Download the Scanned
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xrd and Tem Studies on Nanophase Manganese
Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O. -
Metamorphism of Sedimentary Manganese Deposits
Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
The Geology of Manganese Nodules
1.0 The Geology of Manganese Nodules James R. Hein1 and Sven Petersen2 1 U.S. Geological Survey, 400 Natural Bridges Dr., Santa Cruz, CA, 95060, USA 2 Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24148 Kiel, Germany MANGANESE NODULES 7 1.1 The formation and occurrence of manganese nodules Manganese nodules are mineral concretions made up of manga- • diagenetically, in which minerals precipitate from sedi- nese and iron oxides. They can be as small as golf balls or as big ment pore waters – that is, seawater that has been modi- as large potatoes. The nodules occur over extensive areas of the fied by chemical reactions within the sediment. vast, sediment-covered, abyssal plains of the global ocean in water depths of 4 000 to 6 500 metres, where temperatures are just above The metal oxides that make up the precipitate attach to a freezing, pressures are high, and no sunlight reaches (Figure 2). nucleus – perhaps something as small and common as a bit of shell or a shark’s tooth – and very slowly build up around The manganese and iron minerals in these concretions precipi- the nucleus in layers. Their mineralogy is simple: vernadite tate (form a solid) from the ambient, or surrounding, water in two (a form of manganese oxide) precipitates from seawater; ways (Figure 3): todorokite (another manganese oxide) precipitates from pore • hydrogenetically, in which the minerals precipitate from cold waters; and birnessite (a third manganese oxide) forms from ambient seawater; and the todorokite. Depth region of potential nodule development Exclusive economic zone Seabed from 0 to 2 000 metres depth Seabed from 4 000 to 6 500 metres depth - the abyssal depth at which nodules are generally formed Land area Seabed from 2 000 to 4 000 metres depth Seabed below 6 500 metres depth Figure 2. -
THE CRYSTAL STRUCTURE of CAHNITE, Cabaso4 (OH)4
THE CRYSTAL STRUCTURE OF CAHNITE, CaBAsO4 (OH)4 by Charles T. Prewitt S.B., M.I.T.AAT.rc (1955) SUBMITTED IN PARTIAL YULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1960) Signature of Author .,. ..... .. ... .... Department of>Geolgy nd Geophysics, May 20, 1960 Certified by . t -.. 4-w.Vi 4 ... .. ... , . Thesis Supervisor Accepted by . .* . .... ... Chairman, Departmental Committee on Graduate Students THE CRYSTAL STRUCTURE OF CAHNITE, Ca2 BAs04 (OH)4 Charles T. Prewitt Submitted to the Department of Geology on May 20, 1960 in partial fulfillment of the requirements for the degree of Master of Science. Cahnite is one of the few crystals which had been assigned to crystal class 4. A precession study showed that its diffraction sphol is 4/m I-/-, which contains space groups I4, I4E, and14/. Because of the known 4 morphology, it must be assigned to space group I4. The unit cell, whose dimensions are a = 7.11A, o = 6.201, contains two formula weights of Ca BAsO (OH)L. The structure was studied with the aid of in ensity medsurements made with a single-crystal diffractometer. Patterson s ntheses were first made for projections along the c, a, and 110 directions. The atomic numbers of the atoms are in the ratio As:Ca.0:B = 33:20:8:5, so that the Patterson peaks are dominated by the atom pairs containing arsenic as one member of the pair. Since there are only two arsenic atoms in a body-centered cell, one As can be arbitrarily assigned to the origin. -
Zincite (Zn, Mn2+)O
Zincite (Zn, Mn2+)O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6mm. Crystals rare, typically pyramidal, hemimorphic, with large {0001}, to 2.5 cm, rarely curved; in broad cleavages, foliated, granular, compact, massive. Twinning: On {0001}, with composition plane {0001}. Physical Properties: Cleavage: {1010}, perfect; parting on {0001}, commonly distinct. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4 VHN = 205–221 (100 g load). D(meas.) = 5.66(2) D(calc.) = 5.6730 Rare pale yellow fluorescence under LW UV. Optical Properties: Translucent, transparent in thin fragments. Color: Yellow-orange to deep red, rarely yellow, green, colorless; deep red to yellow in transmitted light; light rose-brown in reflected light, with strong red to yellow internal reflections. Streak: Yellow-orange. Luster: Subadamantine to resinous. Optical Class: Uniaxial (+). ω = 2.013 = 2.029 R1–R2: (400) 13.0–13.6, (420) 12.8–13.2, (440) 12.6–12.8, (460) 12.3–12.6, (480) 12.1–12.4, (500) 12.0–12.2, (520) 11.8–12.1, (540) 11.8–12.0, (560) 11.7–11.9, (580) 11.6–11.8, (600) 11.4–11.7, (620) 11.3–11.6, (640) 11.2–11.5, (660) 11.1–11.4, (680) 11.0–11.2, (700) 11.0–11.2 Cell Data: Space Group: P 63mc (synthetic). a = 3.24992(5) c = 5.20658(8) Z = 2 X-ray Powder Pattern: Synthetic. 2.476 (100), 2.816 (71), 2.602 (56), 1.626 (40), 1.477 (35), 1.911 (29), 1.379 (28) Chemistry: (1) (2) SiO2 0.08 FeO 0.01 0.23 MnO 0.27 0.29 ZnO 99.63 98.88 Total 99.99 [99.40] (1) Sterling Hill, New Jersey, USA. -
Valid Unnamed Minerals, Update 2012-01
VALID UNNAMED MINERALS, UPDATE 2012-01 IMA Subcommittee on Unnamed Minerals: Jim Ferraiolo*, Jeffrey de Fourestier**, Dorian Smith*** (Chairman) *[email protected] **[email protected] ***[email protected] Users making reference to this compilation should refer to the primary source (Dorian G.W. Smith & Ernest H. Nickel (2007): A System of Codification for Unnamed Minerals: Report of the SubCommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Canadian Mineralogist v. 45, p.983-1055), and to this website . Additions and changes to the original publication are shown in blue print; deletions are "greyed out and struck through". IMA Code Primary Reference Secondary Comments Reference UM1886-01-OC:HNNa *Bull. Soc. Minéral. 9 , 51 Dana (7th) 2 , 1104 Probably an oxalate but if not is otherwise similar to lecontite UM1892-01-F:CaY *Am. J. Sci. 44 , 386 Dana (7th) 2 , 37 Low analytical total because F not reported; unlike any other known fluoride 3+ UM1910-01-PO:CaFeMg US Geol. Surv. Bull. 419, 1 Am. Mineral. 34 , 513 (Ca,Fe,Mg)Fe 2(PO4)2(OH)2•2H2O; some similarities to mitridatite UM1913-01-AsO:CaCuV *Am. J. Sci. 35 , 441 Dana (7th) 2 , 818 Possibly As-bearing calciovolborthite UM1922-01-O:CuHUV *Izv. Ross. Akad. Nauk [6], 16 , 505 Dana (7th) 2 , 1048 Some similarities to sengierite 3+ UM1926-01-O:HNbTaTiU *Bol. Inst. Brasil Sc., 2 , 56 Dana (7th) 1 , 807 (Y,Er,U,Th,Fe )3(Ti,Nb,Ta)10O26; some similarities to samarskite-(Y) UM1927-01-O:CaTaTiW *Gornyi Zhurn. -
TEPHROITE from FRANKLIN, NEW JERSEY* Connbrrus S. Hunrsur
THE AMERICAN MINERALOGIST, VOL 46, MAY_JUNE, 1961 TEPHROITE FROM FRANKLIN, NEW JERSEY* ConNBrrus S. Hunrsur, Jn., Departmentof Mineralogy, Harvard, Uniaersity. Assrnlcr A study of tephroite specimens from Franklin and Sterling Hill, New Jersey showed in all of them the presence of thin sheets of willemite believed to be a product of exsolution. .fhese sheets are oriented parallel to the {100} and [010] planes of tephroite with the o and r axes of tephroite and willemite parallel. It is believed that Iittle zinc remains in the tephroite structure and that much of it reported in chemical analyses has been con- tributed by intergrown u'illemite. This conclusion is supported by experiments syn- thesizing tephroite. The indices of refraction and d spacing of {130} vary as would be expected with changes in amounts of MgO, FeO and CaO. INrnooucrroN 'fephroite, Mn2SiO4,a member of the olivine group, was describedas a new mineral from SterlingHill by Breithaupt in 1823.A chemicalanal- ysis of the original material was published by Brush (1864) together with severaladditional chemical analysesof tephroite made by others. These analysesreport ZnO in varying amounts which Brush attributed to invariably associatedzincite. Palache (1937) did not agree with Brush and stated " . that the molecularratios in someanalyses more nearly satisfy the orthosilicateformula when zinc is regardedas essen- tially a part of the mineral rather than as a constituent of mechanical inclusions." The present study was undertaken for the purpose of in- vestigatingthe variations in the propertiesof tephroite with changesin chemical composition, particularly the effect of zinc. Relationships were not expectedto be simplefor analysesshow, in addition to ZnO, variable amounts of MgO, FeO, and CaO. -
Implications for Ni Cycling in Marine Sediments
This is a repository copy of Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102613/ Version: Accepted Version Article: Atkins, AL, Shaw, S and Peacock, CL (2016) Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. Geochimica et Cosmochimica Acta, 189. pp. 158-183. ISSN 0016-7037 https://doi.org/10.1016/j.gca.2016.06.007 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ *Manuscript 1 Release of Ni from birnessite during transformation of birnessite to todorokite: 2 Implications for Ni cycling in marine sediments 3 4 Amy L. -
Journal of the Russell Society, Vol 4 No 2
JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm. -
Hardystonite from the Desert View Mine, California
Bucknell University Bucknell Digital Commons Faculty Journal Articles Faculty Scholarship Spring 2014 Hardystonite From the Desert View Mine, California James A. Van Fleet Bucknell University, [email protected] Earl R. Verbeek Sterling Hill Mining Museum Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ Part of the Geology Commons Recommended Citation Van Fleet, James A. and Verbeek, Earl R.. "Hardystonite From the Desert View Mine, California." The Picking Table: Journal of the Franklin-Ogdensburg Mineralogical Society (2014) : 15-17. This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. Hardystonite From the Desert View Mine, California EARL R. VERBEEK, PhD RESIDENT GEOLOGIST, STERLING HILL MINING MUSEUM 30 PLANT STREET, OGDENSBURG, NJ 07439 [email protected] JAMES VAN FLEET 222 MARKET STREET MIFFLINBURG, PA 17844 [email protected] INTRODUCTION View Mine and further strengthen its mineralogical similarities to Franklin. Although much of the original geology has been In late December of 2012, Kevin Brady, an accomplished obliterated by intrusion of the granodiorite, Leavens and Patton and knowledgeable field collector of minerals, sent to one of (2008) provided mineralogical and geochemical evidence that us (ERV) a specimen of an unknown mineral that he noted the Desert View deposit, like that at Franklin, is exhalative, fluoresced deep violet under shortwave (SW) ultraviolet light and that it is genetically intermediate between the Franklin- and thus resembled hardystonite. -
Alphabetical List
LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst