Journal of Vertebrate Paleontology Cranial Anatomy, Ontogeny, And

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Vertebrate Paleontology Cranial Anatomy, Ontogeny, And This article was downloaded by: [Universite Laval] On: 09 July 2014, At: 04:25 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902 Jozef Klembaraa, Jennifer A. Clackb, Andrew R. Milnerc & Marcello Rutad a Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215 Bratislava, Slovakia b University Museum of Zoology, Downing Street, Cambridge, CB2 3EJ, U.K. c Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. d School of Life Sciences, University of Lincoln, Riseholme Park, Lincoln LN2 2LG, U.K. Published online: 08 Jul 2014. To cite this article: Jozef Klembara, Jennifer A. Clack, Andrew R. Milner & Marcello Ruta (2014) Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902, Journal of Vertebrate Paleontology, 34:4, 774-792 To link to this article: http://dx.doi.org/10.1080/02724634.2014.837055 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions Journal of Vertebrate Paleontology 34(4):774–792, July 2014 © 2014 by the Society of Vertebrate Paleontology ARTICLE CRANIAL ANATOMY, ONTOGENY, AND RELATIONSHIPS OF THE LATE CARBONIFEROUS TETRAPOD GEPHYROSTEGUS BOHEMICUS JAEKEL, 1902 JOZEF KLEMBARA,*,1 JENNIFERA.CLACK,2 ANDREW R. MILNER,3 and MARCELLO RUTA4 1Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska´ dolina, 84215 Bratislava, Slovakia, [email protected]; 2University Museum of Zoology, Downing Street, Cambridge CB2 3EJ, U.K., [email protected]; 3Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K., [email protected]; 4School of Life Sciences, University of Lincoln, Riseholme Park, Lincoln LN2 2LG, U.K., [email protected] ABSTRACT—We review the cranial morphology of the Late Carboniferous terrestrial tetrapod Gephyrostegus bohemicus from the coal deposits of the N´yranyˇ Basin in the Czech Republic. Gephyrostegus is known from several skulls ranging in length from about 25 mm to about 58 mm (holotype). The narrow skull is about twice as long as wide and shows a well-ossified quadrate and articular, but no evidence of braincase ossification. Autapomorphic features include a pustular ornamentation on some skull table bones, and a plate-like tabular process exhibiting a fine dorsal pitting. Gephyrostegus shares with Brukter- erpeton fiebigi (Late Carboniferous, Germany) the presence of low, anteromedially to posterolaterally orientated sharp ridges on the posteroventral surface of the vomer. It shares with seymouriamorphs a rectangular, transverse pterygoid process and closely packed, radially arranged rows of small denticles on the palate. A phylogenetic analysis retrieves Gephyrostegidae (Gephyrostegus, Bruktererpeton) as sister group to Seymouriamorpha, although this wider clade receives low bootstrap sup- port. SUPPLEMENTAL DATA—Supplemental materials are available for this article for free at www.tandfonline.com/UJVP INTRODUCTION each other. We have been able to study additional specimens unavailable to Carroll, and unrecognized until recently. Our re- A wealth of tetrapod taxa, most with body lengths of around description aims to reconcile the conflicting skull reconstructions 140 mm, have been described from N´yranyˇ and Tremoˇ snˇ a(Plze´ n-ˇ in Carroll and to provide a new cladistic analysis incorporating Manetˇ ın´ Basin, Czech Republic). Among them, the genus Gephy- our new observations on the cranial morphology of Gephyroste- rostegus was last described in detail by Carroll (1970), with gus and of a range of other taxa not available to Carroll. Our some amendments by Panchen (1970). According to Carroll cladistic analysis also includes characters from the postcranium. (1970:305), Gephyrostegus “represents the morphological pattern However, these will be detailed in a separate work on the expected in the group of anthracosaurs which gave rise to rep- postcranial osteology of the Carboniferous Czech anthracosaurs. tiles,” and forms a branch of the anthracosaurs separate from em- Below, we provide a detailed historical background to research Downloaded by [Universite Laval] at 04:25 09 July 2014 bolomeres (here, ‘anthracosaur’ refers to the group that includes on this faunistic assemblage. eoherpetontids and embolomeres; Holmes, 1984, 1989; Smithson, 1985; Panchen and Smithson, 1988; Ruta and Clack, 2006; Ruta and Coates, 2007). Its robust postcranium and gracile limbs sug- HISTORICAL BACKGROUND gest a terrestrial animal, in contrast to the largely aquatic em- bolomeres. Although Carroll’s conclusions on the affinities of this Since their first description (Fritsch, 1885a, 1885b), the small taxon have been superseded by cladistic studies, in many of these anthracosaurs from N´yranyˇ and Tremoˇ snˇ a´ have often been in- Gephyrostegus has appeared as a stem amniote, often crownward voked in relation to the origin of amniotes and other amniote- of embolomeres (e.g., Clack and Finney, 2005; Ruta and Clack, like groups, such as seymouriamorphs (e.g., Panchen and Smith- 2006; Ruta and Coates, 2007). son, 1988; Lee and Spencer, 1997). The specimens are dispersed Given the significance ascribed to this genus, it is unfortunate across several museums, and the political history of the 20th cen- that Carroll was unable to complete his studies (see below) and tury has meant that they were not all readily accessible to most had to rely on only two specimens rendered as peels. He also potential researchers. Most previous studies have been based on included descriptions and figures of some of the other N´yranyˇ one to four specimens and no author has attempted to incorpo- tetrapods: Diplovertebron punctatum, Eusauropleura digitata, rate all of the determinate material in a single description. The and Solenodonsaurus janenschi. These are dealt with briefly be- material discussed here has a complicated history, having been low, but are not otherwise described. Carroll provided detailed described as five different species in four different genera. One drawings of Gephyrostegus, a full skeletal reconstruction, and publication (Brough and Brough, 1967) added some basal am- two alternative skull reconstructions based on the two speci- niotes to the hypodigm, but these were later removed (Carroll, mens studied. As a consequence, they showed differences from 1970). Because the full taxonomic and descriptive history of this material has never been reviewed, we take the opportunity to outline it here. The material originally described by Antonın´ Fricˇ *Corresponding author. (or Anton Fritsch), referred to by his Fritsch Original (Fr. Orig.) 774 KLEMBARA ET AL.—CRANIAL ANATOMY OF GEPHYROSTEGUS BOHEMICUS 775 numbers, is held in the National Museum, Prague, and now has specimen from N´yranyˇ (DMSW B.65) for his own collection. NMP catalog numbers. He concluded that not only was it a small example of Jaekel’s Fritsch had collected some of this material from the mine at Gephyrostegus, but also that both were the same as Fritsch’s first- N´yranyˇ in the 1870s, but did not mention it in his first report on described anthracosaur, Diplovertebron punctatum.Datafrom the fauna (Fric,ˇ 1876). By the time he had completed the first these specimens allowed Watson (1926:figs. 29–31) to provide a part of his monumental ‘Fauna der Gaskohle und der Kalksteine fairly complete reconstruction of Diplovertebron punctatum (= der Permformation Bohmens’¨ (Fritsch, 1879), he had recognized Gephyrostegus bohemicus)asasmallN´yranyˇ anthracosaur. some of the vertebrate material as distinctive and gave advanced In the 1930s, Watson’s research assistant, Margaret Steen, notice of the taxon Diplovertebron punctatum diagnosed by its published several papers dealing with Permo-Carboniferous am- double centra. This and other taxa listed on pages 26–32 of the phibians. In one of these, Steen (1938) reviewed the N´yranyˇ first part of ‘Fauna
Recommended publications
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • From the Late Permian of Eastern Europe V
    Paleontological Journal, Vol. 32, No. 3, 1998, pp. 278–287. Translated from Paleontologicheskii Zhurnal, No. 3, 1998, pp. 64–73. Original Russian Text Copyright © 1998 by Golubev. English Translation Copyright © 1998 by åÄàä ç‡Û͇ /Interperiodica Publishing (Russia). Narrow-armored Chroniosuchians (Amphibia, Anthracosauromorpha) from the Late Permian of Eastern Europe V. K. Golubev Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117647 Russia Received January 21, 1997 Abstract—The Permian and Triassic chroniosuchians are revised and the morphology of the dorsal armor scutes is discussed in detail. The first narrow-armored chroniosuchid Uralerpeton tverdochlebovae from the Late Permian Vyazniki faunistic assemblage of Eastern Europe is described and the age of the Vyazniki fauna discussed. INTRODUCTION armor occurred late in the process of decomposition of the animal: the head, the brachial and pelvic girdles and even The chroniosuchians (Chroniosuchia), an unusual the vertebral column became disarticulated sooner. group of Late Permian and Triassic reptiliomorph amphibians, dominated the aquatic tetrapod assem- In horizontal plane the chroniosuchian scutes are blages of Eastern Europe during the Late Tatarian age. rectangular (Figs. 1a and 1b; 2b and 2c; 4a–4d), except Conventionally this group, consisting of two families: for the anteriormost scute, which is shaped like a semi- the Chroniosuchidae and the Bystrowianidae (Tatar- circle or semiellipsis (Fig. 1d). The scute consists of a inov, 1972; Ivakhnenko and Tverdokhlebova, 1980; massive axial part, or the scute body (corpus scutulumi) Shishkin and Novikov, 1992) is included within the and two lateral horizontal plates, or the scute wings order Anthracosauromorpha as suborder. According to (alae scutulumi) (Fig.
    [Show full text]
  • The Devonian Tetrapod Acanthostega Gunnari Jarvik: Postcranial Anatomy, Basal Tetrapod Interrelationships and Patterns of Skeletal Evolution M
    Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 363-421, 1996 The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution M. I. Coates ABSTRACT: The postcranial skeleton of Acanthostega gunnari from the Famennian of East Greenland displays a unique, transitional, mixture of features conventionally associated with fish- and tetrapod-like morphologies. The rhachitomous vertebral column has a primitive, barely differentiated atlas-axis complex, encloses an unconstricted notochordal canal, and the weakly ossified neural arches have poorly developed zygapophyses. More derived axial skeletal features include caudal vertebral proliferation and, transiently, neural radials supporting unbranched and unsegmented lepidotrichia. Sacral and post-sacral ribs reiterate uncinate cervical and anterior thoracic rib morphologies: a simple distal flange supplies a broad surface for iliac attachment. The octodactylous forelimb and hindlimb each articulate with an unsutured, foraminate endoskeletal girdle. A broad-bladed femoral shaft with extreme anterior torsion and associated flattened epipodials indicates a paddle-like hindlimb function. Phylogenetic analysis places Acanthostega as the sister- group of Ichthyostega plus all more advanced tetrapods. Tulerpeton appears to be a basal stem- amniote plesion, tying the amphibian-amniote split to the uppermost Devonian. Caerorhachis may represent a more derived stem-amniote plesion. Postcranial evolutionary trends spanning the taxa traditionally associated with the fish-tetrapod transition are discussed in detail. Comparison between axial skeletons of primitive tetrapods suggests that plesiomorphic fish-like morphologies were re-patterned in a cranio-caudal direction with the emergence of tetrapod vertebral regionalisation. The evolution of digited limbs lags behind the initial enlargement of endoskeletal girdles, whereas digit evolution precedes the elaboration of complex carpal and tarsal articulations.
    [Show full text]
  • Therocephalian (Therapsida) And
    第55卷 第1期 古 脊 椎 动 物 学 报 pp. 24-40 2017年1月 VERTEBRATA PALASIATICA figs. -1 7 Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China LIU Jun1,2 Fernando ABDALA3 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China [email protected]) (2 University of Chinese Academy of Sciences Beijing 100039) (3 Evolutionary Studies Institute, University of the Witwatersrand Private Bag 3, WITS 2050, Johannesburg, South Africa) Abstract The Guodikeng Formation encompasses the terrestrial Permo-Triassic transition sequence in China. This formation crops out in the Dalongkou section, Jimsar, Xinjiang where remains of the dicynodonts Jimusaria and Lystrosaurus were found. We are describing here a therocephalian and a chroniosuchian from the Dalongkou section, which are the first records of these groups for the Guodikeng Formation. Diagnostic characters of the new therocephalian, Dalongkoua fuae gen. and sp. nov., include maxillary ventral margin strongly concave in lateral view; incisors spatulated and rounded; incisors and canines with faint serrations; coronoid process of the dentary with a marked external adductor fossa; triangular reflected lamina of the angular with two smooth concavities. Chroniosuchians are represented by several postcranial elements and the vertebral morphology is similar to Bystrowiana and Bystrowiella. These remains are interpreted as representing a Bystrowianidae indeterminate. The new findings increase the diversity of the Guodikeng Formation that is now represented by three or four dicynodonts, one therocephalian and one chroniosuchian. All these groups survived the massive P-T extinction but disappear from the fossil record in the Middle to Upper Triassic.
    [Show full text]
  • Reptile Family Tree - Peters 2017 1112 Taxa, 231 Characters
    Reptile Family Tree - Peters 2017 1112 taxa, 231 characters Note: This tree does not support DNA topologies over 100 Eldeceeon 1990.7.1 67 Eldeceeon holotype long phylogenetic distances. 100 91 Romeriscus Diplovertebron Certain dental traits are convergent and do not define clades. 85 67 Solenodonsaurus 100 Chroniosaurus 94 Chroniosaurus PIN3585/124 Chroniosuchus 58 94 Westlothiana Casineria 84 Brouffia 93 77 Coelostegus Cheirolepis Paleothyris Eusthenopteron 91 Hylonomus Gogonasus 78 66 Anthracodromeus 99 Osteolepis 91 Protorothyris MCZ1532 85 Protorothyris CM 8617 81 Pholidogaster Protorothyris MCZ 2149 97 Colosteus 87 80 Vaughnictis Elliotsmithia Apsisaurus Panderichthys 51 Tiktaalik 86 Aerosaurus Varanops Greererpeton 67 90 94 Varanodon 76 97 Koilops <50 Spathicephalus Varanosaurus FMNH PR 1760 Trimerorhachis 62 84 Varanosaurus BSPHM 1901 XV20 Archaeothyris 91 Dvinosaurus 89 Ophiacodon 91 Acroplous 67 <50 82 99 Batrachosuchus Haptodus 93 Gerrothorax 97 82 Secodontosaurus Neldasaurus 85 76 100 Dimetrodon 84 95 Trematosaurus 97 Sphenacodon 78 Metoposaurus Ianthodon 55 Rhineceps 85 Edaphosaurus 85 96 99 Parotosuchus 80 82 Ianthasaurus 91 Wantzosaurus Glaucosaurus Trematosaurus long rostrum Cutleria 99 Pederpes Stenocybus 95 Whatcheeria 62 94 Ossinodus IVPP V18117 Crassigyrinus 87 62 71 Kenyasaurus 100 Acanthostega 94 52 Deltaherpeton 82 Galechirus 90 MGUH-VP-8160 63 Ventastega 52 Suminia 100 Baphetes Venjukovia 65 97 83 Ichthyostega Megalocephalus Eodicynodon 80 94 60 Proterogyrinus 99 Sclerocephalus smns90055 100 Dicynodon 74 Eoherpeton
    [Show full text]
  • Lopingian, Permian) of North China
    Foss. Rec., 23, 205–213, 2020 https://doi.org/10.5194/fr-23-205-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The youngest occurrence of embolomeres (Tetrapoda: Anthracosauria) from the Sunjiagou Formation (Lopingian, Permian) of North China Jianye Chen1 and Jun Liu1,2,3 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing 100044, China 3College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Correspondence: Jianye Chen ([email protected]) Received: 7 August 2020 – Revised: 2 November 2020 – Accepted: 16 November 2020 – Published: 1 December 2020 Abstract. Embolomeri were semiaquatic predators preva- 1 Introduction lent in the Carboniferous, with only two species from the early Permian (Cisuralian). A new embolomere, Seroher- Embolomeri are a monophyletic group of large crocodile- peton yangquanensis gen. et sp. nov. (Zoobank Registration like, semiaquatic predators, prevalent in the Carboniferous number: urn:lsid:zoobank.org:act:790BEB94-C2CC-4EA4- and early Permian (Cisuralian) (Panchen, 1970; Smithson, BE96-2A1BC4AED748, registration: 23 November 2020), is 2000; Carroll, 2009; Clack, 2012). The clade is generally named based on a partial right upper jaw and palate from the considered to be a stem member of the Reptiliomorpha, taxa Sunjiagou Formation of Yangquan, Shanxi, China, and is late that are more closely related to amniotes than to lissamphib- Wuchiapingian (late Permian) in age. It is the youngest em- ians (Ruta et al., 2003; Vallin and Laurin, 2004; Ruta and bolomere known to date and the only embolomere reported Coates, 2007; Clack and Klembara, 2009; Klembara et al., from North China Block.
    [Show full text]
  • Revision of the Late Permian Chroniosuchians (Amphibia, Anthracosauromorpha) from Eastern Europe V
    Paleontological Journal, Vol. 32, No. 4, 1998, pp. 390–401. Translated from Paleontologicheskii Zhurnal, No. 4, 1998, pp. 68–77. Original Russian Text Copyright © 1998 by Golubev. English Translation Copyright © 1998 by åÄàä ç‡Û͇ /Interperiodica Publishing (Russia). Revision of the Late Permian Chroniosuchians (Amphibia, Anthracosauromorpha) from Eastern Europe V. K. Golubev Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117647 Russia Received March 31, 1997 Abstract—The family Chroniosuchidae is revised. The systematic importance of various morphological fea- tures is evaluated. The family systematic structure is presented and the generic and specific diagnoses are refor- mulated. A new genus Jarilinus and a new species Chroniosaurus levis are established. Evolutionary peculiar- ities of chroniosuchids are discussed. A zonal biostratigraphic chart of the Upper Tatarian deposits of eastern Europe based on tetrapod data is suggested. INTRODUCTION. All published chroniosuchian data were revised and new material was described by Ivachnenko and Tver- Chroniosuchians are one of the most characteristic dochlebova (1980). These authors regarded the chro- elements of the Late Tatarian tetrapod faunas of Euro- niosuchians as a suborder of the order Anthracosauro- pean Russia. This group of relict anthracosaurs morpha. Two families: the Chroniosuchidae and the replaced the archegosauroid labyrinthodonts that dom- Bystrowianidae were recognized within the suborder. inated the aquatic tetrapod communities of the Kaza- The family Chroniosuchidae includes the small-sized nian and Early Tatarian in this territory. Chroniosu- Chroniosuchus paradoxus and Chroniosaurus don- chians include two families: the Chroniosuchidae Vjus- gusensis, as well as the large Chroniosuchus uralensis chkov, 1957 and the Bystrowianidae Vjuschkov, 1957 Tverdochlebova originally described in that paper from (Golubev, 1998).
    [Show full text]
  • Inner Ear Morphology of Diadectomorphs And
    Palaeontology INNER EAR MORPHOLOGY OF DIADECTOMORPHS AND SEYMOURIAMORPHS (TETRAPODA) UNCOVERED BY HIGH- RESOLUTION X-RAY MICROCOMPUTED TOMOGRAPHY, AND THE ORIGIN OF THE AMNIOTE CROWN-GROUP Journal: Palaeontology Manuscript ID PALA-01-19-4428-OA.R1 Manuscript Type: Original Article Date Submitted by the 22-May-2019 Author: Complete List of Authors: Klembara, Jozef; Univerzita Komenskeho v Bratislave, Department of Ecology Hain, Miroslav; Slovak Academy of Sciences, Instutite of Measurement Science Ruta, Marcello; University of Lincoln School of Life Sciences, Vertebrate Zoology and Analytical Palaeobiology Berman, David; Carnegie Museum of Natural History Pierce, Stephanie; Harvard University Museum of Comparative Zoology Henrici, Amy; Carnegie Museum of Natural History Diadectomorpha, Seymouriamorpha, inner ear, fossa subarcuata, origin Key words: of amniotes, amniote phylogeny Palaeontology Page 1 of 68 Palaeontology 1 1 2 3 INNER EAR MORPHOLOGY OF DIADECTOMORPHS AND SEYMOURIAMORPHS 4 5 6 (TETRAPODA) UNCOVERED BY HIGH-RESOLUTION X-RAY MICROCOMPUTED 7 8 TOMOGRAPHY, AND THE ORIGIN OF THE AMNIOTE CROWN-GROUP 9 10 11 12 by JOZEF KLEMBARA1,*, MIROSLAV HAIN2, MARCELLO RUTA3,*, DAVID S 13 14 4 5 4 15 BERMAN , STEPHANIE E. PIERCE and AMY C. HENRICI 16 17 18 19 1 Comenius University in Bratislava, Faculty of Natural Sciences, Department of Ecology, 20 21 22 Ilkovičova 6, 84215 Bratislava, Slovakia; e-mail: [email protected] 23 24 2 Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 25 26 Bratislava, Slovakia
    [Show full text]
  • Bones, Molecules, and Crown- Tetrapod Origins
    TTEC11 05/06/2003 11:47 AM Page 224 Chapter 11 Bones, molecules, and crown- tetrapod origins Marcello Ruta and Michael I. Coates ABSTRACT The timing of major events in the evolutionary history of early tetrapods is discussed in the light of a new cladistic analysis. The phylogenetic implications of this are com- pared with those of the most widely discussed, recent hypotheses of basal tetrapod interrelationships. Regardless of the sequence of cladogenetic events and positions of various Early Carboniferous taxa, these fossil-based analyses imply that the tetrapod crown-group had originated by the mid- to late Viséan. However, such estimates of the lissamphibian–amniote divergence fall short of the date implied by molecular studies. Uneven rates of molecular substitutions might be held responsible for the mismatch between molecular and morphological approaches, but the patchy quality of the fossil record also plays an important role. Morphology-based estimates of evolutionary chronology are highly sensitive to new fossil discoveries, the interpreta- tion and dating of such material, and the impact on tree topologies. Furthermore, the earliest and most primitive taxa are almost always known from very few fossil localities, with the result that these are likely to exert a disproportionate influence. Fossils and molecules should be treated as complementary approaches, rather than as conflicting and irreconcilable methods. Introduction Modern tetrapods have a long evolutionary history dating back to the Late Devonian. Their origins are rooted into a diverse, paraphyletic assemblage of lobe-finned bony fishes known as the ‘osteolepiforms’ (Cloutier and Ahlberg 1996; Janvier 1996; Ahlberg and Johanson 1998; Jeffery 2001; Johanson and Ahlberg 2001; Zhu and Schultze 2001).
    [Show full text]
  • A New Discosauriscid Seymouriamorph Tetrapod from the Lower Permian of Moravia, Czech Republic
    A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Republic JOZEF KLEMBARA Klembara, J. 2005. A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Repub− lic. Acta Palaeontologica Polonica 50 (1): 25–48. A new genus and species, Makowskia laticephala gen. et sp. nov., of seymouriamorph tetrapod from the Lower Permian deposits of the Boskovice Furrow in Moravia (Czech Republic) is described in detail, and its cranial reconstruction is pre− sented. It is placed in the family Discosauriscidae (together with Discosauriscus and Ariekanerpeton) on the following character states: short preorbital region; rounded to oval orbits positioned mainly in anterior half of skull; otic notch dorsoventrally broad and anteroposteriorly deep; rounded to oval ventral scales. Makowskia is distinguished from other Discosauriscidae by the following characters: nasal bones equally long as broad; interorbital region broad; prefrontal− postfrontal contact lies in level of frontal mid−length (only from D. pulcherrimus); maxilla deepest at its mid−length; sub− orbital ramus of jugal short and dorsoventrally broad with long anterodorsal−posteroventral directed lacrimal−jugal su− ture; postorbital anteroposteriorly short and lacks elongated posterior process; ventral surface of basioccipital smooth; rows of small denticles placed on distinct ridges and intervening furrows radiate from place immediately laterally to artic− ular portion on ventral surface of palatal ramus of pterygoid (only from D. pulcherrimus);
    [Show full text]
  • New Chroniosuchian Materials from Xinjiang, China
    第58卷 第4期 古 脊 椎 动 物 学 报 pp. 283–292 figs. 1–4 2020年10月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.200415 New chroniosuchian materials from Xinjiang, China LIU Jun1,2,3 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044 [email protected]) (3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049) Abstract Chroniosuchians have the earliest representatives in Gansu, China, but the Chinese records were scarcer compared to Russia, especially the Triassic one. In Xinjiang, there was only one specimen reported from the upper part of the Guodikeng Formation. Here three new chroniosuchian specimens are reported from three new stratigraphic horizons: the Quanzijie Formation (middle Permian), the base of the Guodikeng Formation (upper Permian), and the Jiucaiyuan Formation (Lower Triassic). The osteoderm from the Jiucaiyuan Formation represents the first definite Triassic chroniosuchian from China. The new findings increase the chroniosuchian diversity and their time range in China. The bystrowianid chroniosuchian specimens from the Guodikeng and Jiucaiyuan formations demonstrated that this group survived in the end-Permian mass extinction in Xinjiang, China. Key words Xinjiang, China; Permian, Triassic; Quanzijie Formation, Guodikeng Formation, Jiucaiyuan Formation; Bystrowianidae, chroniosuchians Citation Liu J, 2020. New chroniosuchian materials from Xinjiang, China. Vertebrata PalAsiatica, 58(4): 283–292 1 Introduction The chroniosuchians were an enigmatic clade of non-amniotic tetrapods with uncertain phylogenetic position (Clack and Klembara, 2009; Schoch et al., 2010; Buchwitz et al., 2012; Witzmann and Schoch, 2018; Marjanović and Laurin, 2019).
    [Show full text]