Stellar Structure and Compact Objects Before 1940: Towards Relativistic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Concept of Degenerate Stars: the Case of White Dwarfs
On the concept of degenerate stars: the case of white dwarfs Michael Rotondo - Istituto di Istruzione Superiore Statale “Pacinotti-Archimede”, Roma - [email protected] Abstract: In this work we briefly review the history of degenerate stars from the first introduction of Fermi-Dirac quantum statistics to the first unified approach of white dwarfs, based on the relativistic generalization of the Feynman-Metropolis-Teller of compressed atoms, which takes into account consistently the gravitational, the weak, the strong and the electromagnetic interactions. Keywords:History of astrophysics, Compact stars, Degenerate Fermi gas 1. Prologue: Adams and Eddington Exactly one century ago Walter S. Adams published a paper entitled “The Spectrum of the Companion of Sirius” in which he concludes that: …the companion of Sirius has a color index not appreciably different from that of the principal star (Adams 1915, p. 237). This conclusion would lead to a dramatic consequence as summarized by Arthur S. Ed- dington: …a ton of [companion of Sirius] material would be a little nugget that you could put in a match-box. What reply can one make to such a message? The reply which most of us made in 1914 was - ‘Shut up. Don’t talk nonsense’ (Eddington 1927, p. 50). Nine years later, in 1924, Eddington published a paper entitled “On the Relation be- tween the Masses and Luminosities of the Stars” in which he suggested a new test to confirm (or reject) the exceptionally high density of the companion of Sirius: …the question could probably be settled by measuring Einstein shift of the spec- trum… (Eddington 1924, p. -
2019 in the Academic Ranking of World Universities (ARWU)
THE UNIVERSITY OF MANCHESTER FACTS AND FIGURES 2020 2 The University 4 World ranking 6 Academic pedigree 8 World-class research CONTENTS 10 Students 12 Making a difference 14 Global challenges, Manchester solutions 16 Stellify 18 Graduate careers 20 Staff 22 Faculties and Schools 24 Alumni 26 Innovation 28 Widening participation UNIVERSITY OF MANCHESTER 30 Cultural institutions UNIVERSITY OF MANCHESTER 32 Income 34 Campus investment 36 At a glance 1 THE UNIVERSITY OF MANCHESTER Our vision is to be recognised globally for the excellence of our people, research, learning and innovation, and for the benefits we bring to society and the environment. Our core goals and strategic themes Research and discovery Teaching and learning Social responsibility Our people, our values Innovation Civic engagement Global influence 2 3 WORLD RANKING The quality of our teaching and the impact of our research are the cornerstones of our success. We have risen from 78th in 2004* to 33rd – our highest ever place – in 2019 in the Academic Ranking of World Universities (ARWU). League table World ranking European ranking UK ranking 33 8 6 ARWU 33 8 6 WORLD EUROPE UK QS 27 8 6 Times Higher Education 55 16 8 *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 ACADEMIC PEDIGREE 1906 1908 1915 1922 1922 We attract the highest-calibre researchers and teachers, with 25 Nobel Prize winners among J Thomson Ernest Rutherford William Archibald V Hill Niels Bohr Physics Chemistry Larence Bragg Physiology or Medicine Physics our current and former staff and students. -
Rutherford's Nuclear World: the Story of the Discovery of the Nuc
Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom. -
The Development of Military Nuclear Strategy And
The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew. -
A SURVEY of the YEAR 5687* I. Years, the Question of Compulsory
A SURVEY OF THE YEAR 5687* BY H. S. LINFIELD, PH.D. I. SPIRITUAL AND INTELLECTUAL LIFE SABBATH AND HOLIDAY OBSERVANCE.—As in previous years, the question of compulsory Sunday observance, a mat- ter of great importance to Jews, continued in 5687 to engage the attention of the Jews in many countries. In the United States, the agitation for compulsory Sunday rest, headed by the Lord's Day Alliance, was apparently on a smaller scale during 1926 than during 1925. In the preceding year, accord- ing to information collected during 1926, the agitation suf- fered a great check. In 1925 two bills providing for com- pulsory Sunday rest were introduced in the Congress and 67 similar bills were introduced in 28 state legislatures. The former died in the committees to which they were referred, and not a single bill introduced in the state legislatures at the instance of the Lord's Day Alliance or of the National Reform Association to Strengthen Existing Sunday Laws passed. On the other hand, some of the states repealed and others liberalized their Sunday laws. A summary of the status of Sunday legislation during 1926 has not yet been published. But the Sixty-ninth Congress had before it six compulsory Sunday Bills, two in the Senate and four in the House, and it is said that about forty bills were introduced in the various state legislatures during 1926. The Sixty- ninth Congress closed without enacting a compulsory Sun- day rest bill for the District of Columbia; this bill, had it been enacted, was to have served as a model Sunday com- pulsory rest bill for all the states. -
USCOURTS-Ca9-07-17209-0.Pdf
Case: 07-17209 12/09/2008 ID: 6732413 DktEntry: 31-1 Page: 1 of 16 FOR PUBLICATION UNITED STATES COURT OF APPEALS FOR THE NINTH CIRCUIT SOCIETE CIVILE SUCCESSION RICHARD GUINO, a french trust, Plaintiff-Appellee, v. No. 07-15582 JEAN-EMMANUEL RENOIR, an individual, D.C. No. Defendant-Appellant, CV-03-01310-MHM and BESEDER INC., doing business as Rima Fine Art; DROR DAREL, husband; TRACY L. PENWELL, wife, Defendants. SOCIETE CIVILE SUCCESSION RICHARD GUINO, a french trust, Plaintiff-Appellee, v. No. 07-15583 JEAN-EMMANUEL RENOIR, an individual, D.C. No. Defendant, CV-03-01310-MHM and BESEDER INC., doing business as Rima Fine Art; DROR DAREL, husband; TRACY L. PENWELL, wife, Defendants-Appellants. 16111 Case: 07-17209 12/09/2008 ID: 6732413 DktEntry: 31-1 Page: 2 of 16 16112 SOCIETE CIVILE SUCCESSION v. RENOIR SOCIETE CIVILE SUCCESSION RICHARD GUINO, a french trust, Plaintiff-Appellant, RICHARD W. MORRIS; MORRIS LAW FIRM, PLLC, No. 07-17209 Appellants, D.C. No. v. CV-03-01310-MHM JEAN-EMMANUEL RENOIR, an OPINION individual; BESEDER INC., doing business as Rima Fine Art; DROR DAREL, husband; TRACY L. PENWELL, wife, Defendants-Appellees. Appeal from the United States District Court for the District of Arizona Mary H. Murguia, District Judge, Presiding Argued and Submitted October 20, 2008—San Francisco, California Filed December 9, 2008 Before: Mary M. Schroeder, Dorothy W. Nelson and Stephen Reinhardt, Circuit Judges. Opinion by Judge D. W. Nelson Case: 07-17209 12/09/2008 ID: 6732413 DktEntry: 31-1 Page: 3 of 16 16116 SOCIETE CIVILE SUCCESSION v. RENOIR COUNSEL David Steiner and Michael Hambly, Steiner & Associates, PLC, Los Angeles, California, for defendant-appellant- plaintiff-cross-appellee Jean-Emmanuel Renoir. -
Electron-Positron Pairs in Physics and Astrophysics
Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes Remo Ruffini1,2,3, Gregory Vereshchagin1 and She-Sheng Xue1 1 ICRANet and ICRA, p.le della Repubblica 10, 65100 Pescara, Italy, 2 Dip. di Fisica, Universit`adi Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy, 3 ICRANet, Universit´ede Nice Sophia Antipolis, Grand Chˆateau, BP 2135, 28, avenue de Valrose, 06103 NICE CEDEX 2, France. Abstract Due to the interaction of physics and astrophysics we are witnessing in these years a splendid synthesis of theoretical, experimental and observational results originating from three fundamental physical processes. They were originally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg, Euler and Schwinger. For almost seventy years they have all three been followed by a continued effort of experimental verification on Earth-based experiments. The Dirac process, e+e 2γ, has been by − → far the most successful. It has obtained extremely accurate experimental verification and has led as well to an enormous number of new physics in possibly one of the most fruitful experimental avenues by introduction of storage rings in Frascati and followed by the largest accelerators worldwide: DESY, SLAC etc. The Breit–Wheeler process, 2γ e+e , although conceptually simple, being the inverse process of the Dirac one, → − has been by far one of the most difficult to be verified experimentally. Only recently, through the technology based on free electron X-ray laser and its numerous applications in Earth-based experiments, some first indications of its possible verification have been reached. The vacuum polarization process in strong electromagnetic field, pioneered by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of critical electric 2 3 field Ec = mec /(e ). -
UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title The Ambivalence of Resistance: West German Antiauthoritarian Performance after the Age of Affluence Permalink https://escholarship.org/uc/item/2c73n9k4 Author Boyle, Michael Shane Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California The Ambivalence of Resistance West German Antiauthoritarian Performance after the Age of Affluence By Michael Shane Boyle A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Performance Studies in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Shannon Jackson, Chair Professor Anton Kaes Professor Shannon Steen Fall 2012 The Ambivalence of Resistance West German Antiauthoritarian Performance after the Age of Affluence © Michael Shane Boyle All Rights Reserved, 2012 Abstract The Ambivalence of Resistance West German Antiauthoritarian Performance After the Age of Affluence by Michael Shane Boyle Doctor of Philosophy in Performance Studies University of California, Berkeley Professor Shannon Jackson, Chair While much humanities scholarship focuses on the consequence of late capitalism’s cultural logic for artistic production and cultural consumption, this dissertation asks us to consider how the restructuring of capital accumulation in the postwar period similarly shaped activist practices in West Germany. From within the fields of theater and performance studies, “The Ambivalence of Resistance: West German Antiauthoritarian Performance after the Age of Affluence” approaches this question historically. It surveys the types of performance that decolonization and New Left movements in 1960s West Germany used to engage reconfigurations in the global labor process and the emergence of anti-imperialist struggles internationally, from documentary drama and happenings to direct action tactics like street blockades and building occupations. -
Appendix E • Nobel Prizes
Appendix E • Nobel Prizes All Nobel Prizes in physics are listed (and marked with a P), as well as relevant Nobel Prizes in Chemistry (C). The key dates for some of the scientific work are supplied; they often antedate the prize considerably. 1901 (P) Wilhelm Roentgen for discovering x-rays (1895). 1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman for discovering the Zeeman effect, the splitting of spectral lines in magnetic fields. 1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre and Marie Curie for studying radioactivity. 1904 (P) Lord Rayleigh for studying the density of gases and discovering argon. (C) William Ramsay for discovering the inert gas elements helium, neon, xenon, and krypton, and placing them in the periodic table. 1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899). 1906 (P) J. J. Thomson for studying electrical discharge through gases and discover- ing the electron (1897). 1907 (P) Albert A. Michelson for inventing optical instruments and measuring the speed of light (1880s). 1908 (P) Gabriel Lippmann for making the first color photographic plate, using inter- ference methods (1891). (C) Ernest Rutherford for discovering that atoms can be broken apart by alpha rays and for studying radioactivity. 1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless telegraphy. 1910 (P) Johannes D. van der Waals for studying the equation of state for gases and liquids (1881). 1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a blackbody spectrum (1893). (C) Marie Curie for discovering radium and polonium (1898) and isolating radium. -
Facts and Figures 2013
Facts and Figures 201 3 Contents The University 2 World ranking 4 Academic pedigree 6 Areas of impact 8 Research power 10 Spin-outs 12 Income 14 Students 16 Graduate careers 18 Alumni 20 Faculties and Schools 22 Staff 24 Estates investment 26 Visitor attractions 28 Widening participation 30 At a glance 32 1 The University of Manchester Our Strategic Vision 2020 states our mission: “By 2020, The University of Manchester will be one of the top 25 research universities in the world, where all students enjoy a rewarding educational and wider experience; known worldwide as a place where the highest academic values and educational innovation are cherished; where research prospers and makes a real difference; and where the fruits of scholarship resonate throughout society.” Our core goals 1 World-class research 2 Outstanding learning and student experience 3 Social responsibility 2 3 World ranking The quality of our teaching and the impact of our research are the cornerstones of our success. 5 The Shanghai Jiao Tong University UK Academic Ranking of World ranking Universities assesses the best teaching and research universities, and in 2012 we were ranked 40th in the world. 7 World European UK European Year Ranking Ranking Ranking ranking 2012 40 7 5 2010 44 9 5 2005 53 12 6 2004* 78* 24* 9* 40 Source: 2012 Shanghai Jiao Tong University World Academic Ranking of World Universities ranking *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 Academic pedigree Nobel laureates 1900 JJ Thomson , Physics (1906) We attract the highest calibre researchers and Ernest Rutherford , Chemistry (1908) teachers, boasting 25 Nobel Prize winners among 1910 William Lawrence Bragg , Physics (1915) current and former staff and students. -
Alfred O. C. Nier
CHEMICAL HERITAGE FOUNDATION ALFRED O. C. NIER Transcript of Interviews Conducted by Michael A. Grayson and Thomas Krick at University of Minnesota Minneapolis, Minnesota on 7, 8, 9, and 10 April 1989 (With Subsequent Corrections and Additions) ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry Upon Alfred O.C. Nier’s death in 1994, this oral history was designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: Alfred O.C. Nier, interview by Michael A. Grayson and Thomas Krick at the University of Minnesota, Minneapolis, Minnesota, 7-10 April 1989 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0112). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. -
Subrahmanyan Chandrasekhar – Geniaalne Astrofüüsik
Subrahmanyan Chandrasekhar – geniaalne astrofüüsik Sissejuhatus Kuulsin Chandrasekhari nime esimest korda, kui mu sõber ja hilisem kolleeg Tiit Nilson oli saanud veel ülikooliajal – 1962. aastal - oma juhendajaks Juhan Rossi. Tiit näitas mulle Juhani käest saadud vene keelde tõlgitud Chandrasekhari raamatut kiirguslevist, mis oli täis salapäraseid valemeid. Hiljem sai see raamat mullegi väga oluliseks ja 1977. a ostsin selle – inglisekeelsena – Lõuna-California ülikooli raamatupoest Los Angeleses. Sellest ajast on see mu töölauaraamat, ja minuni jõudis arusaamine sellest, et see mees on haruldaselt mitmekülgne suur teadlane. Mingi tõsise probleemi ettevõtnuna avaldas ta terve seeria artikleid probleemi lahenduse kohta ja siis järgnes artikleid kokkuvõttev monograafia. Nii said põhjaliku ülevaate ja lahenduse tähe siseehitus, sh valgete kääbuste ehitus, stellaardünaamika, stohhastilised protsessid, kiirguslevi, negatiivse vesiniku iooni kvantteooria, hüdrodünaamika ja hüdromagnetiline stabiilsus, turbulents, tasakaaluliste objektide tasakaal, üldine relatiivsusteooria, mustade aukude matemaatiline teooria ja põrkuvate gravitatsioonilainete teooria. Lisaks veel Newtoni kuulsa Principia „tõlkimine“ autori geomeetrilisest keelest tänapäevasesse keelde. Mida rohkemat veel ühelt inimeselt nõuda võiks! Lapsepõlv ja perekond Chandrasekhar sündis tolleaegses Briti India (nüüd Pakistani) Punjabi provintsi linnas Lahores 19. oktoobril 1910 Chandrasekhara Subrahmanyan Ayyari (1885-1960) ja tema abikaasa Sitalakshmi (1891-1931) esimese pojana. Kokku