Cherry Leaf Spot

Total Page:16

File Type:pdf, Size:1020Kb

Cherry Leaf Spot CHERRY LEAF SPOT 695 maturely defoliated produced fewer blossoms the following year, the flowers were poorly developed and slower in opening, fewer cherries ripened, and the cherries were smaller. Many fruit spurs died, and the crop was greatly reduced on the spurs that survived. By reducing shoot growth and spur Cherry development, the defoliation lowered the yield for several years. Following the worst outbreak of Leaf Spot cherry leaf spot on record in the Cum- berland-Shenandoah Valley in 1945, thousands of sour cherry trees died and F. H. Lewis many others had severe injuries. In Virginia on trees defoliated in Cherry leaf spot, caused by the para- May and June of 1945, the average sitic fungus Coccomyces hiemalis^ is one of weight of the buds in late summer was the major factors that determine the 90 milligrams.' The buds on trees that cost of producing cherries and the had retained their foliage averaged 147 yield and quality of the fruit. milligrams in weight. The smaller buds The disease occurs on the sour did not have enough vitality to survive cherry, Prunus cerasus, sweet cherry, P, the winter. All unsprayed trees died. avium, and the mahaleb cherry, P, None of the trees died in one orchard mahaleb, wherever they are grown where sprays had delayed defoliation under conditions that favor the sur- 4 weeks or more. vival of the fungus. That includes our Heavy early defoliation in West Vir- eastern and central producing areas ginia in 1945 stimulated the produc- and the more humid areas in the West. tion of secondary growth on 64 percent Because it has been most serious on of the terminals about 2 weeks after sour cherry in the Eastern and Central harvest. The secondary leaves were States, this discussion largely concerns soon lost to leaf spot, and some ter- the experimental work on sour cherry tiary growth developed. Following in those regions. this poor control of leaf spot, an esti- The losses are due primarily to the mated 72 percent of the branches were injury the disease does to the leaves, killed the following winter. Those trees which become yellow and drop. Fail- bore almost no fruit in 1946. ure to control leaf spot on sour cherry, Early defoliation in 1945 in Pennsyl- with consequent defoliation of the vania was followed by the death of trees before harvest, usually results in more than 25,000 trees, besides general a crop of low-quality and unattractive killing of shoots, spurs, and branches, fruit of light-red color. The fruit often and a light crop of poor fruit in 1946. is low in soluble solids, including sug- Delay of the first leaf spot spray ap- ars, has a flat, watery taste, and may be plication until 10 to 12 days after unsalable. While such fruit may mean petal* fall in one orchard of about 100 the loss of the crop for a season, that acres resulted in general leaf spot loss is sometimes less important than infection and death of all of the trees other losses brought about by the loss in the orchard worth, at that time, of the leaves. close to $100,000. In no case in the Studies by W. G. Dutton and H. M. area did an orchard defoliated in Wells, of the Michigan Agricultural June of 1945 escape without severe Experiment Station, after the early injury or death during the following defoliation of unsprayed trees in 1922, winter. Where defoliation was delayed showed that trees that had been pre- but virtually complete in July within 696 YEARBOOK OF AGRICULTURE 1953 3 weeks after harvest, severe injury Little information is available re- occurred, but most of the trees sur- garding losses from premature de- vived. If leaf spot was controlled until foliation by leaf spot on sweet cherries late September the trees were not in the orchard. Orchard trees of sweet injured. cherry commonly are less injured by In the block of young trees used for leaf spot than is the sour cherry. The experimental spraying in Pennsylvania effects of the disease appear to be like in 1945, about one-third of the leaves those on sour cherry. remained on unsprayed trees i week The part of the losses from cherry before harvest. The increase in trunk leaf spot attributable to the cost of the size of the trees during that summer control program varies greatly among was less than half as great as on trees the different producing areas. The where leaf spot was controlled. No cost evidently is least in some sections trees died during the following winter. of California and greatest in the sec- Killing of shoots and spurs was general tions of the East that have the longest on the unsprayed trees, and the growing season. Some growers spray bloom in 1946 was very light in com- one or two times; others do so eight parison with adjacent sprayed trees. or nine times each season, besides The 1946 crop of cherries on the trees cultivating the orchard in the spring. unsprayed in 1945 remained of poor The total cost of the control program color until just before harvest. Then often exceeds 75 dollars an acre each they darkened rapidly and unevenly year on sour cherries in the Cumber- and shriveled and dried during an land Valley of south central Pennsyl- abnormally short harvest season. The vania. Probably a fair estimate for yield.in 1946 averaged 36.Q pounds to the Great Lakes districts is 35 to 50 the tree; 56 percent of the cherries dollars. Those programs also control on the trees unsprayed in 1945 graded other diseases and insects. About one- No. I. Trees on which leaf spot was third to two-thirds of the cost could controlled best in 1945 had an average be eliminated if leaf spot were absent. of 107 pounds each, 79 percent of which graded No. i. LEAF SPOT normally appears on sour Those examples illustrate the fact cherry on the upper surface of the leaf that the losses from premature de- as a small interveinal spot of dying foliation in one year by leaf spot on tissue of variable color. The spot sour cherries may reduce quantity rapidly enlarges, becomes brown to and quality of fruit for 2 years or purple, and dies from the center more or may weaken a tree so that.it outward. The spots are irregular or cannot survive the following winter. round and may occur over the entire Such severe attacks are not general: surface. The individual spots never The disease usually is kept under fair become large, but they may merge and control. so kill large areas of the leaf. The The losses from premature defolia- appearance of many spots on the leaf tion by cherry leaf spot on nursery usually precedes rapid yellowing and stock of the sour cherry, sweet cherry, dropping. The spots may separate from and Prunus mahaleh are usually Caused the healthy tissue, drop out, and make by failure of many of the buds to grow a shot-hole condition. on the weakened rootstocks and failure The appearance of the spot on the of the trees to grow to salable size in a upper surface usually is accompanied year. Failure to control leaf spot on or preceded by a pink mass of fungus the rapidly growing seedlings of sweet spores on the lower surface. The mass cherry has been a reason w^hy some may be more or less columnar, eastern nurserymen have been re- following its extrusion through a small luctant to propagate sour cherry on hole in the leaf surface or it may be a rootstocks of sweet cherry. somewhat hemispherical mass, follow- CHERRY LEAF SPOT 697 ing weathering and drying. It may be Higgins. In no case did the Coccomyces absent or difíicuit to locate after a long isolate from any two Prunus species period of dry weather or if the fungus show exactly the same host relation- in the lesion is killed by a fungicide. ships. Further, the same isolate com- Leaf spot infection on the fruit stems monly infected different hosts with (pedicels) and fruit are unusual and different degrees of severity, varying often hard to identify. Such lesions are from slight flecking to abundant usually small and brown, without the production of typical leaf spots. He spore masses of the fungus on them. tentatively grouped the fungi as The symptoms of leaf spot on other follows according to the plant from species of cherry are somewhat like which they were obtained. Prunus those on sour cherry. On sweet cerasus^ P. avium, P. mahaleb^ and P. cherry, the spots are often larger and pennsylvanica; P. domestica; P. virginiana; more nearly circular in shape than and P. serótina. Prunus mahaleb was those on sour cherry. The spore masses susceptible to isolates of all four of the fungus, particularly on sweet groups. P. cerasus was infected only by cherry seedlings, are often present in isolates from Group i. large numbers on the upper surface of J. B. Mowry, of the Indiana Agri- the leaf. Prunus mahaleb has some cultural Experiment Station, reported tendency to show a chlorotic ring in 1951 the inoculation of 66 species, around the young lesion, and the dead varieties, and hybrids of Prunus with spots rarely drop out. Other species single-spore cultures of Coccomyces. He like the chokecherry, Prunus virginiana, added Prunus fruticosa to Keitt's Group are more apt to show shot hole than I. He obtained infections on sour cher- the sour cherry. ry and Prunus mahaleb with the isolate from P.
Recommended publications
  • Effect of Foliar Fungicides on Relative Chlorophyll Content, Green Leaf Area, Yield and Test Weight of Winter Wheat
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SHAREOK repository EFFECT OF FOLIAR FUNGICIDES ON RELATIVE CHLOROPHYLL CONTENT, GREEN LEAF AREA, YIELD AND TEST WEIGHT OF WINTER WHEAT By NATHALIA GRAF-GRACHET Bachelor of Science in Agricultural Engineering Universidade Federal de São Carlos Araras, São Paulo, Brazil 2012 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2015 EFFECT OF FOLIAR FUNGICIDES ON RELATIVE CHLOROPHYLL CONTENT, GREEN LEAF AREA, YIELD AND TEST WEIGHT OF WINTER WHEAT Thesis Approved: Dr. Robert M. Hunger Thesis Adviser Dr. John Damicone Dr. Jeffrey Edwards Dr. Mark Payton ii ACKNOWLEDGEMENTS I express my immense gratitude to my adviser, Dr. Robert Hunger. I am not able to describe the impact his guidance has had in my life. It is certainly beyond everything I ever deserved. I am very fortunate for having such an extraordinary mentor. For her guidance, I express my sincere gratitude to Dr. Carla Garzon, who kindly offered me incredible opportunities at OSU. A special thank you to all faculty and staff members of the Department of Entomology and Plant Pathology. I extend this special thank you to all the friends I have made here in the US, and to my dearest friends in Brazil. I am extremely lucky for having such amazing people in my life. Finally, I express my simple gratitude to my parents and sister, Mario, Roseli and Marina, who are the most important people in my life.
    [Show full text]
  • Investigation of Biological Peculiarities of Blumeriella Jaapii
    Plant Protection Science – 2002 Investigation of Biological Peculiarities of Blumeriella jaapii A. VALIUSHKAITE Plant Protection Laboratory, Lithuanian Institute of Horticulture, LT-4335 Babtai, Kaunas District, Lithuania E-mail: [email protected] Abstract Leaf spot pathogen is characterized as a highly developed parasite after investigation of development peculiarities of the fungus in pure culture and natural conditions. The degree of correlation depended on the medium. Impact of incubation temperature on Blumeriella jaapii (Rehm) Arx growth was different. Fungi colonies formed more intensively and their diameter increased significantly under higher temperature. Optimal conditions for the disease prevalence are 15–20°C and moisture. Relative humidity and precipitation influenced maturation of ascomycetes and discharge of ascospores (r = +0.89). Microscopic analysis of leaves showed that during winter thaw, when the average temperature is about 0 ± 5ºC and relative humidity is higher than 70%, was possible to detect mature ascomycetes and conidia. It is possible to affirm that lower temperature than it was assumed is sufficient for formation of ascomycetes. Keywords: Blumeriella jaapii; sour cherry; cherry leaf spot; medium, mycelium; growth speed; conditions INTRODUCTION expendient to investigate the biological peculiarities of Blumeriella jaapii. Cherry leaf spot, caused by Blumeriella jaapii (Rehm) Arx (syn. Coccomyces hiemlis Higg.), is a MATERIALS AND METHODS widespread disease of sour cherry (Prunus cerasus L.). It is a major disease of sour cherries in North In 1996–1999 the fungus Blumeriella jaapii, a patho- America (SJULIN et al. 1989), and in Europe serious gen of sour cherry leaf spot, and the accompanying losses have been reported in Poland (BIELENIN et al.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Cherry Leaf Spot, RPD No
    report on RPD No. 800 PLANT September 1995 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CHERRY LEAF SPOT Cherry leaf spot is caused by the fungus Higginsia (Coccomyces) hiemalis. It is one of the most serious diseases of sweet and sour cherries in the Midwest. Trees are often defoliated by midsummer and sometimes produce dwarfed, unevenly ripened, soft, and watery fruit with an insipid taste. Repeated defoliation results in: (1) devitalized trees that are more susceptible to winter injury, (2) small and weak fruit buds; (3) the death of fruit spurs; (4) a reduction of fruit set and size; (5) reduced shoot growth; and (6) tree death. SYMPTOMS Figure 1. Spots on cherry leaves begin as discrete brown spots with a distinct border. Cherry leaf spot generally affects the leaves, but lesions can occur on the fruit, leaf stems (petioles), and fruit stems (pedicels). During the latter part of May and the first half of June, small circular purple spots appear on upper leaf surfaces (Figure 1). These spots gradually enlarge to 1/4 inch in diameter (6 millimeters) and turn reddish brown to purple with a definite border. On sweet cherry leaves the lesions are often larger and more nearly circular than those on sour cherry. Lesions often merge, producing a large irregular spot. During damp weather, white to light pink masses of sticky spores (conidia) form on the underside Figure 2. Leaves, particularly on sour cherries, turn bright of the leaves in the center of the spots. After six yellow immediately prior to dropping.
    [Show full text]
  • Cephaleuros Species, the Plant-Parasitic Green Algae
    Plant Disease Aug. 2008 PD-43 Cephaleuros Species, the Plant-Parasitic Green Algae Scot C. Nelson Department of Plant and Environmental Protection Sciences ephaleuros species are filamentous green algae For information on other Cephaleuros species and and parasites of higher plants. In Hawai‘i, at least their diseases in our region, please refer to the technical twoC of horticultural importance are known: Cephaleu- report by Fred Brooks (in References). To see images of ros virescens and Cephaleuros parasiticus. Typically Cephaleuros minimus on noni in American Samoa, visit harmless, generally causing minor diseases character- the Hawai‘i Pest and Disease Image Gallery (www.ctahr. ized by negligible leaf spots, on certain crops in moist hawaii.edu/nelsons/Misc), and click on “noni.” environments these algal diseases can cause economic injury to plant leaves, fruits, and stems. C. virescens is The pathogen the most frequently reported algal pathogen of higher The disease is called algal leaf spot, algal fruit spot, and plants worldwide and has the broadest host range among green scurf; Cephaleuros infections on tea and coffee Cephaleuros species. Frequent rains and warm weather plants have been called “red rust.” These are aerophilic, are favorable conditions for these pathogens. For hosts, filamentous green algae. Although aerophilic and ter- poor plant nutrition, poor soil drainage, and stagnant air restrial, they require a film of water to complete their are predisposing factors to infection by the algae. life cycles. The genus Cephaleuros is a member of the Symptoms and crop damage can vary greatly depend- Trentepohliales and a unique order, Chlorophyta, which ing on the combination of Cephaleuros species, hosts and contains the photosynthetic organisms known as green environments.
    [Show full text]
  • Plant Pathology
    Plant Pathology 330-1 Reading / Reference Materials CSU Extension Fact Sheets o Aspen and poplar leaf spots – #2.920 o Backyard orchard: apples and pears [pest management] – #2.800 o Backyard orchard: stone fruits [pest management] – #2.804 o Bacterial wetwood – #2.910 o Cytospora canker – #2.937 o Diseases of roses in Colorado – #2.946 o Dollar spot disease of turfgrass – #2.933 o Dutch elm disease – #5.506 o Dwarf mistletoe management – #2.925 o Fairy ring in turfgrass – #2.908 o Fire blight – #2.907 o Forest fire – Insects and diseases associated with forest fires – #6.309 o Friendly pesticides for home gardens – #2.945 o Greenhouse plant viruses (TSWV-INSV) – #2.947 o Honeylocust diseases – #2.939 o Juniper-hawthorn rust – #2.904 o Juniper-hawthorn rust – #2.904 o Leaf spot and melting out diseases – #2.909 o Necrotic ring spot in turfgrass – #2.900 o Non-chemical disease control – #2.903 o Pesticides – Friendly pesticides for home gardens – #2.945 o Pinyon pine insects and diseases – #2.948 o Powdery mildew – #2.902 o Roses – Diseases of roses in Colorado – #2.946 o Russian olive decline and gummosis – #2.942 o Strawberry diseases – #2.931 o Sycamore anthracnose – #2.930 CSU Extension Publications o Insects and diseases of woody plants of the central Rockies – 506A Curriculum developed by Mary Small, CSU Extension, Jefferson County • Colorado State University, U.S. Department of Agriculture and Colorado counties cooperating. • CSU Extension programs are available to all without discrimination. • No endorsement of products named is intended, nor is criticism implied of products not mentioned.
    [Show full text]
  • Of Tart Cherry
    Tart Cherry Pest Management in the Future: Development of a Strategic Plan Project Initiated by Industry Committee: Dec. 1999 Workshop for Planning / Outline Development: May 5, 2000 Industry Draft Review: May 19 – May 25, 2000 Workshop for Industry Review / Draft Revisions: May 26, 2000 Final Industry Review/Revision: Nov. 2000 – April 2001 Workshop to Update PMSP: Dec. 28, 2006 Industry Update Review/Submission: Dec. 28 – Jan. 26, 2007 Industry Update Review/Submission: June, 2011 Tart Cherry Pest Management Strategic Plan, 2011 Contributors to the 2011 update material for this Document: 1. Dr. Mark Whalon, Professor, Department of Entomology, B-11 Center for Integrated Plant Systems, Michigan State University, East Lansing, MI 48824 2. Tyler Ash, Research Assistant, Department of Entomology, B-11 Center for Integrated Plant Systems, Michigan State University, East Lansing, MI 48824 3. Paul Glasser, Research Assistant, Department of Entomology, B-11 Center for Integrated Plant Systems, Michigan State University, East Lansing, MI 48824 4. Jeanette Wilson, Research Assistant, Department of Entomology, B-11 Center for Integrated Plant Systems, Michigan State University, East Lansing, MI 48824 5. Jim Laubach, Private Crop Consultant, HortSystems, Inc., 10195 Dymond Rd., Honor, MI 49640 6. Dr. Larry Gut, Associate Professor, Department of Entomology, 205 Center for Integrated Plant Systems, Michigan State University, East Lansing, MI 48824 7. Francis Otto, Cherry Bay Orchards, 13455 S. Coleman Rd., Empire, MI 49630 8. Dr. Nikki Rothwell, Coordinator, Northwest Michigan Horticultural Research Station, 6686 S. Center Highway, Traverse City, MI 49684 9. Jeff Send, Cherry Grower, Cherry Lane Farms, 2866 Lee Point Rd., Suttons Bay, MI 49682 10.
    [Show full text]
  • Fungicide Application and Residues in Control of Blumeriella Jaapii (Rehm) Arx in Sweet Cherry
    Emirates Journal of Food and Agriculture. 2021. 33(3): 253-259 doi: 10.9755/ejfa.2021.v33.i3.2659 http://www.ejfa.me/ RESEARCH ARTICLE Fungicide application and residues in control of Blumeriella jaapii (Rehm) Arx in sweet cherry Vladimir Božić1, Slavica Vuković2, Mila Grahovac2, Sanja Lazić2, Goran Aleksić3, Dragana Šunjka2 1CI “Plant protection”, Toplicki partizanski odred 151, Niš, Serbia, 2University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovica 8, Novi Sad, Serbia, 3Institute of Plant Protection and Environment, Teodora Drajzera 9, Belgrade, Serbia ABSTRACT Fungicides are significant disease control tool in increasing agricultural production, however, their intensive application has led to environmental problems including health hazards. To minimize harmful effects of the fungicide application in sweet cherry orchards, it is necessary to use them in accordance with the good agricultural practice and to monitor presence of their residues. Cherry leaf spot caused by Blumeriella jaapii is a significant sweet cherry disease which control is heavily dependent on fungicide treatments. In this study, effects of fungicide treatments against B. jaapii and fungicide residues remaining in sweet cherry fruits after the treatments were evaluated, and the causal agent of cherry leaf spot was confirmed on cherry leaves from untreated control plots using conventional phytopathological techniques (isolation on nutrient media and morphological traits of developed fungal colonies). The trial was set up at two localities in south Serbia (District of Niš), in sweet cherry orchards, according to EPPO methods. Fungicides tested against B. jaapii were based on dodine (650 g a.i./kg) WP formulation, at concentration of 0.1% and mancozeb (800 g a.i./kg) WP formulation, at concentration of 0.25%.
    [Show full text]
  • Angular Leaf Spot of Cucumber in Japan
    Angular Leaf Spot of Cucumber in Japan YASUMASA WATANABE* and AKIRA OHUCHI** * National Institute of Agricultural Sciences (Yatabe,Ibaraki, 305 Japan) * Hokuriku National Agricultural Experiment Station (Inada, Joetsu,Niigata, 943-01 Japan) Cucumber angular leaf spot is one of the culture, Forestry and Fisheries organized a most prevalent diseases of cucumber (cucur­ co-operative research program "Studies on bit) in Japan. The affected fields covered the integrated control of bacterial diseases in 6,240 hectares in 1980, accounting for about cucurbits"23> which lasted four years from a half of the total cucumber-planted area in­ 1976 to 1979, in order to establish a combined cluding plastic house cultivation. cultural and chemical control procedure. The The first incidence of cucumber angular authors will describe outline of the results leaf spot in Japan was reported by Tominaga obtained in this research program. & TsuchiyaH> in 1957. Since Mukoo et al.OJ recognized its severe incidence in Kanto dis­ Causal bacterium trict in 1971, it has spread throughout Japan. The causal bacterium not only produces Ohuchi et al.O> examined more than one spotted lesions on cucumber leaves ( Plate 1) hundred isolates collected from affected cu­ but also affects cucumber fruit (Plate 2) , fol­ cumber plants which were distributed in the lowed by entire decay of the fruit. various parts of Japan and identified 110 The disease was so severe in cucumber­ isolates as Pseuclomonas syringae pv. Zachry­ growing districts that the Ministry of Agri- mans (Smith & Bryan 1915) Young, Dye & Plate 1. Typical symptom of cucumber angular leaf spot on leaf 113 isolates by needle pricking on cucumber fruit segments and incubating in moist chamber at 24 °C.
    [Show full text]
  • Common Diseases and Symptoms of Woody Ornamentals, Bedding Plants, Fruits, Vegetables, Turfgrasses and Grains
    Appendix A: Common diseases and symptoms of woody ornamentals, bedding plants, fruits, vegetables, turfgrasses and grains. (Adopted from the Tennessee Master Gardener Plant Pathology chapter with permission from A. Windham, UT Extension) Descriptions of Common Disease Problems and Management Tactics of Woody Ornamentals Disease and Description Management Strategies Ash (Fraxinus) Anthracnose (fungal) Rake and compost, or destroy, leaves. For valuable Symptoms: Large brown lesions on leaves and premature leaf specimen trees that have a history of anthracnose, apply a drop. Defoliated branches often produce new leaves by mid- fungicide spray when buds begin to open. Repeat at 10 to summer. White ash is more susceptible to anthracnose than 14-day intervals. green ash. Azalea (Rhododendron) Prune out diseased branches. Irrigate and fertilize to Phomopsis Canker (fungal) stimulate vigorous growth. Symptoms: Individual branches wilt and die. Buy disease free plants. Plant in well-drained soils. If planting in areas where water stands or in poorly drained soils, use raised beds. Soil can be amended with 4 inches of pine bark to improve drainage. Do not irrigate excessively. Phytophthora Root Rot (fungal) Azalea cultivars resistant to root rot include Rhododendron Symptoms: Plants may wilt rapidly, even with adequate soil yedoense var. poukhanense, Glenn Dale hybrids: Fakir, moisture. Diseased roots are dark reddish-brown. May spread Glacier, Merlin and Polar Seas; Back Acre hybrids: Corrine rapidly in nurseries with poor sanitation. Root rot may be Murrah and Rachel Cunningham; Pericat hybrids: Hapton more severe in poorly drained clay soils. Beauty and Sweetheart Supreme; Satsuki hybrids: Higasa, Eikan, Shinkigen and Pink Gumpo; Gable hybrid: Rose Greeley; Rutherfordiana hybrid: Alaska; Kurume hybrid: Morning Glow; and Carla hybrids: Fred D.
    [Show full text]
  • Container Production of Coreopsis Floridana
    SNA Research Conference Vol. 56 2011 Pathology and Nematology Pathology Section 192 SNA Research Conference Vol. 56 2011 Determine the Efficacy of Biological Fungicides for Control of Pythium Stem and Root Rot in Poinsettia Mengmeng Gu, Ph.D, Plant and Soil Sciences Maria Tomaso-Peterson, Ph.D, Entomology and Plant Pathology Yan Zhao, Plant and Soil Sciences Mississippi State University, MS 39762 [email protected] Index words: P. aphanidermatum, poinsettia stem and root rot, biological fungicides, conventional fungicides. Significance to Industry: Pythium stem and root rot is considered the most consistent and serious soil-borne disease problem in poinsettia production. Production greenhouse management practices typically include a fungicide drench when cuttings are transplanted. The standard conventional fungicide in the industry is mefenoxam (metalaxyl) (Subdue Maxx) a high risk fungicide for resistance, which targets RNA polymerase I in nucleic acid synthesis. Fungicide insensitivity metalaxyl exists in P. aphanidermatum isolated from turfgrass as well as poinsettia roots. Resistance management is a vital component of greenhouse production of floriculture crops when pathogens such as Pythium spp. are the target fungi. A key component of resistance management is integrating biofungicides into a disease management program. Nature of Work: Pythium stem and root rot is favored by cool, saturated, poorly drained soils. Moderately low soil temperatures reduces water usage by plants, which favors Pythium stem and root rot in greenhouse production systems. Other factors that favor disease development in poinsettias include excessive fertilizer levels and high pH. The pathogen typically attacks below the soil surface and may extend up into the base of the stem.
    [Show full text]