Global Evaluation of Biofuel Potential from Microalgae

Total Page:16

File Type:pdf, Size:1020Kb

Global Evaluation of Biofuel Potential from Microalgae Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Global Evaluation of Biofuel Potential from Microalgae Jeffrey W. Moody Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Moody, Jeffrey W., "Global Evaluation of Biofuel Potential from Microalgae" (2014). All Graduate Theses and Dissertations. 2070. https://digitalcommons.usu.edu/etd/2070 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. GLOBAL EVALUATION OF BIOFUEL POTENTIAL FROM MICROALGAE by Jeffrey W. Moody A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mechanical Engineering Approved: Dr. Jason Quinn Dr. Byard Wood Major Professor Committee Member Dr. Rees Fullmer Dr. Mark McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright © Jeffrey Moody 2014 All Rights Reserved iii ABSTRACT Global Evaluation of Biofuel Potential from Microalgae by Jeffrey W. Moody, Master of Science Utah State University, 2014 Major Professor: Dr. Jason C. Quinn Department: Mechanical and Aerospace Engineering Traditional terrestrial crops are currently being utilized as a feedstock for biofuels but resource requirements and low yields limit the sustainability and scalability. Comparatively, next generation feedstocks, such as microalgae, have inherent advantages such as higher solar energy efficiencies, larger lipid fractions, utilization of waste carbon dioxide, and cultivation on poor quality land. The assessment of microalgae-based biofuel production systems through lifecycle, technoeconomic, and scalability assessments has been forced to extrapolate laboratory-scale data due to the immaturity of the technology. This type of scaling leads to large uncertainty in the current near-term productivity potential and ultimately the results from modeling work that rely on this type of modeling. This study integrated a large-scale validated outdoor microalgae growth model that utilizes 21 species and reactor-specific inputs that accurately account for biological effects such as nutrient uptake, respiration, and temperature with hourly historical meteorological data from around the world to determine the current global productivity potential. A global map of the microalgae lipid and biomass productivity has iv been generated based on the results of annual simulations at 4,388 global locations spread over the seven continents. Maximum annual average yields between 24-27 m3·ha-1·yr-1 are found in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia with the monthly variability (minimum and maximum) yields of these locations ranging between 14 and 33 m3·ha- 1·yr-1. A scalability assessment that leverages geographic information systems data to evaluate geographically realized microalgae productivity, energy consumption, and land availability has been performed highlighting the promising potential of microalgae-based biofuels compared to traditional terrestrial feedstocks. Results show many regions can meet their energy requirements through microalgae production without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared to annual average yields, biomass productivity potential, effects of temperature on lipid production, and a comparison of results to previous published modeling assumptions. (157 pages) v PUBLIC ABSTRACT Global Evaluation of Biofuel Potential from Microalgae The objective of the proposed work is to determine the productivity potential of microalgae around the world based on the current large uncertainty of the productivity potential found in literature. To achieve this objective, a validated thermal and biological growth model was utilized coupled with weather data files from weather stations around the world. This enabled a realistic assessment of the productivity potential based on actual climatic variables. Sensitivity of microalgae lipid productivity to biomass production, temperature, and variability was performed illustrating the importance of biological and temporal resolution. Results from modeling work were leveraged for a scalability assessment based on transportation fuel consumption and land availability statistics from around the globe. A comparison of the results from this study to the current assumption in literature shows the community has dramatically overestimated the current near term productivity potential in literature. As research into microalgae continues to grow, many studies are being performed to understand the energetic and economic feasibility of converting microalgae to biofuel. The large variability as to the true current productivity potential of microalgae has detrimentally affected large-scale assessments of the microalgae-to-biofuels system. The large uncertainty has resulted in favorable skewing of the environmental impact, economic feasibility, and resource requirements of the microalgae-to-biofuel process. The results from this study offer a better understanding of the true large-scale near term productivity of microalgae based on light, nutrient, and temperature factors to better inform future energetic and economic assessments of biofuel from microalgae. Jeffrey W. Moody vi ACKNOWLEDGMENTS I give special thanks to my supportive wife, Allison, for her patience as I worked long days and late nights to finish this work. I could not have done it without her. I would like to thank Dr. Jason Quinn for his encouragement, support, and assistance throughout the entire process. Financial support was provided by the Department of Energy (grant number DE-EE0003114) and Utah State University. Jeffrey W. Moody vii CONTENTS Page ABSTRACT ........................................................................................................................................ iii PUBLIC ABSTRACT ............................................................................................................................ v ACKNOWLEDGMENTS ..................................................................................................................... vi LIST OF TABLES .............................................................................................................................. viii LIST OF FIGURES .............................................................................................................................. ix LIST OF SYMBOLS ............................................................................................................................. x INTRODUCTION ................................................................................................................................ 1 MATERIALS AND METHODS ............................................................................................................. 4 Photobioreactor Thermal and Biological Growth Models ........................................................... 5 Weather Data ............................................................................................................................. 11 Simulation Architecture ............................................................................................................. 12 Harvest Technique and Reporting Metrics ............................................................................ 12 Temperature Sensitivity ......................................................................................................... 13 Productivity Variability ........................................................................................................... 13 Geographical Information System (GIS)..................................................................................... 14 RESULTS AND DISCUSSION ............................................................................................................ 18 Global Productivity Potential and Variability ............................................................................. 18 Temperature Sensitivity ............................................................................................................. 22 Scalability Assessment ............................................................................................................... 23 Literature Comparison ............................................................................................................... 26 CONCLUSION .................................................................................................................................. 30 FUTURE WORK ............................................................................................................................... 31 REFERENCES ................................................................................................................................... 32 APPENDIX ....................................................................................................................................... 37 viii LIST OF TABLES Table Page 1 Average microalgae lipid yields in m3·ha-1·yr-1of various regions around the world with respective high and low variability …………………………….
Recommended publications
  • Rapid Cultural Inventories of Wetlands in Arab States Including Ramsar Sites and World Heritage Properties
    Rapid cultural inventories of wetlands in Arab states including Ramsar Sites and World Heritage Properties Building greater understanding of cultural values and practices as a contribution to conservation success Tarek Abulhawa – Lead Author Tricia Cummings – Research and Data Analysis Supported by: May 2017 Acknowledgements The report team expresses their utmost appreciation to Ms. Mariam Ali from the Ramsar Secretariat and Ms. Haifaa Abdulhalim from the Tabe’a Programme (IUCN’s programme in partnership with ARC-WH) for their guidance and support on the preparation of this regional assessment. Special gratitude is extended to all the national focal points from the target countries and sites as well as international experts and colleagues from the Ramsar and IUCN networks for their valuable contributions and reviews of assignment reports drafts. Finally, the team wants to take the opportunity to thank all the peoples of the wetlands in the Arab states for their long established commitment to the protection of their wetlands through their cultural values, traditional knowledge and sustainable practices for the benefit of future generations. Cover: Traditional felucca fishing boat, Tunisia. DGF Tunisa Contents Executive summary . 4 Introduction . 9 Methodology . 13 Assessment Results . 21 Algeria . 23 La Vallée d’Iherir . 24 Oasis de Tamantit et Sid Ahmed Timmi. 27 Réserve Intégrale du Lac Tonga . 32 Egypt . 35 Lake Bardawil . 36 Lake Burullus . 41 Wadi El Rayan Protected Area . 44 Iraq . 49 Central Marshes . 52 Hammar Marshes . 55 Hawizeh Marshes . 58 Mauritania . 63 Lac Gabou et le réseau hydrographique du Plateau du Tagant . 64 Parc National du Banc d’Arguin . 67 Parc National du Diawling .
    [Show full text]
  • Airport City Developments in Australia : Land Use Classification and Analyses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive QUT Digital Repository: http://eprints.qut.edu.au/ Walker, Arron R. and Stevens, Nicholas J. (2008) Airport city developments in Australia : land use classification and analyses. In: 10th TRAIL Congress and Knowledge Market, 14-15 October 2008, Rotterdam, The Netherlands. © Copyright 2008 [please consult the authors] Airport city developments in Australia Land use classification and analyses TRAIL Research School, Delft, October 2008 Authors Dr. Arron Walker, Dr. Nicholas Stevens Faculty of Built Environment and Engineering, School of Urban Development, Queensland University of Technology, Qld, Australia © 2008 by A. Walker, N. Stevens and TRAIL Research School Contents Abstract 1 Introduction.......................................................................................................1 2 Background........................................................................................................2 2.1 Aviation growth in Australia...............................................................................2 2.2 Airport ownership in Australia ...........................................................................3 2.3 Airport Planning under Airports Act 1996 .........................................................4 2.4 Diversification of airport revenue.......................................................................5 3 Land use analysis: methods and materials .....................................................5
    [Show full text]
  • Selected Data and Indicators from the Results of General Populations, Housing and Establishments Censuses
    General Census of Populations, Housing & Establishment 2010 Selected Data and Indicators From the Results of General Populations, Housing and Establishments Censuses ) 2010 -2003 -1993( Selected Data and Indicators From the Results of General Populations, Housing and Establishments Censuses (2010 - 2003 - 1993) His Majesty Sultan Qaboos Bin Said Foreword His Majesty Sultan Qaboos bin Said, may Allah preserve Him, graciously issued the Royal Decree number (84/2007) calling for the conduct of the General Housing, Population and Establishments Census for the year 2010. The census was carried out with the assistance and cooperation of the various governmental institutions and the cooperation of the people, Omani and Expatriates. This publication contains the Selected Indicators and Information from the Results of the Censuses 1993, 2003 and 2010. It shall be followed by other publications at various Administrative divisions of the Sultanate. Efforts of thousands of those who contributed to census administrative and field work had culminated in the content of this publication. We seize this opportunity to express our appreciation and gratitude to all Omani and Expatriate people who cooperated with the census enumerators in providing the requested information fully and accurately. We also wish to express our appreciation and gratitude to Governmental civic, military and security institutions for their full support to the census a matter that had contributed to the success of this important national undertaking. Likewise, we wish to recognize the faithful efforts exerted by all census administration and field staff in all locations and functional levels. Finally, we pray to Allah the almighty to preserve the Leader of the sustainable development and progress His Majesty Sultan Qaboos bin Said, may Allah preserve him for Oman and its people.
    [Show full text]
  • CLIMATIC DESIGN INFORMATION Climatic Design Conditions
    CHAPTER 14 CLIMATIC DESIGN INFORMATION Climatic Design Conditions..................................................... 14.1 Generating Design-Day Data ................................................ 14.11 Monthly Design Conditions ..................................................... 14.3 Estimation of Degree-Days .................................................... 14.11 CALCULATING CLEAR-SKY SOLAR RADIATION ............... 14.7 Representativeness of Data and Sources of Uncertainty ....... 14.12 TRANSPOSITION TO RECEIVING SURFACES Other Sources of Climatic Information.................................. 14.15 OF VARIOUS ORIENTATIONS ........................................... 14.9 Appendix: Design Conditions for Selected Locations............ 14.18 HIS chapter and the data on the accompanying CD-ROM pro- chapter. The tables also list heating and cooling degree-days for Tvide the climatic design information for 5564 locations in the bases 65 and 50°F, as well as cooling degree-hours for bases 74 and United States, Canada, and around the world. This is an increase of 80°F. The calculation of daily dry-bulb and wet-bulb temperature 1142 stations from the 2005 ASHRAE Handbook—Fundamentals. profiles, which are useful for generating 24 h weather data sequences The large number of stations, along with the addition of several new suitable as input to many HVAC analysis methods, has been signifi- table elements, made printing the whole tables impractical. Conse- cantly updated, with the inclusion of mean dry-bulb and wet-bulb quently, the complete table of design conditions for only Atlanta, GA, temperature ranges coincident with the 5% monthly dry-bulb and appears in this printed chapter to illustrate the table format. However, wet-bulb design temperatures. a subset of the table elements most often used is presented in the Finally, clear-sky solar radiation calculations have been moved Appendix at the end of this chapter for selected stations representing to this chapter from other chapters.
    [Show full text]
  • Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
    ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation.
    [Show full text]
  • Botanica Pacifica
    Russian Academy of Sciences, Far Eastern Branch Botanical Garden-Institute botanica pacifica A journal of plant science and conservation Volume 9, No. 1 2020 VLADIVOSTOK 2020 Botanica Pacifica. A journal of plant science and conservation. 2020. 9(1): 3–52 DOI: 10.17581/bp.2020.09113 Revision of the genus Viola L. (Violaceae) in the Russian Far East with notes on adjacent territories Marc Espeut Marc Espeut ABSTRACT e-mail: [email protected] This study proposes a revision of the genus Viola L. (Violaceae) in the Russian 34, rue de l'Agriculture, 66500 Prades, Far East and adjacent regions. It is based on the taxonomic work that Becker con- France ducted on the Asian Viola (1915–1928), but also on Clausen's cytotaxonomic stud- ies (1926–1964) that laid the foundations of the genus' phylogeny. Chromosome counts, as well as phylogenetic analyses, have allowed to specify the infrageneric taxonomy and establish relationships between some taxa of American or Asian ad- Manuscript received: 09.03.2020 jacent territories. A systematic treatment based on the Biological Species Concept, Review completed: 22.04.2020 associated with genetic, cytotaxonomic, and biogeographic data, allowed many sys- Accepted for publication: 02.05.2020 tematic and nomenclatural changes, at different levels: infrageneric, specific and Published online: 07.05.2020 infraspecific. This study shows the remarkable role of the Russian Far East for the conservation and differentiation of the genus Viola species, and probably for the whole flora of the Holarctic Kingdom. Keywords: Violaceae, Viola, Russian Far East, typifications, taxonomic novelties, no- TABLE OF CONTENTS menclatural novelties Introduction ..........................................................
    [Show full text]
  • TERMINAL CHARTS Charleroi, (Brussels South), EBCI, EFF 07 OCT 21 RWY 06/24 Length Chgd to 3200M, LDA 2600M/ AUSTRIA 2405M, TORA 2905M/3055M
    24 SEP 21 VFR TERMINAL CHANGE NOTICES 0.3-1 EUROPE q$i Jeppesen CHART CHANGE NOTICES highlight only significant changes affecting Jeppesen Charts, also regularly updated at www.jeppesen.com. IMPORTANT: CHECK FOR NOTAMS AND OTHER PERTINENT INFORMATION PRIOR TO FLIGHT. TERMINAL CHARTS Charleroi, (Brussels South), EBCI, EFF 07 OCT 21 RWY 06/24 length chgd to 3200m, LDA 2600m/ AUSTRIA 2405m, TORA 2905m/3055m. RWY 06 extended flush with apron P15. Closed TWY N6 estbld S Eferding, LOLE, EFF 16 JUL 20 LINZ RADAR freq of TWY M6. TWYs M7 and N7 estbld S of apron 119.75 chgd to 125.685. P15. TWY N split into TWYs NB and NA between Hb Hofkirchen, LOLH, EFF 16 JUL 20 LINZ TWYs N2 and N3. RADAR freq 119.75 chgd to 125.685. Kortrijk-Wevelgem, EBKT, Mandatory to contact Innsbruck, LOWI, EFF 19 SEP 21 until 19 OCT 21 KORTRIJK INFORMATION before taxi. Reconstruction works of RWY 08/26. RWY 08/26, TEL: AFIS 056362044, 056362042, Fax 056354059. TWY A, B, Y and Z closed. AD OPS closed. ATS Handling FIA 056373434. Ops Manager available BTN 0600-1800Z. Please check current 056232990. Apt Administration 056232996. NOTAMs for possible postponements. Liege, EBLG, Handling agent 'ASL Jet Handling' Linz Ost, LOLO, EFF 16 JUL 20 LINZ RADAR freq added: TEL 035350233, E-Mail handling@ 119.75 chgd to 125.685. aslgroup.eu, Web http://www.aslgroup.eu Niederoblarn, LOGO, EFF 10 SEP 20 TWY Z6 and Apron P0 estbld as extension of TWY Non-compulsory REP GRÖBMING (N47 26.4 A5.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Notes
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Notes on Sedimentary Basins in China Report of the American Sedimentary Basins Delegation to the People's Republic of China A. W. Bally 1 , I-Ming Chou2, R. Clayton3, H. P. Eugster4, S. Kidwell5, L. D. Meckel6, R. T. Ryder7, A. B. Watts8, A. A. Wilson9 1. Rice University, Houston 2. U. S. Geological Survey, Reston 3. California Institute of Technology, Pasadena 4. Johns Hopkins University, Baltimore 5. University of Chicago 6. L. D. Meckel Company, Houston 7. U. S. Geological Survey, Reston 8. Lament Doherty Geological Observatory, Columbia University, New York 9. National Academy of Sciences, Washington Open-File Report 86-327 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editiorial standards. 1986 NOTICE The views expressed in this report are those of the members of the Sedimentary Basins Delegation and are in no way the official views of the Committee on Scholarly Communication with the People's Republic of China or its sponsoring organizations the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. The visit consisting of a bilateral workshop and field trip was part of the exchange program between the two countries and was supported by the National Academy of Sciences in the United States and the China Association for Science and Technology in China, with the Chinese Petroleum Society bearing special responsibilities as host. U.S. funding was provided by the National Science Foundation. The Committee on Scholarly Communication with the People's Republic of China was founded in 1966 by the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council.
    [Show full text]
  • Final Exploitation Plan
    D9.10 – Final Exploitation Plan Jorge Lpez (Atos), Alessandra Tedeschi (DBL), Julian Williams (UDUR), abio Massacci (UNITN), Raminder Ruprai (NGRID), Andreas Schmitz ( raunhofer), Emilio Lpez (URJC), Michael Pellot (TMB), Zden,a Mansfeldov. (ISASCR), Jan J/r0ens ( raunhofer) Pending of approval from the Research Executive Agency - EC Document Number D1.10 Document Title inal e5ploitation plan Version 1.0 Status inal Work Packa e WP 1 Deliverable Type Report Contractual Date of Delivery 31 .01 .20 18 Actual Date of Delivery 31.01.2018 Responsible Unit ATOS Contributors ISASCR, UNIDUR, UNITN, NGRID, DBL, URJC, raunhofer, TMB (eyword List E5ploitation, ramewor,, Preliminary, Requirements, Policy papers, Models, Methodologies, Templates, Tools, Individual plans, IPR Dissemination level PU SECONO.ICS Consortium SECONOMICS ?Socio-Economics meets SecurityA (Contract No. 28C223) is a Collaborative pro0ect) within the 7th ramewor, Programme, theme SEC-2011.E.8-1 SEC-2011.7.C-2 ICT. The consortium members are: UniversitG Degli Studi di Trento (UNITN) Pro0ect Manager: prof. abio Massacci 1 38100 Trento, Italy abio.MassacciHunitn.it www.unitn.it DEEP BLUE Srl (DBL) Contact: Alessandra Tedeschi 2 00113 Roma, Italy Alessandra.tedeschiHdblue.it www.dblue.it raunhofer -Gesellschaft zur Irderung der angewandten Contact: Prof. Jan J/r0ens 3 orschung e.V., Hansastr. 27c, 0an.0uer0ensHisst.fraunhofer.de 80E8E Munich, Germany http://www.fraunhofer.de/ UNIVERSIDAD REL JUAN CARLOS, Contact: Prof. David Rios Insua 8 Calle TulipanS/N, 28133, Mostoles david.riosHur0c.es
    [Show full text]
  • Supplementary Materials
    511 Supplementary Materials 512 Environmental Change and Coronavirus Emergence Risk 513 Maria Cristina Rulli1, Paolo D’Odorico2, Nikolas Galli1, David T.S. Hayman3 514 1 Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 515 Milano, Italy 516 2 Department of Environmental Science, Policy, and Management, University of California, Berkeley, 517 California, USA 518 3 Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, 519 New Zealand 520 521 522 Figures and Tables Supplementary Materials (SI) 523 Table S1. Horseshoe bat locations based on literature survey of studies reporting occurrences and 524 related coordinates (coordinates are here listed as reported in the original articles and therefore 525 they are not in a homogeneous format). Species Site Location Region Latitude Longitude Ref. R. macrotis Shiyan Cave Jing gang shan Nature Jiangxi Province 26°36’N 114°12’E 1 Reserve R. macrotis Xianren Cave Jinning County Yunnan Province 24°30’N 102°20’E R. macrotis Tiantang Cave Changtang County, Nanning Guangxi Province 22°49’N 108°42’E city R. luctus Emei shan Emei shan Sichuan province 29°31’11”N 103°19’57”E 2 R. formosae Pingtung Pingtung Taiwan 22°40’16”N 120°29’17”E R. formosae Kaohsiung Kaohsiung Taiwan 23°01’18”N 120°39’25”E R. affinis Shiyan cave Liping village, Jinggangshan Jiangxi Province 26°36′N 114°12′E 3 Natural Reserve R. pearsoni Shiyan cave Liping village, Jinggangshan Jiangxi Province 26°36′N 114°12′E Natural Reserve R. macrotis Longxu cave Shuanghe township Yunnan Province 24°30’N 102°20’E 4 R.
    [Show full text]
  • Petrogenesis of the Jurassic Guiping Complex in the Southwestern South China Block: Insights Into the Subduction Processes of the Paleo-Pacific Slab
    minerals Article Petrogenesis of the Jurassic Guiping Complex in the Southwestern South China Block: Insights into the Subduction Processes of the Paleo-Pacific Slab Zhao-Ying Lü 1,2,3, Chang-Qian Ma 3,4,*, Yuan-Yuan Liu 5, Fu-Hao Xiong 6, Chang-Xin Wei 1,2, Mu-Long Chen 7, Gui-Cheng Xue 1,2 and Yu-Sheng He 1,2 1 Hainan Key Laboratory of Marine Geological Resources and Environment, Haikou 570206, China; [email protected] (Z.-Y.L.); [email protected] (C.-X.W.); [email protected] (G.-C.X.); [email protected] (Y.-S.H.) 2 Hainan Geological Survey, Haikou 570206, China 3 Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China 4 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China 5 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; [email protected] 6 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China; [email protected] 7 Hainan Resources Environment Survey Institute, Haikou 570206, China; [email protected] * Correspondence: [email protected] Abstract: Late Jurassic NE-trending A-type granitoids are widespread in the Shihang belt, South Citation: Lü, Z.-Y.; Ma, C.-Q.; Liu, Y.-Y.; Xiong, F.-H.; Wei, C.-X.; Chen, China, though their petrogenesis and geodynamic settings remain controversial. The Guiping M.-L.; Xue, G.-C.; He, Y.-S. Petrogenesis complex is located on the southwest margin of the Shihang belt. In this study, the petrography, major of the Jurassic Guiping Complex in and trace element geochemistry, whole-rock Sr-Nd isotopes, and zircon U-Pb geochronology of the the Southwestern South China Block: Guiping complex were investigated.
    [Show full text]
  • Late-Stage Tectonic Evolution of the Al-Hajar Mountains
    Geological Magazine Late-stage tectonic evolution of the www.cambridge.org/geo Al-Hajar Mountains, Oman: new constraints from Palaeogene sedimentary units and low-temperature thermochronometry Original Article 1,2 3 4 3 4 5 Cite this article: Corradetti A, Spina V, A Corradetti , V Spina , S Tavani , JC Ringenbach , M Sabbatino , P Razin , Tavani S, Ringenbach JC, Sabbatino M, Razin P, O Laurent6, S Brichau7 and S Mazzoli1 Laurent O, Brichau S, and Mazzoli S (2020) Late-stage tectonic evolution of the Al-Hajar 1 Mountains, Oman: new constraints from School of Science and Technology, Geology Division, University of Camerino. Via Gentile III da Varano, 62032 2 Palaeogene sedimentary units and low- Camerino (MC), Italy; Department of Petroleum Engineering, Texas A&M University at Qatar, Doha, Qatar; temperature thermochronometry. Geological 3Total E&P, CSTJF, Avenue Larribau, 64000 Pau, France; 4DiSTAR, Università di Napoli Federico II, 21 Via vicinale Magazine 157: 1031–1044. https://doi.org/ cupa Cintia, 80126 Napoli, Italy; 5ENSEGID, Institut Polytechnique de Bordeaux, 1 allée Daguin, 33607 Pessac, 10.1017/S0016756819001250 France; 6Total E&P, Paris, France and 7Géosciences Environnement Toulouse (GET), Université de Toulouse, UPS, CNRS, IRD, CNES, 14 avenue E. Belin, 31400, Toulouse, France Received: 8 July 2019 Revised: 5 September 2019 Accepted: 15 September 2019 Abstract First published online: 12 December 2019 Mountain building in the Al-Hajar Mountains (NE Oman) occurred during two major short- – Keywords: ening stages, related to the convergence between Africa Arabia and Eurasia, separated by nearly Oman FTB; Cenozoic deformation; remote 30 Ma of tectonic quiescence. Most of the shortening was accommodated during the Late sensing; thermochronology Cretaceous, when northward subduction of the Neo-Tethys Ocean was followed by the ophio- lites obduction on top of the former Mesozoic margin.
    [Show full text]