My Linton Collection and Recollections

Total Page:16

File Type:pdf, Size:1020Kb

My Linton Collection and Recollections My Linton Collection and Recollections The cannel coal of the Diamond Mine near the former town of Linton, Jefferson County, Ohio contains one of the finest Upper Carboniferous vertebrate assemblages in the world. The cannel, underlying the Upper Freeport Coal (Pennsylvanian, Upper Allegheny Formation, Westphalian D), is postulated, with good evidence, to have formed in an oxbow (cut-off meander) of a meandering, river system. Other similar, cannel buildups in apparently the same river system are also present in the local area. The site is slightly younger (geologically) than the Upper Pennsylvanian deposits of Mazon Creek in Illinois, USA and slightly older than those of Nyrany in the Czech Republic, EU. More information on the Linton site can be found in the following articles available for download from the Internet: For a general history of the Linton area see: Coal Swamp Vertebrates from Linton, Ohio. Ohio Geology Newsletter (Spring 1984) http://www2.ohiodnr.com/portals/geosurvey/PDFs/Newsletter/Spring84.pdf For a good reference to the deposits and faunal associations at Linton, refer to: Hook, Robert W. and Baird, Donald. An Overview of the Upper Carboniferous Fossil Deposit at Linton, Ohio. The Ohio Journal of Science. 88 (1): 55-60, 1988 http://hdl.handle.net/1811/23240 Many more articles exist on Linton and quite a few of the other Upper Carboniferous (Pennsylvanian) vertebrate localities. I hope to post my references at some future date, once I’ve been able to gather them together. The localities will include among others: Linton, Five Points, Ohio; Joggins, Grand Étang and Florence, Nova Scotia; Nyrany, Czechoslovakia; Mazon Creek, Illinois; Cannelton Pennsylvania; and Newsham in Northumberland and Longton in Staffordshire, England. Back in the 1980s, I accumulated a very large collection of Linton vertebrates and invertebrates. I spent many days over many months digging and mass collecting the cannel coal from the mine dumps. The collected cannel was brought home, split, and weathered over about a five-year period on the flat roof (about 40 x 100 ft.) of a commercial building. As weathering ensued, cannel pieces were re-split, flipped, and spread out on the roof many times over. Additions and removals were constantly made and cleaning and preparation were ongoing throughout the five-year period. All of the split and weathered cannel was prepared using a muriatic acid (HCl) solution in 5-gallon buckets (up to 10 at a time) for periods of up to seven days. The material was then scrubbed in water to remove any residue and loose fragments. The acid treated cannel was neutralized in a very weak sodium hydroxide (NaOH) solution (too strong a solution can result in damage to your specimen so, keep it weak) in 5-gallon buckets for up to three days and then dried. The surface (top and bottom) of every piece of cannel was examined under a dissecting microscope for fossil evidence. An estimate of the total surface area of the cannel microscopically examined came to an amazing 1.2 acres (just over 44, 270 ft2)! Many hundreds of vertebrate specimens were recovered including fishes, amphibians and reptiles. Also, hundreds of invertebrates, some excellently and some poorly preserved, were recovered including six species of diplopods (one an arthropleurid), syncarids, eucarids, branchiopods, podocopinid ostracods, and microchonchids. Plant material included some poorly preserved fern impressions, mediocre plant stems and branch sections, and surprisingly, quite a few well- preserved lepidostrobopsid sporangia with trilete megaspores. Trace elements in the cannel included coprolites, gastric boli and some evidences of predation. Fossils, both whole and partial, exceeded 2000 specimens. Specimens collected by me and also by my good friends Greg and Melissa McComas were identified with the guidance of Dr. Robert Hook and the late Dr. Donald Baird, both of whom we accompanied many times into the field. Having examined so many specimens, it soon became fairly easy to discern the features necessary to identify most of the various taxa. Eventually, we became “Linton experts” in our own right. The problem with the Linton vertebrates is that of a three- dimensional fossil being preserved in a two-dimensional aspect as an imprint of the original animal (i.e., no bone material). As most vertebrate material is usually three-dimensional, most vertebrate paleontologists have problems discerning the morphological details of the Linton material. To aid in this respect, latex peels made through a fairly long and somewhat arduous process, are used to invert the imprints to a positive expression making recognition of these characteristics easier to see. Linton researchers routinely use the latex peel process to study and photograph the fauna for confident identifications and for publication. Every Linton specimen, peel, and cast that I ever had now resides in the Carnegie Museum of Natural History (CMNH) in Pittsburgh, Pennsylvania (as of about 2002). It will probably be many years or even decades before all the material is cataloged, though some of it already has (go to https://www.idigbio.org/home and “search the portal” enter “hamilla” as collector and “linton” as locality). I somewhat regret not having held back at least a specimen of each taxon for future study and exhibition. I also regret not having owned a camera at that time. The only pictures I have are a few taken of some of the Linton invertebrates for a GSA presentation in 1984 (by a good friend and photographer, MKlockner, TFF Member) and a few scans made of vertebrate and invertebrate specimens I fortuitously happened to have with me at work one day. I’ve lost count of how many specimens of each species I have collected. The following is a list of most of the species I collected from Linton that are now in the CMNH. VERTEBRATES INVERTEBRATES Pisces Phylum Arthropoda Phylum Chondrichthyes Class Myriapoda Subphylum Orthacanthus compressus (Newberry) Diplopoda Class Xenacanthus gracilis (Newberry) Acantherpestid (undescribed) Sarcopterygii Class Amynilyspedid (undescribed) Actinistia Subclass Diplopod (undescribed) Coelacanthidae Family Xyloiulus bairdi Hoffman Rhabdoderma elegans (Newberry) Plagiascetus lateralis Hoffman Dipnoi Subclass Arthropleurid (undescribed) Conchopomidae Family Crustacea Subphylum Conchopoma exanthematicum (Cope) Ostracoda Class Sagenodontidae Family Podocopinid Ostracods Sagenodus serratus (Newberry) Malacostraca Class Gnathorhizidae Family Eucarida Superorder Decapoda Order Palaeophichthys cf. parvulus Eastman Pygocephalus dubius (Milne-Edwards) Actinopterygii Class Syncarida Superorder Palaeocaridacea Order Palaeonisciformes Order Palaeocaris aff. P. typus Meek & Worthen Elonychthyidae Family Branchiopoda Class Elonichthys peltigerus Newberry Diplostraca Order Haplolepidae Family Estherid Branchiopods Haplolepis corrugata (Newberry) Mollusca Phylum Microhaplolepis ovoidea (Newberry) Tentaculita Class Microhaplolepis serrata (Newberry) Microconchids (Spirorbids) Parahaplolepis tuberculata (Newberry) Pyritocephalus lineatus (Newberry) Plant Material Haplolepid (undescribed) Pecopterid ferns (poorly preserved) Amphibia Phylum Plant stems and branch sections Aistopoda Order Lepidostrobolid sporangia Ophiderpeton amphiuminum (Cope) Triletes aff. T. auritus Zernt Phlegethontia linearis Cope Trace Fossils Nectridea Order coprolites Ctenerpeton remex (Cope) gastric boli Ptyonius marshii (Cope) predation marks Sauropleura pectinata Cope Diceratosaurus brevirostris (Cope) Microsauria Order Brachydectes newberryi Cope Molgophis macrurus Cope Tuditanus punctulatus Cope Odonterpeton triangulare Moodie Temnospondyli Order Colosteus scutellatus (Newberry) Erpetosaurus radiatus (Cope) Saurerpeton obtusum (Cope) Amphibamus lyelli (Wyman) Stegops newberryi (Cope) Embolomeri Order Archeriidae Family Fearon's Embolomere Eogyrinidae Family Leptophractus obsoletus Cope Anthracosauria Order Gephyrostegidae Family Gephyrostegus (Eusauropleura) digitata (Cope) Reptilia Phylum Captorhinomorpha Suborder Protothyrididae Family Anthracodromeus longipes (Cope) Cephalerpeton aff. C. ventriarmatum Moodie .
Recommended publications
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • The Devonian Tetrapod Acanthostega Gunnari Jarvik: Postcranial Anatomy, Basal Tetrapod Interrelationships and Patterns of Skeletal Evolution M
    Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 363-421, 1996 The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution M. I. Coates ABSTRACT: The postcranial skeleton of Acanthostega gunnari from the Famennian of East Greenland displays a unique, transitional, mixture of features conventionally associated with fish- and tetrapod-like morphologies. The rhachitomous vertebral column has a primitive, barely differentiated atlas-axis complex, encloses an unconstricted notochordal canal, and the weakly ossified neural arches have poorly developed zygapophyses. More derived axial skeletal features include caudal vertebral proliferation and, transiently, neural radials supporting unbranched and unsegmented lepidotrichia. Sacral and post-sacral ribs reiterate uncinate cervical and anterior thoracic rib morphologies: a simple distal flange supplies a broad surface for iliac attachment. The octodactylous forelimb and hindlimb each articulate with an unsutured, foraminate endoskeletal girdle. A broad-bladed femoral shaft with extreme anterior torsion and associated flattened epipodials indicates a paddle-like hindlimb function. Phylogenetic analysis places Acanthostega as the sister- group of Ichthyostega plus all more advanced tetrapods. Tulerpeton appears to be a basal stem- amniote plesion, tying the amphibian-amniote split to the uppermost Devonian. Caerorhachis may represent a more derived stem-amniote plesion. Postcranial evolutionary trends spanning the taxa traditionally associated with the fish-tetrapod transition are discussed in detail. Comparison between axial skeletons of primitive tetrapods suggests that plesiomorphic fish-like morphologies were re-patterned in a cranio-caudal direction with the emergence of tetrapod vertebral regionalisation. The evolution of digited limbs lags behind the initial enlargement of endoskeletal girdles, whereas digit evolution precedes the elaboration of complex carpal and tarsal articulations.
    [Show full text]
  • Lopingian, Permian) of North China
    Foss. Rec., 23, 205–213, 2020 https://doi.org/10.5194/fr-23-205-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The youngest occurrence of embolomeres (Tetrapoda: Anthracosauria) from the Sunjiagou Formation (Lopingian, Permian) of North China Jianye Chen1 and Jun Liu1,2,3 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing 100044, China 3College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Correspondence: Jianye Chen ([email protected]) Received: 7 August 2020 – Revised: 2 November 2020 – Accepted: 16 November 2020 – Published: 1 December 2020 Abstract. Embolomeri were semiaquatic predators preva- 1 Introduction lent in the Carboniferous, with only two species from the early Permian (Cisuralian). A new embolomere, Seroher- Embolomeri are a monophyletic group of large crocodile- peton yangquanensis gen. et sp. nov. (Zoobank Registration like, semiaquatic predators, prevalent in the Carboniferous number: urn:lsid:zoobank.org:act:790BEB94-C2CC-4EA4- and early Permian (Cisuralian) (Panchen, 1970; Smithson, BE96-2A1BC4AED748, registration: 23 November 2020), is 2000; Carroll, 2009; Clack, 2012). The clade is generally named based on a partial right upper jaw and palate from the considered to be a stem member of the Reptiliomorpha, taxa Sunjiagou Formation of Yangquan, Shanxi, China, and is late that are more closely related to amniotes than to lissamphib- Wuchiapingian (late Permian) in age. It is the youngest em- ians (Ruta et al., 2003; Vallin and Laurin, 2004; Ruta and bolomere known to date and the only embolomere reported Coates, 2007; Clack and Klembara, 2009; Klembara et al., from North China Block.
    [Show full text]
  • Bones, Molecules, and Crown- Tetrapod Origins
    TTEC11 05/06/2003 11:47 AM Page 224 Chapter 11 Bones, molecules, and crown- tetrapod origins Marcello Ruta and Michael I. Coates ABSTRACT The timing of major events in the evolutionary history of early tetrapods is discussed in the light of a new cladistic analysis. The phylogenetic implications of this are com- pared with those of the most widely discussed, recent hypotheses of basal tetrapod interrelationships. Regardless of the sequence of cladogenetic events and positions of various Early Carboniferous taxa, these fossil-based analyses imply that the tetrapod crown-group had originated by the mid- to late Viséan. However, such estimates of the lissamphibian–amniote divergence fall short of the date implied by molecular studies. Uneven rates of molecular substitutions might be held responsible for the mismatch between molecular and morphological approaches, but the patchy quality of the fossil record also plays an important role. Morphology-based estimates of evolutionary chronology are highly sensitive to new fossil discoveries, the interpreta- tion and dating of such material, and the impact on tree topologies. Furthermore, the earliest and most primitive taxa are almost always known from very few fossil localities, with the result that these are likely to exert a disproportionate influence. Fossils and molecules should be treated as complementary approaches, rather than as conflicting and irreconcilable methods. Introduction Modern tetrapods have a long evolutionary history dating back to the Late Devonian. Their origins are rooted into a diverse, paraphyletic assemblage of lobe-finned bony fishes known as the ‘osteolepiforms’ (Cloutier and Ahlberg 1996; Janvier 1996; Ahlberg and Johanson 1998; Jeffery 2001; Johanson and Ahlberg 2001; Zhu and Schultze 2001).
    [Show full text]
  • A New Discosauriscid Seymouriamorph Tetrapod from the Lower Permian of Moravia, Czech Republic
    A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Republic JOZEF KLEMBARA Klembara, J. 2005. A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Repub− lic. Acta Palaeontologica Polonica 50 (1): 25–48. A new genus and species, Makowskia laticephala gen. et sp. nov., of seymouriamorph tetrapod from the Lower Permian deposits of the Boskovice Furrow in Moravia (Czech Republic) is described in detail, and its cranial reconstruction is pre− sented. It is placed in the family Discosauriscidae (together with Discosauriscus and Ariekanerpeton) on the following character states: short preorbital region; rounded to oval orbits positioned mainly in anterior half of skull; otic notch dorsoventrally broad and anteroposteriorly deep; rounded to oval ventral scales. Makowskia is distinguished from other Discosauriscidae by the following characters: nasal bones equally long as broad; interorbital region broad; prefrontal− postfrontal contact lies in level of frontal mid−length (only from D. pulcherrimus); maxilla deepest at its mid−length; sub− orbital ramus of jugal short and dorsoventrally broad with long anterodorsal−posteroventral directed lacrimal−jugal su− ture; postorbital anteroposteriorly short and lacks elongated posterior process; ventral surface of basioccipital smooth; rows of small denticles placed on distinct ridges and intervening furrows radiate from place immediately laterally to artic− ular portion on ventral surface of palatal ramus of pterygoid (only from D. pulcherrimus);
    [Show full text]
  • 1 1 Appendix S1: Complete List of Characters And
    1 1 Appendix S1: Complete list of characters and modifications to the data matrix of RC07, with 2 reports of new observations of specimens. 3 The names, the abbreviations and the order of all characters and their states are 4 unchanged from RC07 unless a change is explained. We renumbered the characters we did 5 not delete from 1 to 277, so the character numbers do not match those of RC07. However, 6 merged characters retain the abbreviations of all their components: PREMAX 1-2-3 (our 7 character 1) consists of the characters PREMAX 1, PREMAX 2 and PREMAX 3 of RC07, 8 while MAX 5/PAL 5 (our ch. 22) is assembled from MAX 5 and PAL 5 of RC07. We did not 9 add any characters, except for splitting state 1 of INT FEN 1 into the new state 1 of INT FEN 10 1 (ch. 84) and states 1 and 2 of the new character MED ROS 1 (ch. 85), undoing the merger 11 of PIN FOR 1 and PIN FOR 2 (ch. 91 and 92) and splitting state 0 of TEETH 3 into the new 12 state 0 of TEETH 3 (ch. 183) and the entire new character TEETH 10 (ch. 190). A few 13 characters have additional states or are recoded in other ways. Deleted characters are retained 14 here, together with the reasons why we deleted them and the changes we made to their scores. 15 All multistate characters mention in their names whether they are ordered, unordered, 16 or treated according to a stepmatrix.
    [Show full text]
  • Sectional Meetings Details of Technical Meetings Follow
    Sectional Meetings Details of technical meetings follow. See map for building locations. Bus- iness meetings are scheduled for each section. An important item of business is the election of officers. A. ZOOLOGY MORNING SESSION 1 KAUKE HALL F. LEE ST. JOHN, PRESIDING EFFECTS OF CALCIUM MODULATING DRUGS ON INSECT CENTRAL NERVOUS TISSUE. Kevin M. Hoffman & George F. Shambaugh, Department of Entomology, Ohio Agricultural Research & Development CEnter, Wooster, OHIO 44691 9:00 Drugs which modulate the movements of calcium ions into or within cells were perfused over the desheathed, last abdominal ganglion of the cockroach, Nauphoeta cinerea (Olivier). Synaptic transmission, endogenous spike activity, summed post-synaptic potentials and ganglionic polarization were measured. Sodium nitroprusside in low concentrations caused repetitive firing of giant interneurons after faradic stimulation. CONNECTIONS BETWEEN THE NUCLEUS BASALIS AND THE ARCHISTRIATUM IN THE MALLARD. Patrick Work, Department of Biological Sciences, Kent State University, Kent, Ohio 44242. 9:15 Research reported here is part of a study of the feeding mechanism of the mallard duck (Anas platyrhynchos) which is being conducted at the University of Leiden in the Netherlands. It was done through a Kent State University-Leiden University student exchange program in the summer of 1980. The research consisted of a neuroanatomical and histochemical investigation of the relationship between the forebrain nuclei basalis and archistriatum anterior. These are believed to be important elements in neural control of the feeding mecha- nism in the duck. Anatomical connections between these nuclei were studied with the aid of horseradish peroxidase injected into the archistriatum anterior nucleus, Peroxidase-labeled cells were found only in the most medial portions of the nucleus basalis from the level of the posterior commissure to the rostral border of the archistriatum anterior.
    [Show full text]
  • Modes of Ventilation in Early Tetrapods: Costal Aspiration As a Key Feature of Amniotes
    Modes of ventilation in early tetrapods: Costal aspiration as a key feature of amniotes CHRISTINE M. JANIS and JULIA C. KELLER Janis, C.M. & Keller, J.C. 2001. Modes of ventilation in early tetrapods: Costal aspira- tion as a key feature of amniotes. -Acta Palaeontologica Polonica 46, 2, 137-170. The key difference between amniotes (reptiles, birds and mammals) and anamniotes (amphibians in the broadest sense of the word) is usually considered to be the amniotic egg, or a skin impermeable to water. We propose that the change in the mode of lung ven- tilation from buccal pumping to costal (rib-based) ventilation was equally, if not more important, in the evolution of tetrapod independence from the water. Costal ventilation would enable superior loss of carbon dioxide via the lungs: only then could cutaneous respiration be abandoned and the skin made impermeable to water. Additionally efficient carbon dioxide loss might be essential for the greater level of activity of amniotes. We ex- amine aspects of the morphology of the heads, necks and ribs that correlate with the mode of ventilation. Anamniotes, living and fossil, have relatively broad heads and short necks, correlating with buccal pumping, and have immobile ribs. In contrast, amniotes have narrower, deeper heads, may have longer necks, and have mobile ribs, in correlation with costal ventilation. The stem amniote Diadectes is more like true amniotes in most respects, and we propose that the changes in the mode of ventilation occurred in a step- wise fashion among the stem amniotes. We also argue that the change in ventilatory mode in amniotes related to changes in the postural role of the epaxial muscles, and can be correlated with the evolution of herbivory.
    [Show full text]
  • For Peer Review Only
    Systematic Biology For peer review only. Do not cite. ForPhylogenetic Peer stability, Review tree shape, and Only character compatibility: a case study using early tetrapods Journal: Systematic Biology Manuscript ID USYB-2014-243.R1 Manuscript Type: Regular Manuscript Date Submitted by the Author: n/a Complete List of Authors: Bernardi, Massimo; MUSE - Museo delle Scienze, Geology and Palaeontology Angielczyk, Kenneth; Field Museum of Natural History, Integrative Research Center Mitchell, Jonathan; University of Michigan Ruta, Marcello; University of Lincoln, School of Life Sciences Character compatibility, Tree balance, Tree distance, Diversification shifts, Keywords: Tetrapods , Terrestrialization, Paleozoic, Mesozoic http://mc.manuscriptcentral.com/systbiol Page 1 of 85 Systematic Biology 1 Phylogenetic stability, tree shape, and character compatibility: a case study using early 2 tetrapods 3 For Peer Review Only 4 Massimo Bernardi 1,2 , Kenneth D. Angielczyk 3, Jonathan S. Mitchell 4, and Marcello Ruta 5 5 6 1 MuSe – Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 Trento, Italy. 7 2 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, 8 BS8 1RJ, United Kingdom. 9 3 Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, 10 Chicago, IL 60605-2496, USA. 11 4 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 12 48103, USA 13 5 School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Green Lane, 14 Lincoln LN6 7DL, United Kingdom. 15 16 * Corresponding author 17 Massimo Bernardi, MuSe – Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 18 Trento, Italy 19 Email: [email protected] 20 Phone: +39 0461 270344 http://mc.manuscriptcentral.com/systbiol Systematic Biology Page 2 of 85 21 Abstract 22 Phylogenetic tree shape varies as the evolutionary processes affecting a clade change over time.
    [Show full text]
  • Pennsylvanian Vertebrate Fauna
    VII PENNSYLVANIAN VERTEBRATE FAUNA By ROY LEE MOODIE THE PENNSYLVANIAN VERTEBRATE FAUNA OF KENTUCKY By ROY LEE MOODIE INTRODUCTION The vertebrates which one may expect to find in the Penn- sylvanian of Kentucky are the various types of fishes, enclosed in nodules embedded in shale, as well as in limestone and in coal; amphibians of many types, found heretofore in nodules and in cannel coal; and probably reptiles. A single incomplete skeleton found in Ohio, described below, seems to be a true reptile. Footprints and fragmentary skeletal elements found in Pennsylvania1 in Kansas2 in Oklahoma3, in Texas4 in Illinois5, and other regions, in rocks of late Pennsylvanian or early Permian age, and often spoken of as Permo- Carboniferous, indicate types of vertebrates, some of which may be reptiles. No skeletal remains or other evidences of Pennsylvanian vertebrates have so far been found in Kentucky, but there is no reason why they cannot confidently be expected to occur. A single printed reference points to such vertebrate remains6. As shown by the map, Kentucky lies immediately adjacent to regions where Pennsylvanian vertebrates have been found. That important discoveries may still be made is indicated by Carman's recent find7. Ohio where important discoveries of 1Case, E. C. Description of vertebrate fossils from the vicinity of Pittsburgh, Pa: Annals of the Carnegie Museum, IV, Nos. III-IV, pp. 234-241. pl. LIX, 1908. 2Williston, S. W. Some vertebrates from the Kansas Permian: Kansas Univ. Quart., ser. A, VI, No.1, pp. 53. fig., 1897. 3Case, E. C., On some vertebrate fossils from the Permian beds of Oklahoma.
    [Show full text]
  • Of Modern Amphibians: a Commentary
    The origin(s) of modern amphibians: a commentary. D. Marjanovic, Michel Laurin To cite this version: D. Marjanovic, Michel Laurin. The origin(s) of modern amphibians: a commentary.. Journal of Evolutionary Biology, Wiley, 2009, 36, pp.336-338. 10.1007/s11692-009-9065-8. hal-00549002 HAL Id: hal-00549002 https://hal.archives-ouvertes.fr/hal-00549002 Submitted on 7 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The origin(s) of modern amphibians: a commentary By David Marjanović1 and Michel Laurin1* 1Address: UMR CNRS 7207 “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Département Histoire de la Terre, Bâtiment de Géologie, case postale 48, 57 rue Cuvier, F-75231 Paris cedex 05, France *Corresponding author tel/fax. (+33 1) 44 27 36 92 E-mail: [email protected] Number of words: 1884 Number of words in text section only: 1378 2 Anderson (2008) recently reviewed the controversial topic of extant amphibian origins, on which three (groups of) hypotheses exist at the moment. Anderson favors the “polyphyly hypothesis” (PH), which considers the extant amphibians to be polyphyletic with respect to many Paleozoic limbed vertebrates and was most recently supported by the analysis of Anderson et al.
    [Show full text]
  • Amniote Phylogeny and the Importance of Fossils
    Clndistirs (1988)4: 105-209 AMNIOTE PHYLOGENY AND THE IMPORTANCE OF FOSSILS Jacques Gauthierl,3,Arnold G. Klugel, and Timothy Rowe2 I Museum of ,500logy and Department of Biology, University of Michigan, Ann Arbor, MI 48109-1079; Department of Geological Sciences, University of Texas, Austin, TX 78713-7909, U.S.A. Ah.~/mcl Srvrral prominrnt cladists haw qurstioiied thc importancc of fossils in phylogrnctic inference, and it is becoming iiicreasingly popular to simply fit extinct forms, ifthcy are considered at all, 10 a cladogram ofReccnt taxa. Gardiner’s [ 1982) arid Lovtrup’s [ 1985) study ofamniote phylogeny rxcmplilirs this dilfrrrntial treatment, and we focuard on that group of organisms to test the proposition that hssils c;mnot overturn a theory of‘relatioiiships based only on the Recent biota. Our parsimony analysis of amniotc phylogrny, special knowledge contributed by fossils being scrupulously avoided, led to the followiiig best fitting classification, which is similar to the novel hypothesis Gardiner published: (lcpidmaurs (turtles (mammals (birds, crocodiles)))).However, adding fossils resulted in a markedly dilfcrcnt most parsimonious cladogram or thc extant taxa: (mammals (turtles (lepidosaurs [birds, crocodilrs)))).‘l‘hat classification is likr thr traditional hypothesis, and it provides a brttrr fit to the stratigraphic rrcord. ‘1.0 isolate thr extinct taxa rcsponsihle for the lattcr c,lassification, thr data wrrr succcssi~elypartitioned with each phylogenetic analysis, and wc coneluded that: (1) the ingroup, not the outgroup, fossils were important; (2) synapsid, not reptile, fossils wcrc pivotal; (3) certain syiiapsid fossils, not the rarliest or latrst, were responsible. ‘Ihr critical nature of thr syiiapsid lossils sremcd to lir in the particular comhinatioti of primitive arid derivrd c.haracter states they exhibited.
    [Show full text]