Game Species Fodder Conditions in Eastern Siberia and Amur Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of Rivers of Mongolia
Sl. No River Name Russian Name Draining Into 1 Yenisei River Russia Arctic Ocean 2 Angara River Russia, flowing out of Lake Baikal Arctic Ocean 3 Selenge River Сэлэнгэ мөрөн in Sükhbaatar, flowing into Lake Baikal Arctic Ocean 4 Chikoy River Arctic Ocean 5 Menza River Arctic Ocean 6 Katantsa River Arctic Ocean 7 Dzhida River Russia Arctic Ocean 8 Zelter River Зэлтэрийн гол, Bulgan/Selenge/Russia Arctic Ocean 9 Orkhon River Орхон гол, Arkhangai/Övörkhangai/Bulgan/Selenge Arctic Ocean 10 Tuul River Туул гол, Khentii/Töv/Bulgan/Selenge Arctic Ocean 11 Tamir River Тамир гол, Arkhangai Arctic Ocean 12 Kharaa River Хараа гол, Töv/Selenge/Darkhan-Uul Arctic Ocean 13 Eg River Эгийн гол, Khövsgöl/Bulgan Arctic Ocean 14 Üür River Үүрийн гол, Khövsgöl Arctic Ocean 15 Uilgan River Уйлган гол, Khövsgöl Arctic Ocean 16 Arigiin River Аригийн гол, Khövsgöl Arctic Ocean 17 Tarvagatai River Тарвагтай гол, Bulgan Arctic Ocean 18 Khanui River Хануй гол, Arkhangai/Bulgan Arctic Ocean 19 Ider River Идэр гол, Khövsgöl Arctic Ocean 20 Chuluut River Чулуут гол, Arkhangai/Khövsgöl Arctic Ocean 21 Suman River Суман гол, Arkhangai Arctic Ocean 22 Delgermörön Дэлгэрмөрөн, Khövsgöl Arctic Ocean 23 Beltes River Бэлтэсийн Гол, Khövsgöl Arctic Ocean 24 Bügsiin River Бүгсийн Гол, Khövsgöl Arctic Ocean 25 Lesser Yenisei Russia Arctic Ocean 26 Kyzyl-Khem Кызыл-Хем Arctic Ocean 27 Büsein River Arctic Ocean 28 Shishged River Шишгэд гол, Khövsgöl Arctic Ocean 29 Sharga River Шарга гол, Khövsgöl Arctic Ocean 30 Tengis River Тэнгис гол, Khövsgöl Arctic Ocean 31 Amur River Russia/China -
Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation. -
Amur Oblast TYNDINSKY 361,900 Sq
AMUR 196 Ⅲ THE RUSSIAN FAR EAST SAKHA Map 5.1 Ust-Nyukzha Amur Oblast TY NDINS KY 361,900 sq. km Lopcha Lapri Ust-Urkima Baikal-Amur Mainline Tynda CHITA !. ZEISKY Kirovsky Kirovsky Zeiskoe Zolotaya Gora Reservoir Takhtamygda Solovyovsk Urkan Urusha !Skovorodino KHABAROVSK Erofei Pavlovich Never SKOVO MAGDAGACHINSKY Tra ns-Siberian Railroad DIRO Taldan Mokhe NSKY Zeya .! Ignashino Ivanovka Dzhalinda Ovsyanka ! Pioner Magdagachi Beketovo Yasny Tolbuzino Yubileiny Tokur Ekimchan Tygda Inzhan Oktyabrskiy Lukachek Zlatoustovsk Koboldo Ushumun Stoiba Ivanovskoe Chernyaevo Sivaki Ogodzha Ust-Tygda Selemdzhinsk Kuznetsovo Byssa Fevralsk KY Kukhterin-Lug NS Mukhino Tu Novorossiika Norsk M DHI Chagoyan Maisky SELE Novovoskresenovka SKY N OV ! Shimanovsk Uglovoe MAZ SHIMA ANOV Novogeorgievka Y Novokievsky Uval SK EN SK Mazanovo Y SVOBODN Chernigovka !. Svobodny Margaritovka e CHINA Kostyukovka inlin SERYSHEVSKY ! Seryshevo Belogorsk ROMNENSKY rMa Bolshaya Sazanka !. Shiroky Log - Amu BELOGORSKY Pridorozhnoe BLAGOVESHCHENSKY Romny Baikal Pozdeevka Berezovka Novotroitskoe IVANOVSKY Ekaterinoslavka Y Cheugda Ivanovka Talakan BRSKY SKY P! O KTYA INSK EI BLAGOVESHCHENSK Tambovka ZavitinskIT BUR ! Bakhirevo ZAV T A M B OVSKY Muravyovka Raichikhinsk ! ! VKONSTANTINO SKY Poyarkovo Progress ARKHARINSKY Konstantinovka Arkhara ! Gribovka M LIKHAI O VSKY ¯ Kundur Innokentevka Leninskoe km A m Trans -Siberianad Railro u 100 r R i v JAO Russian Far East e r By Newell and Zhou / Sources: Ministry of Natural Resources, 2002; ESRI, 2002. Newell, J. 2004. The Russian Far East: A Reference Guide for Conservation and Development. McKinleyville, CA: Daniel & Daniel. 466 pages CHAPTER 5 Amur Oblast Location Amur Oblast, in the upper and middle Amur River basin, is 8,000 km east of Moscow by rail (or 6,500 km by air). -
2017 Annual Report and Accounts
Annual Report 2017 Our Values Responsibility We place people first. Responsible practices are our highest priority and we aim to operate safely, efficiently and transparently, continually seeking new ways to ensure an injury-free workplace. We are committed to preventing pollution, minimising waste, increasing carbon efficiency and optimising natural resource usage. We develop innovative solutions to mitigate environmental risks and welcome an active dialogue with local communities. Innovation We challenge ourselves and others to constantly improve in line with the most recent scientific and engineering developments worldwide. Our aim is to be an industry leader in safety and environmental practices, whilst realising the full potential of our assets through ingenuity, drive, and innovation. Integrity We believe that honest communication, sound business ethics and respect for people are the foundation of our business and deal with all our stakeholders in a respectful, responsible way. We are guided by our Code of Ethics in every situation, at all levels of the Company, to preserve dignity and self-worth in all our interactions. Excellence We are focused on delivering results and on doing what we say we will do. We accept responsibility and hold ourselves accountable for our work, behaviour, ethics and actions. We aim to deliver high performance outcomes and undertake to deliver on our commitments to our colleagues, business and social partners, and our investors. Sustainability Sustainable development has been a key focus for the Group since its foundation. At Petropavlovsk, our objective is to act in the interests of our stakeholders, including shareholders, employees and the communities in which we operate, by ensuring all our activities are efficient, responsible, transparent and sustainable. -
Sexual Selection and Extinction in Deer Saloume Bazyan
Sexual selection and extinction in deer Saloume Bazyan Degree project in biology, Master of science (2 years), 2013 Examensarbete i biologi 30 hp till masterexamen, 2013 Biology Education Centre and Ecology and Genetics, Uppsala University Supervisor: Jacob Höglund External opponent: Masahito Tsuboi Content Abstract..............................................................................................................................................II Introduction..........................................................................................................................................1 Sexual selection........................................................................................................................1 − Male-male competition...................................................................................................2 − Female choice.................................................................................................................2 − Sexual conflict.................................................................................................................3 Secondary sexual trait and mating system. .............................................................................3 Intensity of sexual selection......................................................................................................5 Goal and scope.....................................................................................................................................6 Methods................................................................................................................................................8 -
Moss Diversity Distribution Patterns and Agglomerates of Local Floras in the Russian Far East
Botanica Pacifica. A journal of plant science and conservation. 2017. 6(2): 21–33 DOI: 10.17581/bp.2017.06201 Moss diversity distribution patterns and agglomerates of local floras in the Russian Far East Olga Yu. Pisarenko 1* & Vadim A. Bakalin 2 Olga Yu. Pisarenko1* ABSTRACT email: [email protected] Published materials on the mosses of the Russian Far East are summarized. Nine Vadim A. Bakalin 2 hund red and thirty species of mosses were revealed, and a bibliography is provi email: [email protected] ded for each taxon. The distribution of each taxon within 39 spatial units (5×5 de grees latitude/longitude) is analyzed. The list for each square was regarded 1 Central Siberian Botanical Garden, SB as the flo ra of minimal size involved in analysis. Analysis of interrelationships RAS, Novosibirsk 630090 Russia be tween each minimal flora has revealed seven floristic associations that corres 2 Botanical GardenInstitute FEB RAS, pond to the following territories: Beringian Chukotka, the continental part of Vladivostok 690024 Russia Chu kotka Autonomous District and continental part of Magadan Province, nor thern coast of the Sea of Okhotsk, Kamchatka and adjacent islands, Sakhalin and southern Kurils, Russian Manchuria, and the rest part of continental sou thern Russian Far East. Centers of moss species diversity are considered. * corresponding author Keywords: Russian Far East, mosses, bryoflora, distribution patterns, diversity, con servation, phytogeography Manuscript received: 17.02.2017 РЕЗЮМЕ Review completed: 13.09.2017 Писаренко О.Ю., Бакалин В.А. Закономерности распространения Accepted for publication: 18.09.2017 раз нообразия мхов и естественные агломераты локальных моховых Published online: 19.09.2017 флор на российском Дальнем Востоке. -
Subject of the Russian Federation)
How to use the Atlas The Atlas has two map sections The Main Section shows the location of Russia’s intact forest landscapes. The Thematic Section shows their tree species composition in two different ways. The legend is placed at the beginning of each set of maps. If you are looking for an area near a town or village Go to the Index on page 153 and find the alphabetical list of settlements by English name. The Cyrillic name is also given along with the map page number and coordinates (latitude and longitude) where it can be found. Capitals of regions and districts (raiony) are listed along with many other settlements, but only in the vicinity of intact forest landscapes. The reader should not expect to see a city like Moscow listed. Villages that are insufficiently known or very small are not listed and appear on the map only as nameless dots. If you are looking for an administrative region Go to the Index on page 185 and find the list of administrative regions. The numbers refer to the map on the inside back cover. Having found the region on this map, the reader will know which index map to use to search further. If you are looking for the big picture Go to the overview map on page 35. This map shows all of Russia’s Intact Forest Landscapes, along with the borders and Roman numerals of the five index maps. If you are looking for a certain part of Russia Find the appropriate index map. These show the borders of the detailed maps for different parts of the country. -
Baikal Project 2012-2014 Results and Events Booklet.Pdf
Photo by Elena Chumak GEF: “The GEF unites 182 countries in partnership with international institutions, non-governmental organizations (NGOs), and the private sector to address global environmental issues while supporting national sustainable development initiatives. Today the GEF is the largest public funder of projects to improve the global environment. An independently operating financial organization, the GEF provides grants for projects related to biodiversity, climate change, international waters, land degradation, the ozone layer, and persistent organic pollutants. Since 1991, GEF has achieved a strong track record with developing countries and countries with economies in transition, providing $9.2 billion in grants and leveraging $40 billion in co-financing for over 2,700 projects in over 168 countries. www.thegef.org” UNDP: “UNDP partners with people at all levels of society to help build nations that can withstand crisis, and drive and sustain the kind of growth that improves the quality of life for everyone. On the ground in 177 countries and territories, we offer global perspective and local insight to help empower lives and build resilient nations. www.undp.org” UNOPS: is an operational arm of the United Nations, helping a range of partners implement $1 billion worth of aid and development projects every year. UNOPS mission is to expand the capacity of the UN system and its partners to implement peacebuilding, humanitarian and development operations that matter for people in need. Photo by Elena Chumak Contents Project Achievements -
The Baikal-Amur Mainline Memories and Emotions of a Socialist Construction Project
The Baikal-Amur Mainline Memories and Emotions of a Socialist Construction Project OLGA POVOROZNYUK Abstract: The Baikal-Amur Mainline (BAM), a railroad in East Siberia and the Russian Far East, became the last large Soviet industrial proj- ect. Its construction in the 1970s and 1980s attracted migrants from across the USSR, who formed the bamovtsy, or group of BAM build- ers. They share a history of working and living along the BAM and constitute the majority population in the region. The article argues that emotionally charged social memory of the BAM construction plays the central role in reproducing and reinforcing the bamovtsy identity in the post-Soviet period. Drawing on in-depth interviews and focus groups, the article examines the dynamics of both indi- vidual and collective remembering of the socialist BAM. It forms a vibrant discursive and emotional field, in which memories and iden- tities are reconstructed, relived, and contested. Commemorative cer- emonies such as the fortieth anniversary of the BAM serve as forums of public remembering and arenas for the politics of emotions. Keywords: Baikal-Amur Mainline, emotions, identity, politics, post-socialism, social memory he Baikal-Amur Mainline (BAM) is the longest northernmost rail- road crossing the regions of East Siberia and the Russian Far East Tto link the Eurasian countries with East Asia. The history of the BAM starts with early construction projects dating back to the nineteenth century and continues with the first tracks laid under the Stalinist regime in the 1950s. However, the majority of the mainline was built between 1974 and 1984, under the authority of the Soviet industrial pro- gram focused on “mastering the North” (Slavin 1982). -
River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning Under Different Hydroclimatic Conditions
water Article River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions Nikolay Kasimov 1, Galina Shinkareva 1,* , Mikhail Lychagin 1, Sergey Chalov 1 , Margarita Pashkina 1, Josefin Thorslund 2 and Jerker Jarsjö 2 1 Faculty of Geography, Lomonosov Moscow State University, 119991 Moscow, Russia; [email protected] (N.K.); [email protected] (M.L.); [email protected] (S.C.); [email protected] (M.P.) 2 Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden; josefi[email protected] (J.T.); [email protected] (J.J.) * Correspondence: [email protected]; Tel.: +7-909-633-2239 Received: 4 July 2020; Accepted: 20 August 2020; Published: 26 August 2020 Abstract: The partitioning of metals and metalloids between their dissolved and suspended forms in river systems largely governs their mobility and bioavailability. However, most of the existing knowledge about catchment-scale metal partitioning in river systems is based on a limited number of observation points, which is not sufficient to characterize the complexity of large river systems. Here we present an extensive field-based dataset, composed of multi-year data from over 100 monitoring locations distributed over the large, transboundary Selenga River basin (of Russia and Mongolia), sampled during different hydrological seasons. The aim is to investigate on the basin scale, the influence of different hydroclimatic conditions on metal partitioning and transport. Our results showed that the investigated metals exhibited a wide range of different behaviors. Some metals were mostly found in the dissolved form (84–96% of Mo, U, B, and Sb on an average), whereas many others predominantly existed in suspension (66–87% of Al, Fe, Mn, Pb, Co, and Bi). -