trichoderma Spp. ASAL AKAR KOPI DALAM MENEKAN PERKEMBANGAN Colletotrichum Sp
    POTENSI Trichoderma spp. ASAL AKAR KOPI DALAM MENEKAN PERKEMBANGAN Colletotrichum sp. PENYEBAB PENYAKIT ANTRAKNOSA DIDIANA YANUARITA MOLEBILA P4100215301 PROGRAM MAGISTER ILMU HAMA DAN PENYAKIT TUMBUHAN FAKULTAS PERTANIAN UNIVERSITAS HASANUDDIN MAKASSAR 2017 i POTENSI Trichoderma spp. ASAL AKAR KOPI DALAM MENEKAN PERKEMBANGAN Colletotrichum sp. PENYEBAB PENYAKIT ANTRAKNOSA TESIS Sebagai Salah Satu Syarat Untuk Mencapai Gelar Magister Program Studi Ilmu Hama Dan Penyakit Tumbuhan Disusun dan Diajukan oleh : DIDIANA YANUARITA MOLEBILA Nomor Pokok : P4100215301 PROGRAM MAGISTER ILMU HAMA DAN PENYAKIT TUMBUHAN FAKULTAS PERTANIAN UNIVERSITAS HASANUDDIN MAKASSAR 2017 TESIS POTENSI Trichoderma spp. ASAL AKAR KOPI DALAM MENEKAN PERKEMBANGAN Colletotrichum sp. PENYEBAB PENYAKIT ANTRAKNOSA Disusun dan diajukan oleh : DIDIANA YANUARITA MOLEBILA Nomor Pokok : P4100215301 Telah dipertahankan di depan Panitia Ujian Tesis pada tanggal 28 November 2017 dan dinyatakan telah memenuhi syarat Menyetujui, Komisi Penasehat Prof. Dr. Ir. Ade Rosmana, DEA Dr. Ir. Untung Surapaty T, M.Sc Ketua Anggota Ketua Program Studi Magister Dekan Fakultas Pertanian Ilmu Hama dan Penyakit Tumbuhan, Universitas Hasanuddin, Prof. Dr. Ir. Nur Amin, Dipl. Ing. Agr Prof. Dr. Ir. Sumbangan Baja,M.Phill PERNYATAAN KEASLIAN TESIS Yang bertanda tangan di bawah ini : Nama : Didiana Yanuarita Molebila NIM : P4100215301 Program Studi : Ilmu Hama dan Penyakit Tumbuhan Menyatakan dengan sebenar – benarnya bahwa tesis yang saya tulis ini benar–benar merupakan hasil karya saya sendiri dan bukan merupakan pengambilalihan tulisan atau pemikiran orang lain. Apabila dikemudian hari terbukti atau dapat dibuktikan bahwa sebagian atau keseluruhan tesis ini adalah hasil karya orang lain maka saya bersedia menerima sanksi atas perbuatan tersebut. Makassar, November 2017 Yang menyatakan Didiana Y. Molebila ABSTRAK DIDIANA YANUARITA MOLEBILA.
    [Show full text]
  • Colletotrichum – Names in Current Use
    Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center,
    [Show full text]
  • March - May 2002 REGISTRATIONS
    NEW ORCHID HYBRIDS March - May 2002 REGISTRATIONS Supplied by the Royal Horticultural Society as International Cultivar Registration Authority for Orchid Hybrids NAME PARENTAGE REGISTERED BY (O/U = Originator unknown) AËRIDOVANDA Diane de Olazarra Aër. lawrenceae x V. Robert's Delight R.F. Orchids ANGULOCASTE Shimazaki Lyc. Concentration x Angcst. Olympus Kokusai(J.Shimazaki) ASCOCENDA Adkins Calm Sky Ascda. Meda Arnold x Ascda. Adkins Purple Sea Adkins Orch.(O/U) Adkins Purple Sea Ascda. Navy Blue x V. Varavuth Adkins Orch.(O/U) Gold Sparkler Ascda. Crownfox Sparkler x Ascda. Fuchs Gold R.F. Orchids Marty Brick V. lamellata x Ascda. Motes Mandarin Motes Mary Zick V. Doctor Anek x Ascda. Crownfox Inferno R.F. Orchids Mary's Friend Valerie Ascda. John De Biase x Ascda. Nopawan Motes Thai Classic V. Kultana Gold x Ascda. Fuchs Gold How Wai Ron(R.F.Orchids) BARDENDRUM Cosmo-Pixie Bard. Nanboh Pixy x Bark. skinneri Kokusai Pink Cloud Epi. centradenium x Bark. whartoniana Hoosier(Glicenstein/Hoosier) Risque Epi. Phillips Jesup x Bark. whartoniana Hoosier(Glicenstein/Hoosier) BRASSOCATTLEYA Ernesto Alavarce Bc. Pastoral x C. Nerto R.B.Cooke(R.Altenburg) Maidosa Bc. Maikai x B. nodosa S.Benjamin Nobile's Pink Pitch Bc. Pink Dinah x Bc. Orglade's Pink Paws S.Barani BRASSOLAELIOCATTLEYA Angel's Glory Bl. Morning Glory x C. Angelwalker H & R Beautiful Morning Bl. Morning Glory x Lc. Bonanza Queen H & R Castle Titanic Blc. Oconee x Lc. Florália's Triumph Orchidcastle Clearwater Gold Blc. Waikiki Gold x Blc. Yellow Peril R.B.Cooke(O/U) Copper Clad Lc. Lee Langford x Blc.
    [Show full text]
  • Vegetable Gardening Vegetable Gardening
    TheThe AmericanAmerican GARDENERGARDENER® The Magazine of the American Horticultural Society January / February 2009 Vegetable Gardening tips for success New Plants and TTrendsrends for 2009 How to Prune Deciduous Shrubs Sweet Rewards of Indoor Citrus Confidence shows. Because a mistake can ruin an entire gardening season, passionate gardeners don’t like to take chances. That’s why there’s Osmocote® Smart-Release® Plant Food. It’s guaranteed not to burn when used as directed, and the granules don’t easily wash away, no matter how much you water. Better still, Osmocote feeds plants continuously and consistently for four full months, so you can garden with confidence. Maybe that’s why passionate gardeners have trusted Osmocote for 40 years. Looking for expert advice and answers to your gardening questions? Visit PlantersPlace.com — a fresh, new online gardening community. © 2007, Scotts-Sierra Horticulture Products Company. World rights reserved. www.osmocote.com contents Volume 88, Number 1 . January / February 2009 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM AHS Renee’s Garden sponsors 2009 Seed Exchange, Stanley Smith Horticultural Trust grant funds future library at River Farm, AHS welcomes new members to Board of Directors, save the date for the 17th annual National Children & Youth Garden Symposium in July. 42 ONE ON ONE WITH… Bonnie Harper-Lore, America’s roadside ecologist. page 14 44 GARDENER’S NOTEBOOK All-America Selections winners for 2009, scientists discover new plant hormone, NEW PLANTS AND TRENDS FOR 2009 BY DOREEN G. HOWARD 14 Massachusetts Horticultural Society forced Get a sneak peek at some of the exciting plants that will hit the to cancel one of market this year, along with expert insight on garden trends.
    [Show full text]
  • SG Vol 20 2001.Pdf
    ISSN 0394-9125 STUDIA GEOBOTANICA An international journal Voi. 20 2001 EDITORS G. Cristofolini - Bologna Lj. llianic' - Zagreb E. Mayer - Ljubljana P.L. Nimis - Trieste L. Orlòci - London, On. F. Pedrotti - Camerino S. Pignatti - Roma A. Pirola - Pavia L. Poldini - Trieste E. Wikus Pignatti - Trieste MANAGING EDITOR M. Tretiach - Trieste SECRETARY M. Codogno - Trieste Dipartimento di Biologia Sezione di Geobotanica ed Ecologia vegetale Università di Trieste Studia Geobotanica. Voi. 20: 3-16 (2001) MALLEE COMMUNITIES ALONG ROADSIDES IN SOUTH-WESTERN AUSTRALIA Erika PIGNATTI WIKUS ', Giuseppe PIGNATTI 2 and Stephen D. HOPPER' ' Dipartimento di Biologia, Università di Trieste, Via Giorgieri I O, l-34127 Trieste, ltaly. 2 Istituto Sperimentale per la Selvicoltura, Viale S. Margherita 80, l-52100 Arezzo, ltaly. 3 Botanic Gardens and Parks Authority, Kings Park & Botanic Garden, West Perth, 6005 Western Australia. Keywords: conservation, Eucalyptus, mallee vegetation, phytosociology, Western Australia. Abstract: Vegetation with eucalypts of the mallee type along four roadside transects in the South-West of Western Australia has been studied. Mallee communities occur under dry-mediterranean climate conditions. Species composition, diversity and turnover, locai endemism with particular regard to Euca/yptus and Acacia species and habitat conservation are discussed. Introduction Mallee eucalypts are many-branched evergreen A von, Roe and Eyre, and is the major agricultural shrubs with woody stems of about 2-4 m height Wheatbelt of the southwest
    [Show full text]