TEPHROITE from FRANKLIN, NEW JERSEY* Connbrrus S. Hunrsur

Total Page:16

File Type:pdf, Size:1020Kb

TEPHROITE from FRANKLIN, NEW JERSEY* Connbrrus S. Hunrsur THE AMERICAN MINERALOGIST, VOL 46, MAY_JUNE, 1961 TEPHROITE FROM FRANKLIN, NEW JERSEY* ConNBrrus S. Hunrsur, Jn., Departmentof Mineralogy, Harvard, Uniaersity. Assrnlcr A study of tephroite specimens from Franklin and Sterling Hill, New Jersey showed in all of them the presence of thin sheets of willemite believed to be a product of exsolution. .fhese sheets are oriented parallel to the {100} and [010] planes of tephroite with the o and r axes of tephroite and willemite parallel. It is believed that Iittle zinc remains in the tephroite structure and that much of it reported in chemical analyses has been con- tributed by intergrown u'illemite. This conclusion is supported by experiments syn- thesizing tephroite. The indices of refraction and d spacing of {130} vary as would be expected with changes in amounts of MgO, FeO and CaO. INrnooucrroN 'fephroite, Mn2SiO4,a member of the olivine group, was describedas a new mineral from SterlingHill by Breithaupt in 1823.A chemicalanal- ysis of the original material was published by Brush (1864) together with severaladditional chemical analysesof tephroite made by others. These analysesreport ZnO in varying amounts which Brush attributed to invariably associatedzincite. Palache (1937) did not agree with Brush and stated " . that the molecularratios in someanalyses more nearly satisfy the orthosilicateformula when zinc is regardedas essen- tially a part of the mineral rather than as a constituent of mechanical inclusions." The present study was undertaken for the purpose of in- vestigatingthe variations in the propertiesof tephroite with changesin chemical composition, particularly the effect of zinc. Relationships were not expectedto be simplefor analysesshow, in addition to ZnO, variable amounts of MgO, FeO, and CaO. Dosctuptrox oF TrrE SpBcnrBNs For this study 27 specimensin the Harvard collectionlabelled tephro- ite and roepperite were assembled. Several additional specimens were kindly made available by Mr. John L. Baum of the New Jersey Zinc Company and Mr. John Albaneseof Union, New Jersey. The name tephroite was given to the original material becauseof its gray color (from the Greek-ash-colored.)but only six of the specimens studied were gray; thirteen were reddish brown; four rose-red.Roep- perite is black. It was also consideredfor it has beendescribed as a vari- ety of tephroite containing notably high amounts of FeO and ZnO. Of * Contribution No. 395 from the Department of Mineralogy and Petrology, Harvard University. )+t 550 C. S. IIURLBUT. JR. the four roepperitespecimens available, three proved to be black wille- mrte. When examined microscopically,most tephroite is seen to contain minute inclusions.These inclusions have beenstudied by Metsger, Ten- nant and Rodda (1958) who concludethey are franklinite and are re- sponsiblefor the color variation. Black franklinite is present in roep- perite and red franklinite (spinel) is present in the red tephroite. " . paler shadesof gray and fleshpink . are due to the sparsescat- tering of inclusions." It has previously been thought that zincite inclu- sions were responsiblefor the red coloring. However, in some tephroile specimensflakes of both red zincite and black franklinite are present associatedwith wiliemite sheetsand elongatedparallel to the c axis of the tephroite. Portions of all the specimensgave under ultra violet light the char- acteristic greenishluminescence of willemile. Some of this fluorescencc resultedfrom massivewillemite intergrown with the tephroite but much of it seemedto be coming from the tephroite itself. Closerexamination showed thin fluorescingsheets of colorless willemite lying along the {100} and {010} planesof the tephroite.Sections normal to thesetwo directions,{001}, show the tracesof the sheetsintersecting at right angles (Fig. 1). Under magnification more and thinner sheetsbecome visible forming a minute crosshatchedpattern. This is best observedin thin section where it is seen that the willemite sheetsalthough discon- tinuous are all crystallographicallyoriented with the c axis of willemite parallel to the c axis of the tephroite host, Fig. 2. The major and mosl continuouswillemite sheetsare irregularly spacedand may have a thick- nessas great as 0.10 mm. The lessersheets are much lesscontinuous with thicknessranging from 0.05 mm. to lessthan 0.005 mm. A similar inti- mate intergrowth of willemite with glaucochroitewas reported by O'Dan- iel and Tscheischwili(1944). The cleavageof tephroiteis given as {100} and {010}, the directions of the interlayeredsheets of willemite. On most of the Franklin tephroite when examinedin detail thesedirections of breaking do not yield plane surfacesbut are striated in a direction parallel to the c axis; an observa- tion early made by Brush (1864).They appearto be more a parting than a cleavage,separating easily along the planes of the major willemite sheets.On most specimensit is impossibleto developa cleavagebetween these parting planes and in thin section no cleavagecracks are visible between the willemite layers. Small transparent crystals of Franklin tephroiteshow no cleavageparallel to {100} or {010} but a good {001} cleavage. TEPHROITE FROM FRANKLIN, N. T. Frc. 1. Polished surface of tephroite crystal cut nearly normal to the c axis. Photo- graphed under ultraviolet light with fluorescing willemite recorded as light lines and areas. Full scale. In addition to the parallelismof the c axesof the tephroite and the in- cluded willemite there is a parallelism of other axial directions. X-ray rotation photographs were taken of the willemite with the rotation axes perpendicular to the sheets. One set of sheets, parallel to {100} of tephroite, yields 13.97 A as the identity period (o6 of willemite); the other set of sheets at right angles and parallel to {010} of tephroite Frc. 2. Photomicrograph of tephroite thin section cut nearly normal to the c axis. Crossed nicols. Light lines are willemite. Area:2X1.7 millimeters" 552 C. S. HURLBAT,JR. yields 24.20A as the identity period. For the willemite co:9.35 A. 1ltte axial dimensionsof the willemite and tephroite thus compareas follows: Tephroite oo: 4.87 A bo:10.64 co:6.23 Willemite oo:13.97 it t(1010):24.2O co:9.35 For willemite Bragg and.Zachariasen(1930) give as:13.96 A, co:9.34. The closest structural correspondenceof the two sets of dimensions is found in the valuesfor c6,for 3 Xcoof tephroite is 18.69A, nearly equal to ZXco of willemite,18.70 A. The constant orientation of the willemite with respect to the tephroite host as well as the intimate intergrowth stronglysuggest that the willem- ite is a product of exsolution.Moreover, it is almost certain that much of the zinc reported in chemical analyses was contributed by willemite. CnBurcar, CouposnroN Palache (1937) lists 13 chemical analysesof tephroite from Franklin and Sterling Hill. All of theseshow the presenceof FeO (3.3370max.), and all but the earliesttwo MgO (l5.gVo max.) and ZnO (18.9O/6max.). CaO (2.70/6 max.) is present in six analyses. With the possibility of so many elements substituting for manganese in the tephroite struc- ture, it at first appeared a hopelesstask to correlate in any significant manner the physical constants with chemical composition. Of the 13 specimensrepresented by the analyses given by Palache (1937, p.77) only one (number 11) was availablefor study. This is a red- dish-brown tephroite with abundant interlaminated sheetsof willemite. The analysismade byL. H. Bauer (No. 1, Table 1) givesZnO: l2.IsTa. With the thought that willemite may have contributed much of the zinc to the analysis, a magnetic separation was made on minus 325 mesh ma- terial. Tephroite is slightly magnetic, willemite non-magnetic. After many passesthrough the Frantz isodynamic separator' even the most magnetic material was far from being free of willemite as shown by in- spection under the microscopeand ultra-violet light, and the presenceof willemite lines in aL rc-raypowder photograph. An analysis of this admit- tedly contaminated sample by Mr. Jun Ito gave 6'I/s ZnO, approxi- mately one half of that reported in the earlier analysis. With zinc present in the unseparated willemite as well as in the franklinite of the coloring inclusions,the amount in the tephroite structure must be considerably less.Could this mean that zinc is a negligiblevariant in the composition of tephroite? Of the 27 specimensstudied, one was selectedfor a completeanalysis. This was of a large reddish brown tephroite crystal from which only the coarse associatedwillemite had been separated.The analysis, No. 2, TEPHROITEFROM FRANKLIN, N, I. 553 'rable 1, compares very favorably with several earlier analysesreported by Palache (1937). Partial analyses were made of seven other tephroite specimensfrom Franklin and Sterling Hill and one of roepperite. rn these zinc is not reported since willemite and probably franklinite was present in all and its determination would not have been significant.For com- parison a partial analysis of tephroite from Liingban containing no zinc was alsomade. rn most of theseanalyses the chief oxide other than Mno is Mgo and thus most of the specimensbelong essentiallyto the series Mg2SiOa-MnzSiOa.Glasser and Osborn (1960)point out that a continu- ous solid solution seriesexists between Mg2SiOa and MnzSiOa. Tenr,r 1. Arlr,vsns ol Tnpnnorrn* 10 Sioz 29.53 30.17 ZnO 12.15 10.22 none MnO 43.64 49.57 36.0932.82 58.42 53.18 46.19 s1.31 28.68 55.65 MgO 9.64 4.92 15.28r5.76 2.40 1.07 8.72 2.66 5.65 10.75 FeO 4.41 3.94 1.26 1.N 0.79 0.78 1.90 0.29 24.28 0.09 CaO 0.05 0.63 0.10 0.05 4.40 tr 2.81 rr 1.10 Ig. loss 1.00 99.37 99.87 Molecularratio MnO:MgO MnO 72.02 85.13 57.29 55.92 93.26 96.58 75.29 gt.64 74.27 74.64 MeO 27.98 14.87 42.7t 44.08 6.74 3.42 24.71 8.36 26.j3 25.36 * 1.
Recommended publications
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Forsterite-Tephroite Series:I
    American Mineralogist, Volume 65, pages 1263-1269, 1980 The forsterite-tephroite series:I. Crystal structure refinements Cenr A. FReNcIs Mineralogical Museum,Hamard University Cambridge,M assachusetts02 I 38 AND PAUL H. RIBBE Department of Geological Sciences Virginia Polytechnic Institute and State University B lac ksbur g, Virginia 2 4 06 I Abstract The crystal structures of the following metamorphic olivines, M;*[SiO4], in the forsterite- tephroite (Fo-Te) serieswere refned in space group Pbnm: Cation compositionM Cell parameters(A) Mg Mn Ca Fe a b c Rfactor Fol 1.028 0964 0.006 0.002 4.794 10.491 6.t23 0.029 Ten, 0.181 1.780 0.013 0.026 4.879 10.589 6.234 0.039 Treating minql ps and Ca as though they were Mn, the refined cation distributions (esds < 0.01) and mean bond lengths are: M(1) site M(2) site Mg Mn (M(lFo) Mg Mn (M(2)-o) (si-o) For, 0.92 0.08 2.116I^ 0.1I 0.89 2.185A r.6374 Te", O.l7 0.83 2.0294 0.00 1.00 2.2274 l.6,t0A By comparison, a previously refned synthetic ForrT€o, specimen "heat-treated at l(X)0oC" is significantlymore disordered(KD : 0.196)than the naturally occurring For' (Ko: 0.011). As expected,mean M(l)-O and M(2)-O distancescorrelate linearly with Mgl(Mg+Mn) oc- cupancy. Introduction However, the crystal structures of only two Mg- With the widespread availability of automated X- Mn olivines have previously been refined. One of ray di-ffractometeruand least-squaresrefinement pro- them contains I I mole percent of Zn SiOo, thereby grams, order-disorder has become a principal theme complicating the octahedral site refinement (Brown, of contemporary crystal chemical investigations 1970).
    [Show full text]
  • Tourmaline Reference Materials for the in Situ Analysis of Oxygen and Lithium Isotope Ratio Compositions
    Vol. 45 — N° 1 03 P.97 – 119 21 Tourmaline Reference Materials for the In Situ Analysis of Oxygen and Lithium Isotope Ratio Compositions Michael Wiedenbeck (1)*, Robert B. Trumbull (1), Martin Rosner (2),AdrianBoyce (3), John H. Fournelle (4),IanA.Franchi (5),RalfHalama (6),ChrisHarris (7),JackH.Lacey (8), Horst Marschall (9) , Anette Meixner (10),AndreasPack (11), Philip A.E. Pogge von Strandmann (9), Michael J. Spicuzza (4),JohnW.Valley (4) and Franziska D.H. Wilke (1) (1) GFZ German Research Centre for Geosciences, Potsdam 14473, Germany (2) Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA (3) Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK (4) Department of Geoscience, University of Wisconsin, Madison, WI, 53706, USA (5) School of Physical Sciences, Open University, Milton Keynes MK7 6AA, UK (6) Department of Geology, University of Maryland, College Park, MD, 20742, USA (7) Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa (8) National Environmental Isotope Facility, British Geological Survey, Keyworth NG12 5GG, UK (9) Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK (10) Faculty of Geosciences & MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany (11) Geowissenschaftliches Zentrum, Universitat¨ Gottingen,¨ Gottingen¨ 37077, Germany (12) Present address: IsoAnalysis UG, Berlin 12489, Germany (13) Present address: School of Geography, Geology and Environment, Keele University, Keele ST5 5BG, UK (14) Present address: Institut fur¨ Geowissenschaften, Goethe-Universitat,¨ Frankfurt am Main 60438, Germany (15) Present address: Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London WC1E 6BS, UK * Corresponding author.
    [Show full text]
  • THE CRYSTAL STRUCTURE of CAHNITE, Cabaso4 (OH)4
    THE CRYSTAL STRUCTURE OF CAHNITE, CaBAsO4 (OH)4 by Charles T. Prewitt S.B., M.I.T.AAT.rc (1955) SUBMITTED IN PARTIAL YULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1960) Signature of Author .,. ..... .. ... .... Department of>Geolgy nd Geophysics, May 20, 1960 Certified by . t -.. 4-w.Vi 4 ... .. ... , . Thesis Supervisor Accepted by . .* . .... ... Chairman, Departmental Committee on Graduate Students THE CRYSTAL STRUCTURE OF CAHNITE, Ca2 BAs04 (OH)4 Charles T. Prewitt Submitted to the Department of Geology on May 20, 1960 in partial fulfillment of the requirements for the degree of Master of Science. Cahnite is one of the few crystals which had been assigned to crystal class 4. A precession study showed that its diffraction sphol is 4/m I-/-, which contains space groups I4, I4E, and14/. Because of the known 4 morphology, it must be assigned to space group I4. The unit cell, whose dimensions are a = 7.11A, o = 6.201, contains two formula weights of Ca BAsO (OH)L. The structure was studied with the aid of in ensity medsurements made with a single-crystal diffractometer. Patterson s ntheses were first made for projections along the c, a, and 110 directions. The atomic numbers of the atoms are in the ratio As:Ca.0:B = 33:20:8:5, so that the Patterson peaks are dominated by the atom pairs containing arsenic as one member of the pair. Since there are only two arsenic atoms in a body-centered cell, one As can be arbitrarily assigned to the origin.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • V.Lelting and Transformation Remperatures of Mineral and \Llied Substances
    v.lelting and Transformation remperatures of Mineral and \llied Substances I F. c. KRACEK ONTRIBUTIONS TO GEOCHEMISTRY EOLOGICAL SURVEY BULLETIN 1144-D HTED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract~------------------------------------------------------- 1 General discussion----------------------------------------------- 1 Acknowledgments____________________________________________ 3 General references _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 Elements ------------------------------------------------------- 4 Oxides---------------------------------------------------------- 10 Oxide systems involving A120 3 ------------------------------------ 13 Oxide systems exclusive of Al2o3• B 2o 3, Si02 --------------------- 14 Silicate systems, binary__________________________________________ 17 Silicate systems, ternary _________________________________________ 21 Silicate systems, quaternary and higher ________ ----- _______________ 30 Silicate systems, miscellaneous ___________________________________ 32 Carbonates------------------------------------------------------ 33 Systems, miscellaneous __________________________________________ 36 References------------------------------------------------------ 63 ILLUSTRATIONS Figure 1. The system FeO --------------------------------------
    [Show full text]
  • Weathering of Silicate Minerals in Soils and Watersheds: Parameterization of the Weathering Kinetics Module in the PROFILE and Forsafe Models
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38 Manuscript under review for journal Biogeosciences Discussion started: 18 February 2019 c Author(s) 2019. CC BY 4.0 License. Reviews and synthesis: Weathering of silicate minerals in soils and watersheds: Parameterization of the weathering kinetics module in the PROFILE and ForSAFE models Harald Ulrik Sverdrup1*, Eric Oelkers5, Martin Erlandsson Lampa2, Salim Belyazid3, Daniel Kurz4, Cecilia Akselsson6, 1-Industrial Engineering, University of Iceland, Reykjavik, Iceland, 2-Institute of Hydrology, University of Uppsala, Uppsala, Sweden, 3-Physical Geography, Stockholm University, Stockholm, Sweden, 4-EKG Geoscience, Bern, Switzerland, 5-Earth Sciences, University College London, Gower Street, WC1E 6BT, London, UK, 6-Earth Sciences, University of Lund, Lund, Sweden. *corresponding author ([email protected]) Abstract The PROFILE model, now incorporated in the ForSAFE model can accurately reproduce the chemical and mineralogical evolution of the soil unsaturated zone. However, in deeper soil layers and in groundwater systems, it appears to overestimate weathering rates. This overestimation has been corrected by improving the kinetic expression describing mineral dissolution by adding or upgrading ‘breaking functions’. The base cation and aluminium brakes have been strengthened, and an additional silicate brake has been developed, improving the ability to describe mineral-water reactions in deeper soils. These brakes are developed from a molecular-level model of the dissolution mechanisms. Equations, parameters and constants describing mineral dissolution kinetics have now been obtained for 102 different minerals from 12 major structural groups, comprising all types of minerals encountered in most soils. The PROFILE and ForSAFE weathering sub-model was extended to cover two-dimensional catchments, both in the vertical and the horizontal direction, including the hydrology.
    [Show full text]
  • Zincite (Zn, Mn2+)O
    Zincite (Zn, Mn2+)O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6mm. Crystals rare, typically pyramidal, hemimorphic, with large {0001}, to 2.5 cm, rarely curved; in broad cleavages, foliated, granular, compact, massive. Twinning: On {0001}, with composition plane {0001}. Physical Properties: Cleavage: {1010}, perfect; parting on {0001}, commonly distinct. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4 VHN = 205–221 (100 g load). D(meas.) = 5.66(2) D(calc.) = 5.6730 Rare pale yellow fluorescence under LW UV. Optical Properties: Translucent, transparent in thin fragments. Color: Yellow-orange to deep red, rarely yellow, green, colorless; deep red to yellow in transmitted light; light rose-brown in reflected light, with strong red to yellow internal reflections. Streak: Yellow-orange. Luster: Subadamantine to resinous. Optical Class: Uniaxial (+). ω = 2.013 = 2.029 R1–R2: (400) 13.0–13.6, (420) 12.8–13.2, (440) 12.6–12.8, (460) 12.3–12.6, (480) 12.1–12.4, (500) 12.0–12.2, (520) 11.8–12.1, (540) 11.8–12.0, (560) 11.7–11.9, (580) 11.6–11.8, (600) 11.4–11.7, (620) 11.3–11.6, (640) 11.2–11.5, (660) 11.1–11.4, (680) 11.0–11.2, (700) 11.0–11.2 Cell Data: Space Group: P 63mc (synthetic). a = 3.24992(5) c = 5.20658(8) Z = 2 X-ray Powder Pattern: Synthetic. 2.476 (100), 2.816 (71), 2.602 (56), 1.626 (40), 1.477 (35), 1.911 (29), 1.379 (28) Chemistry: (1) (2) SiO2 0.08 FeO 0.01 0.23 MnO 0.27 0.29 ZnO 99.63 98.88 Total 99.99 [99.40] (1) Sterling Hill, New Jersey, USA.
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 70, pages 379-387, 1985 Ma_nganesehumites and leucophoenicitesfrom Franklin and Sterling- Hill' NewJersev: 'i"? andimplications ;ifi':il1,;;lfiil11"r's' Perr J. Dullx Department of Mineral Sciences Smithsonian lnstitution, Washington, D. C. 20560 Abstract The manganesehumites, (alleghanyite, manganhumite, and sonolite),together with some Mn-bearing samplesof the Mg-humites,and the related phasesleucophoenicite and jerry- gibbsite,from the orebodiesat Franklin and SterlingHill, New Jersey,are describedtogether with analytical data. Solid solution betweenhumite and manganhumiteis at least partially continuous. Expected Mn/Mg solid solutions between alleghanyiteand chondrodite, and betweensonolite and clinohumite, are discontinuous; they are interrupted by apparently orderedphases. In all cases,the possibleorderings involve Zn as well as Mn and Mg. There are no Mn end-membersof the manganesehumites at this locality. Manganeseis apparently restricted in leucophoenicite(5.42-6.63 Mn per 7 octahedral cations) and in jerrygibbsite (7.79-8.02Mn per 9 octahedralcations). Calcium is common to both leucophoeniciteand jerrygibbsite,but among the Mn-humites,only sonoliteaccepts appreciable Ca (0.65Ca per 9 octahedralcations). There is a "threshold" level ofzinc in all studiedsamples; this "threshold" levelis a constantfor leucophoenicite1-9.3 Znper 3 Si)and alleghanyite(-O.2Zn per 2 Si). No samplesof leucophoeniciteor jerrygibbsite were found to be Zn-ftee,suggesting either that Zn is required for their stability, or that these two phasesmight not be stable as end-members.Fluorine is present in all the Mn-humites and is proportional to the Mg- content,but is absentin leucophoeniciteand jerrygibbsite. Introduction humite speciesoccur there; the Mg-humites occur in the The magnesiumhumite species(norbergite, chondrodite, host Franklin Marble for the most part, and the Mn- humite, and clinohumite) have been well-studiedand re- humites in the orebodiesthemselves.
    [Show full text]
  • Leucophoenicite Mn (Sio4)3(OH)2
    2+ Leucophoenicite Mn7 (SiO4)3(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: Crystals rare, typically slender, prismatic, elongated and striated [010], to 8 mm; in isolated grains or granular massive. Twinning: On k 001 , common, contact or interpenetrant twins, lamellar. f g Physical Properties: Cleavage: 001 , imperfect. Tenacity: Brittle. Hardness = 5.5{6 f g D(meas.) = 3.848 D(calc.) = [4.01] Optical Properties: Transparent to translucent. Color: Brown to light purple-red, raspberry-red, deep pink to light pink; rose-red to colorless in thin section. Luster: Vitreous. Optical Class: Biaxial ({). Pleochroism: Faint; rose-red 001 ; colorless 001 . Orientation: k f g ? f g X 001 cleavage. Dispersion: r > v; slight. ® = 1.751(3) ¯ = 1.771(3) ° = 1.782(3) ? f g 2V(meas.) = 74(5)± Cell Data: Space Group: P 21=a: a = 10.842(19) b = 4.826(6) c = 11.324(9) ¯ = 103:93(9)± Z = [2] X-ray Powder Pattern: Franklin, New Jersey, USA. 1.8063 (10), 2.877 (9), 2.684 (8), 4.36 (5), 3.612 (5), 2.365 (5), 2.620 (4) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 26.36 26.7 26.7 CaO 5.67 2.4 2.8 FeO trace 0.3 0.3 Na2O 0.39 MnO 60.63 62.8 64.7 K2O 0.24 ZnO 3.87 0.0 0.0 H2O 2.64 [2.3] [2.8] MgO 0.21 5.5 2.7 Total 100.01 [100.0] [100.0] (1) Franklin, New Jersey, USA; composite of two analyses, corresponding to (Mn5:89Ca0:70Zn0:32 Na0:04Mg0:03K0:01)§=6:99(Si1:01O4)3(OH)2: (2) Kombat mine, Namibia; by electron microprobe, H2O by di®erence; corresponding to (Mn5:98Mg0:92Ca0:29Fe0:02)§=7:21(SiO4)3(OH)1:72: (3) Valsesia-Valtournanche area, Italy; by electron microprobe, H2O by di®erence; corresponding to (Mn6:16Mg0:45Ca0:34Fe0:03)§=6:98(SiO4)3(OH)2:10: Mineral Group: Leucophoenicite group.
    [Show full text]