Instructor's Manual for E

Total Page:16

File Type:pdf, Size:1020Kb

Instructor's Manual for E Instructor Manual Natural Hazards Earth’s Processes as Hazards, Disasters, and Catastrophes Third Edition Patricia Anderson California State University – San Marcos Chapter 1 Introduction to Natural Hazards Learning Objectives Natural processes such as volcanic eruptions, earthquakes, floods, and hurricanes become hazards when they threaten human life and property. As population continues to grow, hazards, disasters, and catastrophes become more common. An understanding of natural processes as hazards requires some basic knowledge of Earth science. Your goals in reading this chapter should be to • know the difference between a disaster and a catastrophe. • know the components and processes of the geologic cycle. • understand the scientific method. • understand the basics of risk assessment. • recognize that natural hazards that cause disasters are generally high-energy events, caused by natural Earth processes. • understand the concept that the magnitude of a hazardous event is inversely related to its frequency. • understand how natural hazards may be linked to one another and to the physical environment. • recognize that increasing human population and poor land use changes compound the effects of natural hazards, turning disasters into catastrophes. Chapter Outline 1. Introduction to Natural Hazards 1.1. Why Studying Natural Hazards Is Important 1.1.1. Processes: Internal and External 1.1.2. Hazard, Disaster, or Catastrophe 1.1.3. Death and Damage Caused by Natural Hazards 1.2. Role of History in Understanding Hazards 1.3. Geologic Cycle 1.3.1. The Tectonic Cycle 1.3.2. The Rock Cycle 1.3.3. The Hydrologic Cycle 1.3.4. Biogeochemical Cycles 1.4. Fundamental Concepts for Understanding Natural Processes as Hazards 1.4.1. Science and Natural Hazards 1.4.2. Hazards Are Natural Processes 1.4.3. Forecast, Prediction, and Warning of Hazardous Events 1.4.4. Examples of Disasters In Densely Populated Areas 1.4.5. Human Population Growth 1 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 1.4.6. Magnitude and Frequency of Hazardous Events Case Study 1.1: Human Population through History Case Study 1.2: The Magnitude–Frequency Concept 1.4.7. Reactive Response: Impact of and Recovery from Disasters 1.4.8. Anticipatory Response: Avoiding and Adjusting to Hazards 1.5. Many Hazards Provide a Natural Service Function 1.6. Global Climate Change and Hazards Chapter Summary Natural hazards are responsible for causing significant death and damage worldwide each year. Processes that cause hazardous events include those that are internal to Earth, such as volcanic eruptions and earthquakes that result from Earth’s internal heat, and those that are external to the Earth, such as hurricanes and global warming, which are driven by energy from the sun. Natural processes may become hazards, disasters, or catastrophes when they interact with human beings. Central to an understanding of natural hazards is awareness that hazardous events result from natural processes that have been in operation for millions and possibly billions of years before humans experienced them. These processes become hazards when they threaten human life or property and should be recognized and avoided. Hazards involve repetitive events. Thus, a study of the history of these events provides much-needed information for hazard reduction. A better understanding and more accurate prediction of natural processes come by integrating historic and prehistoric information, present conditions, and recent past events, including land-use changes. Geologic conditions and materials largely govern the type, location, and intensity of natural processes. The geologic cycle creates, maintains, and destroys Earth materials by physical, chemical, and biological processes. Subcycles of the geologic cycle are the tectonic cycle, rock cycle, hydrologic cycle, and various biogeochemical cycles. The tectonic cycle describes large-scale geologic processes that deform Earth’s crust, producing landforms such as ocean basins, continents, and mountains. The rock cycle may be considered a worldwide earth-material recycling process driven by Earth’s internal heat, which melts the rocks subducted in the tectonic cycle. Driven by solar energy, the hydrologic cycle operates by way of evaporation, precipitation, surface runoff, and subsurface flow. Biogeochemical cycles can most easily be described as the transfer of chemical elements through a series of storage compartments or reservoirs, such as air or vegetation. Five fundamental concepts establish a philosophical framework for studying natural hazards. 1. Hazards are predictable from scientific evaluation. 2. Risk analysis is an important component in our understanding of the effects of hazardous processes. 2 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 3. Linkages exist between various natural hazards as well as between hazards and the physical environment. 4. Hazardous events that previously produced disasters are now producing catastrophes. 5. Consequences of hazards can be minimized. Answers to Review Questions: 1. What forces drive internal and external Earth processes? (p. 3) Internal forces are processes deep within the Earth, driven by plate tectonics and heat loss from Earth’s deep interior. External forces are processes that take place near the surface or at the surface of the Earth and are driven by gravity and energy from the Sun. 2. What is the distinction between a natural hazard, disaster, and catastrophe? (p. 3) A natural hazard is any natural process that poses a threat to human life or property. A disaster occurs when a hazard, such as a flood or earthquake, inflicts loss of life and property in a society. A catastrophe is a massive disaster, typically with many deaths, requiring a large input of time and money to rectify. 3. Which natural hazards are likely to be more deadly, more likely to cause property damage, and more likely to become catastrophes? (pp. 3–5) Tornados, windstorms, floods, and hurricanes are all likely to cause property damage and are more likely to become catastrophes. Earthquake, volcanic, and tsunami hazards have historically caused the greatest number of deaths, even though they occur less frequently than the weather-related catastrophes. 4. Explain why the effects of natural hazards are not constant over time. (p. 6) The effects of natural hazards change with time because of changes in land-use patterns. 5. Why is history so important in understanding natural hazards? (p. 7) Studying history provides the needed background to guide any hazard reduction plan. Specifically, history can reveal the recurrence interval for hazards such as 3 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. floods, earthquakes, and other hazards that occur with a semi-regular frequency. 6. What kinds of information must be assembled to make hazard predictions? (p. 7) A prediction of the future occurrence and effects of a hazard requires that we combine information about historic and prehistoric behavior with a knowledge of present conditions and recent past events, including land-use changes. 7. Describe the components and interactions involved in the geologic cycle. (pp. 7–9) The Tectonic Cycle: This involves the creation, movement, and destruction of tectonic plates through geologic process driven by forces deep within Earth. Tectonic processes largely determine the quality of rocks and soils produced at plate boundaries, for which we depend on building and agriculture. Tectonics also affects the flow patterns of the oceans, which in turn influence global climate and precipitation. The Rock Cycle: The largest of the subcycles, it is linked to all the other subcycles. It depends on tectonics for heat and energy, the biogeochemical cycle for materials, and the hydrologic cycle for water. Water is then used in the process of weathering, erosion, transportation, deposition, and lithification of sediment. The Hydrologic Cycle: Driven by solar energy, this cycle moves water from the oceans to the atmosphere and back again. It operates by way of evaporation, precipitation, surface runoff, and subsurface flow, storing water in different compartments along the way. The water produced from the hydrologic cycle helps move and sort chemical elements in solution, sculpt the landscape, weather rocks, transport and deposit sediments, and provide our water resources. The Biogeochemical Cycle: This is the transfer or cycling of an element or elements through the atmosphere, lithosphere, hydrosphere, and biosphere. Chemical elements are transferred through a series of storage compartments or reservoirs, such as air, soil, groundwater, or vegetation. The biogeochemical cycle is tied to the tectonic, rock, and hydrologic cycles. 8. What are the five fundamental concepts for understanding natural processes as hazards? (pp. 9–10) The five fundamental concepts are as follows:
Recommended publications
  • Profile of a Plant: the Olive in Early Medieval Italy, 400-900 CE By
    Profile of a Plant: The Olive in Early Medieval Italy, 400-900 CE by Benjamin Jon Graham A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (History) in the University of Michigan 2014 Doctoral Committee: Professor Paolo Squatriti, Chair Associate Professor Diane Owen Hughes Professor Richard P. Tucker Professor Raymond H. Van Dam © Benjamin J. Graham, 2014 Acknowledgements Planting an olive tree is an act of faith. A cultivator must patiently protect, water, and till the soil around the plant for fifteen years before it begins to bear fruit. Though this dissertation is not nearly as useful or palatable as the olive’s pressed fruits, its slow growth to completion resembles the tree in as much as it was the patient and diligent kindness of my friends, mentors, and family that enabled me to finish the project. Mercifully it took fewer than fifteen years. My deepest thanks go to Paolo Squatriti, who provoked and inspired me to write an unconventional dissertation. I am unable to articulate the ways he has influenced my scholarship, teaching, and life. Ray Van Dam’s clarity of thought helped to shape and rein in my run-away ideas. Diane Hughes unfailingly saw the big picture—how the story of the olive connected to different strands of history. These three people in particular made graduate school a humane and deeply edifying experience. Joining them for the dissertation defense was Richard Tucker, whose capacious understanding of the history of the environment improved this work immensely. In addition to these, I would like to thank David Akin, Hussein Fancy, Tom Green, Alison Cornish, Kathleen King, Lorna Alstetter, Diana Denney, Terre Fisher, Liz Kamali, Jon Farr, Yanay Israeli, and Noah Blan, all at the University of Michigan, for their benevolence.
    [Show full text]
  • 2008-2009 Wyoming Centennial Farm and Ranch Honorees
    Honoring Wyoming’s 100-year-old farms and ranches 2008-2009 WYOMING CENTENNIAL FARM AND RANCH HONOREES ARTS. PARKS. HIS Y. Wyoming State Parks & Cultural Resources Table of Contents Letter from Governor Dave Freudenthal ...........................................................................3 2008 Centennial Farms and Ranches The Bruner Ranch, Inc., Charles Bruner Family. .................................................................6 The Bunney Ranch, Gerald and Patsy Bunney ..................................................................12 The Collins Farm and Ranch, Robert and Peggy Collins Family ...........................................15 The Raymond Hunter Farm and Ranch, Roger Hunter & Lynne Hunter Ainsworth Families ....17 The King Cattle Company, Kenneth and Betty King Family ...............................................20 The Lost Springs Ranch, Charles and Mary Alice Amend Engebretsen .................................23 The Homestead Acres, Inc., Ron and Bette Lu Lerwick Family ...........................................26 The Homestead Farm, Jerry McWilliams Family ...............................................................29 The Meng Ranch, Jim and Deb Meng Family ...................................................................33 The Quien Sabe Ranch, William Thoren Family ...............................................................34 The Teapot Ranch, Billie Jean Beaton and Frank Shepperson Family ....................................38 The Shepperson Ranch, Frank Shepperson Family ............................................................42
    [Show full text]
  • National Weather Service Green Bay
    NATIONAL WEATHER SERVICE GREEN BAY 2019 Volume 17, Issue 1 2019 Started Out Slow…then Oh No! Inside this issue: 2018 ended uneventfully over northeast Wisconsin, with July 19-20 Blowdown & 2-4 December 2018 averaging 5 to 8 Tornadoes degrees above normal, while February 2019 Blizzard & 5-6 snowfall was roughly 50% of Historic Multi-Vehicle Pileup normal. The relatively placid Snow Squall Warning 7 weather rolled on through the first half of January 2019…then Great Lakes Water Levels 8 the wheels came off, as the Spring Snowmelt Flooding 9 weather pattern became cold and active. Bitterly cold temperatures 2019-20 Winter Forecast 11 returned in late January with COOP Awards 13 record setting cold, as lows Storm Ready / 14-15 plunged to 20 to 35 below zero. Weather-Ready Nation February followed with five major snowstorms in that month alone! For the month of February, Rhinelander had NWS Office Happenings 16-18 received 61.5 inches of snow, Wausau 54.2 inches, and Green Bay 28.4 inches. All of these locations exceeded their normal monthly February snowfall by over 300%! In fact, Wausau crushed its previous February snowfall record by over a foot. By the second week of March, the cold and snow finally relented to somewhat warmer temperatures, however, northeast Wisconsin paid the price for the break from Old Man Winter. A quick warm-up along with moderate rainfall led to a rapid A HISTORIC melt of the deep snowpack, as well as widespread ice jamming on many area rivers. It all came to a head on March 14 and 15, as widespread river flooding commenced, 2019 highlighted by historic flooding along the East River in Brown County.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Top 10 Weather Events of the Decade 2010-2019
    Top 10 Weather Events of the Decade 2010-2019 These weather events were voted upon by several of our staff, and deemed the 10 most significant or interesting. Enjoy! Here’s to a good 2020! National Weather Service – Billings, MT Top 10 Weather Events March 28, 2015: 2010-2019 #10 Hot & Dry with Fires Unseasonably warm and dry conditions, in combination with a fast-moving cold front, produced very early season critical fire weather conditions on March 28, 2015. Widespread wind gusts of 60-70 mph occurred with record warm temperatures, resulting in an outbreak of several wildfires. The two fires with biggest impacts were: • Pine Crest Fire: Burned 3,000 acres near Park City, closing a 20-mile stretch of I-90 for several hours, due to smoke and poor Pine Crest Fire (USFS) visibility. Prior to the interstate closure, a West Fork Fire (USFS) multi-vehicle accident resulted in one fatality and several injuries. Also, two homes were lost and one firefighter suffered a minor injury in 3/28/2015 Max Temp Peak Wind Gust Min Humidity the fire. Baker 82° 59 mph 16 % • The West Fork Fire near Red Lodge burned 600 acres and threatened homes. Fire officials Billings 80° 73 mph 12 % closed Ski Run Road while they battled the Livingston 70° 64 mph 21 % blaze. No one was allowed to enter or leave Miles City 83° 68 mph 18 % Red Lodge Mountain for part of the day. At 3 Sheridan 80° 59 mph 12 % pm, skiers in their vehicles were escorted off the mountain by Carbon County officials.
    [Show full text]
  • National Weather Service Buffalo, NY
    Winter Weather National Weather Service Buffalo, NY Average Seasonal Snowfall SNOWFALL = BIG IMPACTS • School / government / business closures • Airport shutdowns/delays • Traffic accidents with injuries/fatalities • Money plowing/treating roads • Lost resources in traffic congestion • Power outages/damage in strong storms 4 Communicating Risk Potential The National Weather Service uses a “Ready, Set, Go” approach Substituting the words “Outlook, Watch, and Warning” This approach is based on the lead-time of the event and forecaster confidence. Hazardous Weather Outlook • Issued each day between 5am and 6am • Updated as necessary throughout the day • Outlines potential weather hazards expected over the next seven days • The potential for major storms beyond two days will be discussed in the HWO WATCH vs. WARNING Watch Conditions are favorable for severe weather in or near the watch area. Watches are issued for winter storms, ice storms and blizzards. Warning The severe weather event is imminent or occurring in the warned area. Warnings are issued for winter storms, ice storms and blizzards. WINTER WEATHER WATCHES • Issued when forecaster confidence in the event occurring is at 50% or greater • Updated at least once every 12 hours or when there is a change in timing, areal extent, or expected conditions. • Generally issued 24 to 48 hours in advance • Types: – Winter Storm (Snow, Blowing Snow, Blizzard, Lake Effect) – Wind Chill WINTER WEATHER WARNINGS • Issued when hazardous winter weather is occurring or is imminent. • Forecaster confidence
    [Show full text]
  • 4-2: Snow Storm & Ice Storm
    2018 Vermont State Hazard Mitigation Plan - Approved 11/17/18 4-2: Snow Storm & Ice Storm Potential Impact Hazard Impacts Probability Score*: Infrastructure Life Economy Environment Average: Ice 3 3 3 3 2 2.75 8.25 Snow 4 1 3 2 1 1.75 7 *Score = Probability x Average Potential Impact Strong winter weather can include any of the following, alone or in conjunction: • Snow Storms: a heavy accumulation of snow, which can be accompanied by high wind causing drifting snow, low visibility and hazardous travel. • Ice Storms: ice accretion from freezing rain, which can weigh down trees and power lines, causing outages and potentially occuring in conjunction with flooding (see: Inundation Flooding & Fluvial Erosion). • Blizzard: a storm which contains large amounts of snow and/or blowing snow, with winds in excess of 35mph and visibilities of less than 1/4 mile for an extended period of time (for wind impacts, see: Wind). • Extreme Cold: see Extreme Cold. Severe winter storms bring the threat of heavy accumulations of snow, cold/wind chills, strong winds, and power outages that result in high rates of damage and even higher rates of expenditures. A heavy accumulation of snow, especially when accompanied by high winds, causes drifting snow and very low visibility. Sidewalks, streets, and highways can become extremely hazardous to pedestrians and motorists. Severe winter storms develop through the combination of multiple meteorological factors. In Vermont and the northeastern United States, these factors include the moisture content of the air, direction of airflow, collision of warm air masses coming up from the Gulf Coast, and cold air moving southward from the Arctic.
    [Show full text]
  • Storm Data and Unusual Weather Phenomena ....…….…....………..……
    FEBRUARY 2003 VOLUME 45 NUMBER 2 SSTORMTORM DDATAATA AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: A complex storm system brought wintery weather across northern Virginia between February 14 and 18th. Nicknamed the “President’s Weekend Snowstorm of 2003”, this storm is listed as the 5th heaviest snowstorm in Washington D.C. since 1870. A total of 16.7 inches of snow and sleet was recorded at Reagan National Airport. Pictured is a wintery scene from Leesburg, VA where snow amounts ranged from 20 to 36 inches. (Photo courtesy: Jim DeCarufel, NWS Forecast Offi ce Baltimore/Washington.) TABLE OF CONTENTS Page Outstanding Storm of the Month …..…………….….........……..…………..…….…..…..... 4 Storm Data and Unusual Weather Phenomena ....…….…....………..……...........…............ 5 Reference Notes .............……...........................……….........…..……............................................. 154 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: William Angel Assistant Editors: Stuart Hinson and Rhonda Mooring STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events re- sulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service’s (NWS) Storm Prediction Center. STORM DATA contains all confi rmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition.
    [Show full text]
  • Download 1967 Guide
    THE 1967 OFFICIAL National Collegiate Athletic Association WRESTLING GUIDE Charles Parker, Editor The Official Rules Book AND RECORD BOOK OF Collegiate and Scholastic Wrestling NATIONALCOLLEGIATE CHAMPIONSHIPS by Harry G. Bu~rell 9 COLLEGIATEREVIEWS ............................. 15 1966-67 NCAA-WCOA OFFICERS . 16 JUNIOR COLLEGE CHAMPIONSHIPSby Geo. E. Killian . 31 1966 DUAL MEET RECORDS......................... 33 HELMSFOUNDATION HALL OF FAME . 35 SCHOLASTICREVIEWS . , . , . 37 RULES SECTION NCAA WRESTLINGRULES COMMITTEE . 1 MAJORRULES CHANGES............................ 2 COLLEGIATEAND SCHOLASTICRULES DIFFEHENCES . 3 OFFZCIALNCAA WRESTLINGRULES . 5 PENA~TY CHART . 35 REFEREES' SIGNALS ............................... 40 INDEXTORULES .................................. 49 produced and distributed by NATIONAL COLLEGIATE ATHLETIC BUREAU NEW YORK ON THE COVER: Oklahoma State's Yo- jiro Uetake, who in 1966 won his third straight National Collegiate championship at 130 pounds and became only the fifth ever to earn two Outstanding Wrestler awards. Although unbeaten in 57 collegiate matches, Uetake plans no further competi- tive wrestling. Instead, he hopes to teach or go into business in Japan, and maybe coach as a hobby. Yojiro feels it's ktthat he quit before he gets beaten because, as the Cowboys say, "Never was horse that couldn't be rode, and never a man who couldn't be throwed." PRODUCED AND DISTRIBUTED BY: The official service organization of the NCAA, the National Collegiate Athletic Bureau: Homer F. Cooke, Jr., Director Larry Klein, Associate Director Jack Waters, Business Manager Steve Sirianni, General Editor Marie Montana, Production Manager Jerry Olnick, Associate Editor Chris Erles, Sgstems Manager Steve Boda, Jr., Associate Editor Circulations Staff-Annette Gabrelli, Paul Mungioli, Bob Fierro ADDRESS ALL CORRESPONDENCE TO: The National ColIegiate Athletic Bureau, Box 757, Grand Central Station, New York, N.
    [Show full text]
  • Sub Theme 1 WEATHER and CLIMATE AROUND YOU
    [First Draft Only] [Suggestions from the participants yet to be incorporated] Sub Theme 1 WEATHER AND CLIMATE AROUND YOU 1 [FIRST DRAFT ONLY] SUB THEME 1 UNDERSTANDING WEATHER AROUND YOU: OBSERVING, MEASURING, UNDERSTANDING AND PREDICTING IT Background. Weather is ubiquitous. You cannot ignore it. We live “inside”. We may feel it. We complain against it. But we often take it for granted and not care about it. This could be dangerous. We need to understand the weather, measure its parameters and see if we can predict for us to even survive . It is a historical fact that we created calendars to predict weather. How can we understand the details about our local weather? How do we make observations on the weather? Do we follow the same steps our distant forefathers did? Can we find new ways? Can we learn from modern scientific methods for our local use? Why is weather important? Weather affects all things around us. Whether it is crop production, insects biting us, diseases crippling us, fruits we eat, flowers we smell all respond to weather. So, we think you will all agree we need to learn more about the wather that is everywhere around us. Weather is what we feel today. Now if you can imagine yourself living for a hundred years and you remember all the days of your life and how the weather was on each of those days, then you would tell your great-grandchild that “in my days in July it was like this”—You have talked about the “climate”. Climate is an “averaged” view of weather over a long time – typically from few years to millennia.
    [Show full text]
  • Hazard Specific Series
    HAZARD SPECIFIC SERIES PUBLISHED BY: THE CITY OF SHAWNEE / POTTAWATOMIE COUNTY DEPARTMENT OF EMERGENCY MANAGEMENT FAIR USE NOTICE: This publication may contain copyrighted material that was not specifically authorized by the copyright owner. The City of Shawnee / Pottawatomie County Department of Emergency Management believes this constitutes “fair use” of copyrighted material as provided for in section 107 of the U.S. Copyright Law. If you wish to use copyrighted material contained within the document for your own purposes that go beyond “fair use”, you must obtain permission from the copyright owner. TABLE OF CONTENTS KNOW YOUR RISK ………………………………………………………………………………………………………………………...1 PROTECT ING YOURSELF BEFORE A WINTER WEATHER EVENT…………………….………………………..…………………….….3 GENERAL GUIDELINES …...……………………………………………………………………………………………………………………….……..4 BE INFORMED ………………………………………………..……………………………………………………………………………………….……..4 MAKE A PLAN ……………………………………………………………………………………………………………………….………………………..4 KNOW THE TERMS ……………………………………………………………………………………………………………………….………………..5 BEFORE AN EVENT: PLAN AND PREPARE ..……………………………………………………………………………………………...………6 WINTER STORMS CAN BE DECEPTIVE KILLERS .…..………………………………………………………………………..…………………7 DEVELOP A FAMILY COMMUNICATIONS PLAN……………………………….………….……………………………………………….….7 SIGN UP FOR LOCAL ALERTS……………………….. ………………………………………………………………………..……………….……...7 ASSEMBLING AN EMERGENCY SUPPLIES KIT………...…………………………………………………………………..…………………...8 TYPES OF WINTER PRECIPITATION……………..…………………………………………………………………………………………………..9 THE SPERRY - PILTZ ICE
    [Show full text]
  • National Weather Service Glossary Page 1 of 254 03/15/08 05:23:27 PM National Weather Service Glossary
    National Weather Service Glossary Page 1 of 254 03/15/08 05:23:27 PM National Weather Service Glossary Source:http://www.weather.gov/glossary/ Table of Contents National Weather Service Glossary............................................................................................................2 #.............................................................................................................................................................2 A............................................................................................................................................................3 B..........................................................................................................................................................19 C..........................................................................................................................................................31 D..........................................................................................................................................................51 E...........................................................................................................................................................63 F...........................................................................................................................................................72 G..........................................................................................................................................................86
    [Show full text]