2014 Town of Shelburne Local Multi-Hazard Mitigation Plan

Total Page:16

File Type:pdf, Size:1020Kb

2014 Town of Shelburne Local Multi-Hazard Mitigation Plan 2014 TOWN OF SHELBURNE LOCAL MULTI-HAZARD MITIGATION PLAN Adopted July 28, 2014 Prepared by: The Shelburne Multi-Hazard Mitigation Planning Committee Rick Bardwell, Chief, Shelburne Falls Fire Department John Taylor, Chief, Shelburne Fire Department Steve Walker, Chief, Shelburne Police Department Chris Myers, Emergency Management Director Robert Manners, Vice-Chair, Shelburne Select Board Matthew Marchese, Chair, Shelburne Planning Board Deborah Vincent-Coutinho, Chair, Shelburne Board of Health Terry Mosher, Shelburne Town Administrator Mary Vilbon, Executive Director, Shelburne Falls Area Business Association and the Franklin Regional Council of Governments Peggy Sloan, Director of Planning & Development Kimberly Noake MacPhee, P.G., Land Use and Natural Resources Program Manager Alyssa Larose, Land Use Planner Ryan Clary, Senior GIS Specialist This project was funded by a grant received from the Massachusetts Emergency Management Agency (MEMA) Table of Contents 1 - INTRODUCTION....................................................................................................3 Hazard Mitigation..........................................................................................3 Planning Process............................................................................................3 Plan Updates and Changes ............................................................................5 2 – LOCAL PROFILE..................................................................................................7 Community Setting........................................................................................7 Infrastructure .................................................................................................8 Natural Resources..........................................................................................9 Cultural and Historic Resources..................................................................10 Community Facilities and Resources ..........................................................12 3 – HAZARD IDENTIFICATION & ANALYSIS...................................................14 Hazard Identification...................................................................................14 Vulnerability Assessment............................................................................48 Hazard Analysis Methodology....................................................................77 Development Trends Analysis ....................................................................82 4 –MITIGATION STRATEGIES..............................................................................86 Current Mitigation Strategies ......................................................................86 Future Mitigation Strategies......................................................................125 National Flood Insurance Program Compliance .......................................136 5 – PLAN ADOPTION & IMPLEMENTATION..................................................139 Plan Adoption............................................................................................139 Plan Maintenance Process.........................................................................139 APPENDICES ...........................................................................................................145 Appendix A: Shelburne zoning bylaws and Subdivision Rules and Regulations................................................................................................145 Appendix B: Meeting Agendas, Sign In Sheets, Correspondence & Publicity.....................................................................................................150 Appendix C: Shelburne Select Board Approval Memorandum………....158 Cover photo: Shelburne Falls and the Deerfield River, the day after Tropical Storm Irene, August 2011. Courtesy of the Town of Greenfield. 1 - INTRODUCTION HAZARD MITIGATION The Federal Emergency Management Agency (FEMA) and the Massachusetts Emergency Management Agency (MEMA) define Hazard Mitigation as any sustained action taken to reduce or eliminate long-term risk to people and property from natural hazards such as flooding, storms, high winds, hurricanes, wildfires, earthquakes, and other disasters. Mitigation efforts undertaken by communities will help to minimize damage to buildings and infrastructure, such as water supplies, sewers, and utility transmission lines, as well as natural, cultural and historic resources. Planning efforts, like the one undertaken by the Town of Shelburne’s Multi-Hazard Mitigation Planning Committee and the Franklin Regional Council of Governments (FRCOG), make mitigation a proactive process. Pre-disaster planning emphasizes actions that can be taken before a natural disaster occurs. Future property damage and loss of life can be reduced or prevented by a mitigation program that addresses the unique geography, demography, economy, and land use of a community within the context of each of the specific potential natural hazards that may threaten a community. Preparing a Local Multi-Hazard Mitigation Plan before a disaster occurs can save the community money and will facilitate post-disaster funding. Costly repairs or replacement of buildings and infrastructure, as well as the high cost of providing emergency services and rescue/recovery operations, can be avoided or significantly lessened if a community implements the mitigation measures detailed in the Plan. Many disaster assistance agencies and programs, including FEMA, require that a community adopt a pre-disaster mitigation plan as a condition for both mitigation funding and disaster relief funding. For example, the Hazard Mitigation Grant Program (HMGP), the Flood Mitigation Assistance Program (FMA) and the Community Rating System (CRS), are programs with this requirement. PLANNING PROCESS The multi-hazard mitigation planning process for the Town of Shelburne included the following tasks: Review of the Shelburne 2005 Local Natural Hazard Mitigation Plan, assessment of relevancy of existing materials, status of action items and addition of new materials based upon MEMA recommendations and Committee input. Identifying the hazards that may impact the community, and past occurrences of hazards at the local or regional level. Conducting a Vulnerability/Risk Assessment to identify the infrastructure (i.e., critical facilities, public buildings, roads, homes, businesses, etc.) at the highest risk for being damaged by the identified hazards, particularly flooding. Town of Shelburne Local Multi-Hazard Mitigation Plan Page 3 Identifying and assessing the policies, programs, and regulations Shelburne is currently implementing to protect against future disaster damages. Examples of such strategies include: o Preventing or limiting development in natural hazard areas like floodplains, wetlands, drinking water recharge areas, and conservation land; o Implementing recommendations in existing planning documents including Community Development Plans, Master Plans, Open Space and Recreation Plans, and Emergency/Evacuation Plans that address the impacts of hazards; and o Requiring or encouraging the use of specific structural requirements for new buildings such as buried utilities, flood-proofed structures, and lightning grounding systems. o Identifying deficiencies in the current mitigation strategies and establishing goals for updating, revising or adopting new strategies. o Identifying specific projects that will mitigate the risk to public safety and damages to infrastructure from hazards. o Adopting and implementing the final Multi-Hazard Mitigation Plan. The planning process for the Town of Shelburne also incorporated the following procedures: Providing an opportunity for the public to comment on the plan during the drafting and prior to the approval of the plan. Two public meetings were held by the committee on March 20, 2012, and May 29, 2012 at Memorial Hall, 51 Bridge Street, Shelburne. The meetings were posted on the Town website, and press releases were sent to The Recorder newspaper and the Shelburne Falls and West County Independent newspaper. A flyer was emailed to Town boards, committees, and departments prior to the meetings, and posted in Memorial Hall. Meeting agendas, sign-in sheets, and publicity materials are located in the Appendix. Following each meeting, the plan was revised to reflect input and comments from the meetings. The final draft of the plan was posted on the Town website for public review in June 2012. Providing an opportunity for neighboring communities, local and regional agencies involved in hazard mitigation activities and agencies that have the authority to regulate development, and businesses, academia and other private and nonprofit organizations to be involved in the planning process by publicizing the planning process. In addition to press releases in local newspapers and a flyer posted at Memorial Hall, the Shelburne Falls Area Business Association was contacted and invited to attend meetings, and to encourage business members to attend meetings and participate in the plan update. Email correspondence is located in the Appendix. Reviewing and incorporating, if appropriate, information from existing plans, studies, reports and technical information. Plans reviewed and incorporated in part include: o 2010 Shelburne Comprehensive Emergency Management Plan o 2004 Shelburne Open Space and Recreation Plan o 2010 Buckland Open Space and Recreation Plan (for information on shared services
Recommended publications
  • Transcanada Hydro Northeast Inc. Deerfield River Project (Lp 2323)
    TRANSCANADA HYDRO NORTHEAST INC. DEERFIELD RIVER PROJECT (LP 2323) LOW IMPACT HYDROPOWER CERTIFICATION APPLICATION ATTACHMENT C PROJECT DESCRIPTION Project Overview TransCanada Hydro Northeast, Inc. (the Company) owns and operates the Deerfield River Project (the Project) on the Deerfield River, a major tributary to the Connecticut River. The Project is located in Bennington and Windham Counties in Vermont, and in Berkshire and Franklin Counties in Massachusetts. It consists of eight developments: Somerset, Searsburg, Harriman, Sherman, Deerfield No. 5, Deerfield No. 4, Deerfield No. 3 and Deerfield No.2, having a total installed capacity of 86 megawatts (MW). All dam operations and generation operations are controlled remotely from the Deerfield River Control Center in Monroe Bridge Massachusetts, located near the Deerfield No. 5 Dam. The Project area encompasses about a 65-mile reach of the river, including reservoirs. Two other developments not owned by the company are also located within this area. They are Brookfield Renewable Power’s Bear Swamp Project located downstream of the Deerfield No. 5 development; and Consolidated Edison’s Gardner Falls Project located downstream of the Deerfield No. 3 development. Exhibit 1 depicts the general Project area. Settlement Agreement The Deerfield River Project was one of the first FERC Projects to be relicensed under a comprehensive Settlement Agreement approach executed in 1994. A five-year cooperative consultation process involving state and federal resource agencies, various non-governmental organizations (NGOs) and the licensee (at that time New England Power Company) resulted in settlement by the parties. The process of reaching this agreement included examination of the power and non-power tradeoffs and effects of a wide variety of operational scenarios.
    [Show full text]
  • Profile of a Plant: the Olive in Early Medieval Italy, 400-900 CE By
    Profile of a Plant: The Olive in Early Medieval Italy, 400-900 CE by Benjamin Jon Graham A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (History) in the University of Michigan 2014 Doctoral Committee: Professor Paolo Squatriti, Chair Associate Professor Diane Owen Hughes Professor Richard P. Tucker Professor Raymond H. Van Dam © Benjamin J. Graham, 2014 Acknowledgements Planting an olive tree is an act of faith. A cultivator must patiently protect, water, and till the soil around the plant for fifteen years before it begins to bear fruit. Though this dissertation is not nearly as useful or palatable as the olive’s pressed fruits, its slow growth to completion resembles the tree in as much as it was the patient and diligent kindness of my friends, mentors, and family that enabled me to finish the project. Mercifully it took fewer than fifteen years. My deepest thanks go to Paolo Squatriti, who provoked and inspired me to write an unconventional dissertation. I am unable to articulate the ways he has influenced my scholarship, teaching, and life. Ray Van Dam’s clarity of thought helped to shape and rein in my run-away ideas. Diane Hughes unfailingly saw the big picture—how the story of the olive connected to different strands of history. These three people in particular made graduate school a humane and deeply edifying experience. Joining them for the dissertation defense was Richard Tucker, whose capacious understanding of the history of the environment improved this work immensely. In addition to these, I would like to thank David Akin, Hussein Fancy, Tom Green, Alison Cornish, Kathleen King, Lorna Alstetter, Diana Denney, Terre Fisher, Liz Kamali, Jon Farr, Yanay Israeli, and Noah Blan, all at the University of Michigan, for their benevolence.
    [Show full text]
  • 2008-2009 Wyoming Centennial Farm and Ranch Honorees
    Honoring Wyoming’s 100-year-old farms and ranches 2008-2009 WYOMING CENTENNIAL FARM AND RANCH HONOREES ARTS. PARKS. HIS Y. Wyoming State Parks & Cultural Resources Table of Contents Letter from Governor Dave Freudenthal ...........................................................................3 2008 Centennial Farms and Ranches The Bruner Ranch, Inc., Charles Bruner Family. .................................................................6 The Bunney Ranch, Gerald and Patsy Bunney ..................................................................12 The Collins Farm and Ranch, Robert and Peggy Collins Family ...........................................15 The Raymond Hunter Farm and Ranch, Roger Hunter & Lynne Hunter Ainsworth Families ....17 The King Cattle Company, Kenneth and Betty King Family ...............................................20 The Lost Springs Ranch, Charles and Mary Alice Amend Engebretsen .................................23 The Homestead Acres, Inc., Ron and Bette Lu Lerwick Family ...........................................26 The Homestead Farm, Jerry McWilliams Family ...............................................................29 The Meng Ranch, Jim and Deb Meng Family ...................................................................33 The Quien Sabe Ranch, William Thoren Family ...............................................................34 The Teapot Ranch, Billie Jean Beaton and Frank Shepperson Family ....................................38 The Shepperson Ranch, Frank Shepperson Family ............................................................42
    [Show full text]
  • National Weather Service Green Bay
    NATIONAL WEATHER SERVICE GREEN BAY 2019 Volume 17, Issue 1 2019 Started Out Slow…then Oh No! Inside this issue: 2018 ended uneventfully over northeast Wisconsin, with July 19-20 Blowdown & 2-4 December 2018 averaging 5 to 8 Tornadoes degrees above normal, while February 2019 Blizzard & 5-6 snowfall was roughly 50% of Historic Multi-Vehicle Pileup normal. The relatively placid Snow Squall Warning 7 weather rolled on through the first half of January 2019…then Great Lakes Water Levels 8 the wheels came off, as the Spring Snowmelt Flooding 9 weather pattern became cold and active. Bitterly cold temperatures 2019-20 Winter Forecast 11 returned in late January with COOP Awards 13 record setting cold, as lows Storm Ready / 14-15 plunged to 20 to 35 below zero. Weather-Ready Nation February followed with five major snowstorms in that month alone! For the month of February, Rhinelander had NWS Office Happenings 16-18 received 61.5 inches of snow, Wausau 54.2 inches, and Green Bay 28.4 inches. All of these locations exceeded their normal monthly February snowfall by over 300%! In fact, Wausau crushed its previous February snowfall record by over a foot. By the second week of March, the cold and snow finally relented to somewhat warmer temperatures, however, northeast Wisconsin paid the price for the break from Old Man Winter. A quick warm-up along with moderate rainfall led to a rapid A HISTORIC melt of the deep snowpack, as well as widespread ice jamming on many area rivers. It all came to a head on March 14 and 15, as widespread river flooding commenced, 2019 highlighted by historic flooding along the East River in Brown County.
    [Show full text]
  • Deerfield and CT River Project History.Pmd
    HISTORY OF HYDROELECTRIC DEVELOPMENT ON THE CONNECTICUT AND DEERFIELD RIVERS HISTORY OF HYDROELECTRIC DEVELOPMENT ON THE CONNECTICUT AND DEERFIELD RIVERS INTRODUCTION increasingly complex. While the Depression limited further growth of the industry, a new era emerged In 1903, Malcolm Greene Chace (1875-1955) and after World War II, with streamlined management Henry Ingraham Harriman (1872-1950) established structures and increased regulations and Chace & Harriman, a company that, in its many government involvement (Cook 1991:4; Landry and incarnations over the course of the following Cruikshank 1996:2-5). The first of the 14 decades, grew into one of the largest electric utility hydroelectric facilities built on the Connecticut and companies in New England. The company built a Deerfield rivers by Chace & Harriman and its series of hydroelectric facilities on the Connecticut successors were developed in the early 1900s, and Deerfield rivers in Vermont, New Hampshire shortly after the potential of hydroelectric power and western Massachusetts, which were intended was realized on a large scale. Subsequent facilities to provide a reliable and less expensive alternative were constructed during the maturation of the to coal-produced steam power. Designed primarily industry in the 1920s, and two of the stations were to serve industrial centers in Massachusetts and completed in the post-World War II era. The history Rhode Island, the facilities also provided power to of the companies that built these stations is residential customers and municipalities in New intrinsically linked with broader trends in the history England. Chace & Harriman eventually evolved of electricity, hydropower technology, and industrial into the New England Power Association (NEPA) architecture in America.
    [Show full text]
  • The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams Preface
    The National Dam Safety Program Research Needs Workshop: Hydrologic Issues for Dams Preface One of the activities authorized by the Dam Safety and Security Act of 2002 is research to enhance the Nation’s ability to assure that adequate dam safety programs and practices are in place throughout the United States. The Act of 2002 states that the Director of the Federal Emergency Management Agency (FEMA), in cooperation with the National Dam Safety Review Board (Review Board), shall carry out a program of technical and archival research to develop and support: • improved techniques, historical experience, and equipment for rapid and effective dam construction, rehabilitation, and inspection; • devices for continued monitoring of the safety of dams; • development and maintenance of information resources systems needed to support managing the safety of dams; and • initiatives to guide the formulation of effective policy and advance improvements in dam safety engineering, security, and management. With the funding authorized by the Congress, the goal of the Review Board and the Dam Safety Research Work Group (Work Group) is to encourage research in those areas expected to make significant contributions to improving the safety and security of dams throughout the United States. The Work Group (formerly the Research Subcommittee of the Interagency Committee on Dam Safety) met initially in February 1998. To identify and prioritize research needs, the Subcommittee sponsored a workshop on Research Needs in Dam Safety in Washington D.C. in April 1999. Representatives of state and federal agencies, academia, and private industry attended the workshop. Seventeen broad area topics related to the research needs of the dam safety community were identified.
    [Show full text]
  • The New Deal Versus Yankee Independence: the Failure of Comprehensive Development on the Connecticut River, and Its Long-Term Consequences
    The New Deal versus Yankee independence: The failure of comprehensive development on the Connecticut River, and its long-term consequences Eve Vogel1 Department of Geosciences, UMass Amherst With assistance from Alexandra Lacy 2011 alumna (BS, Environmental Sciences), UMass Amherst Adapted from: Vogel, Eve and Alexandra Lacy. Forthcoming. The New Deal versus Yankee independence: The failure of comprehensive development on the Connecticut River, and its long-term consequences. The Northeastern Geographer 4 (2) Introduction For a person familiar with federal dams on major rivers in the American West or South, a visit to an Army Corps of Engineers dam in New England’s largest river basin, the Connecticut, can be a startling experience. Instead of an extended reservoir, one looks down from the empty heights and on both sides sees only a small river far below. Nor is there the fanfare – the visitors center, the historical information, the celebratory propaganda. Simply finding one of the Connecticut River’s federal dams can take some effort. None are on the mainstem. One must drive through the bucolic New England byways and forested hills to find a dam on a tributary (See Figure 1). For New Englanders, the near-invisibility of federal dams may not seem surprising. New England’s history and identity, including the Connecticut Valley’s, seem to rest with the small- to medium-scale development of rivers with mill dams during the 17th thru 19th centuries (e.g. Delaney 1983; Steinberg 1991). It might be more startling for many to learn that during the mid- twentieth century, the federal government did build a series of very large dams in the Connecticut Basin, which have had profound effect on the river.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Top 10 Weather Events of the Decade 2010-2019
    Top 10 Weather Events of the Decade 2010-2019 These weather events were voted upon by several of our staff, and deemed the 10 most significant or interesting. Enjoy! Here’s to a good 2020! National Weather Service – Billings, MT Top 10 Weather Events March 28, 2015: 2010-2019 #10 Hot & Dry with Fires Unseasonably warm and dry conditions, in combination with a fast-moving cold front, produced very early season critical fire weather conditions on March 28, 2015. Widespread wind gusts of 60-70 mph occurred with record warm temperatures, resulting in an outbreak of several wildfires. The two fires with biggest impacts were: • Pine Crest Fire: Burned 3,000 acres near Park City, closing a 20-mile stretch of I-90 for several hours, due to smoke and poor Pine Crest Fire (USFS) visibility. Prior to the interstate closure, a West Fork Fire (USFS) multi-vehicle accident resulted in one fatality and several injuries. Also, two homes were lost and one firefighter suffered a minor injury in 3/28/2015 Max Temp Peak Wind Gust Min Humidity the fire. Baker 82° 59 mph 16 % • The West Fork Fire near Red Lodge burned 600 acres and threatened homes. Fire officials Billings 80° 73 mph 12 % closed Ski Run Road while they battled the Livingston 70° 64 mph 21 % blaze. No one was allowed to enter or leave Miles City 83° 68 mph 18 % Red Lodge Mountain for part of the day. At 3 Sheridan 80° 59 mph 12 % pm, skiers in their vehicles were escorted off the mountain by Carbon County officials.
    [Show full text]
  • National Weather Service Buffalo, NY
    Winter Weather National Weather Service Buffalo, NY Average Seasonal Snowfall SNOWFALL = BIG IMPACTS • School / government / business closures • Airport shutdowns/delays • Traffic accidents with injuries/fatalities • Money plowing/treating roads • Lost resources in traffic congestion • Power outages/damage in strong storms 4 Communicating Risk Potential The National Weather Service uses a “Ready, Set, Go” approach Substituting the words “Outlook, Watch, and Warning” This approach is based on the lead-time of the event and forecaster confidence. Hazardous Weather Outlook • Issued each day between 5am and 6am • Updated as necessary throughout the day • Outlines potential weather hazards expected over the next seven days • The potential for major storms beyond two days will be discussed in the HWO WATCH vs. WARNING Watch Conditions are favorable for severe weather in or near the watch area. Watches are issued for winter storms, ice storms and blizzards. Warning The severe weather event is imminent or occurring in the warned area. Warnings are issued for winter storms, ice storms and blizzards. WINTER WEATHER WATCHES • Issued when forecaster confidence in the event occurring is at 50% or greater • Updated at least once every 12 hours or when there is a change in timing, areal extent, or expected conditions. • Generally issued 24 to 48 hours in advance • Types: – Winter Storm (Snow, Blowing Snow, Blizzard, Lake Effect) – Wind Chill WINTER WEATHER WARNINGS • Issued when hazardous winter weather is occurring or is imminent. • Forecaster confidence
    [Show full text]
  • Deerfield River & Lower Connecticut River Tactical Basin Plan
    Deerfield River & Lower Connecticut River Tactical Basin Plan Green River, Guilford December 2019 | Public Draft Tactical Basin Plan was prepared in accordance with 10 VSA § 1253(d), the Vermont Water Quality Standards1, the Federal Clean Water Act and 40 CFR 130.6, and the Vermont Surface Water Management Strategy. Approved: ----------------------------------------- ------------------------- Emily Boedecker, Commissioner Date Department of Environmental Conservation -------------------------------------- ------------------------- Julie Moore, Secretary Date Agency of Natural Resources Cover Photo: Green River in Guilford – Marie L. Caduto The Vermont Agency of Natural Resources is an equal opportunity agency and offers all persons the benefits of participating in each of its programs and competing in all areas of employment regardless of race, color, religion, sex, national origin, age, disability, sexual preference, or other non-merit factors. This document is available in alternative formats upon request. Call 802-828-1535 i Table of Contents Executive Summary ............................................................................................................... 1 What is a Tactical Basin Plan ................................................................................................. 3 A. The Vermont Clean Water Act ........................................................................................... 4 B. Vermont Water Quality Standards ....................................................................................
    [Show full text]
  • 4-2: Snow Storm & Ice Storm
    2018 Vermont State Hazard Mitigation Plan - Approved 11/17/18 4-2: Snow Storm & Ice Storm Potential Impact Hazard Impacts Probability Score*: Infrastructure Life Economy Environment Average: Ice 3 3 3 3 2 2.75 8.25 Snow 4 1 3 2 1 1.75 7 *Score = Probability x Average Potential Impact Strong winter weather can include any of the following, alone or in conjunction: • Snow Storms: a heavy accumulation of snow, which can be accompanied by high wind causing drifting snow, low visibility and hazardous travel. • Ice Storms: ice accretion from freezing rain, which can weigh down trees and power lines, causing outages and potentially occuring in conjunction with flooding (see: Inundation Flooding & Fluvial Erosion). • Blizzard: a storm which contains large amounts of snow and/or blowing snow, with winds in excess of 35mph and visibilities of less than 1/4 mile for an extended period of time (for wind impacts, see: Wind). • Extreme Cold: see Extreme Cold. Severe winter storms bring the threat of heavy accumulations of snow, cold/wind chills, strong winds, and power outages that result in high rates of damage and even higher rates of expenditures. A heavy accumulation of snow, especially when accompanied by high winds, causes drifting snow and very low visibility. Sidewalks, streets, and highways can become extremely hazardous to pedestrians and motorists. Severe winter storms develop through the combination of multiple meteorological factors. In Vermont and the northeastern United States, these factors include the moisture content of the air, direction of airflow, collision of warm air masses coming up from the Gulf Coast, and cold air moving southward from the Arctic.
    [Show full text]