Vegetation and Floristics of Deriah Aboriginal Area

Total Page:16

File Type:pdf, Size:1020Kb

Vegetation and Floristics of Deriah Aboriginal Area See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279985974 Vegetation and flora of Deriah Aboriginal Area Research · July 2015 DOI: 10.13140/RG.2.1.4478.8321 CITATIONS READS 0 156 1 author: John Hunter University of New England (Australia) 316 PUBLICATIONS 1,721 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Vegetation Classification - Australia and elsewhere View project Vegetation Dynamics - Inselbergs - Rock Outcrops View project All content following this page was uploaded by John Hunter on 12 July 2015. The user has requested enhancement of the downloaded file. Vegetation and Floristics of Deriah Aboriginal Area Dr John T. Hunter May 2008 23 Kendall Rd, Invergowrie NSW, 2350 Ph. & Fax: (02) 6775 2452 Email: [email protected] A Report to the New South Wales National Parks and Wildlife Service i Vegetation of Deriah AA Summary The vegetation of Deriah Aboriginal Area is described and mapped (scale 1:50 000). Nine communities are defined based on classification (Kulczynski association). These Nine communities were mapped based on ground truthing, air photo interpretation and landform. Much of the reserve is characterised by Eucalyptus crebra, Callitris glaucophylla, Cadellia pentastylis, Acacia cheelii and Callitris endlicheri with and understorey shrub layer of Beyeria viscosa, Notelaea microcarpa, Melichrus urceolatus and Solanum parvifolium with a ground layer of Austrostipa scabra, Aristida ramosa, Cheilanthes sieberi, Cheilanthes distans, Cymbopogon refractus Microlaena stipoides and Cyperus gracilis. The communities described and their status are: Floristic Community Area Reservation Status C1: Eucalyptus crebra – Well reserved and not of conservation concern 828 Callitris glaucophylla C2: Eucalyptus viridis – Highly disjunct and restricted assemblage should 44 Geijera parviflora be considered of concern. C3: Cadellia pentastylis 44 Listed as endangered on the TSC Act. C4: Callitris glaucophylla Highly disjunct and small occurrences but not of 26 conservation concern at present C5: Callitris glaucophylla – Well reserved and not of conservation concern Eucalyptus crebra – Acacia 824 cheelii C6: Acacia triptera – Kunzea Highly restricted and disjunct, not of current 15 sp. D concern. C7: Eucalyptus crebra – Well reserved and not of conservation concern. 300 Callitris endlicheri C8: Callitris endlicheri 5 Not of conservation concern. C9: Casuarina Not of conservation concern at present. cunninghamiana – 13 Melaleuca bracteata A total of 287 vascular plant taxa were found from 186 families and 66 genera. Four species; Cadellia pentastylis (TSC Vulnerable), Leionema viridiflora (3RCa), Pomaderris queenslandica (TSC Endangered) and Tylophora linearis (TSC & EPBC Endangered). Dr John T. Hunter (02) 6775 2452 ii Vegetation of Deriah AA Contents Summary ................................................................................................................ i 1 Introduction ....................................................................................................... 1 1.1 Objectives ....................................................................................... 1 1.2 Study area ...................................................................................... 2 2 Methodology ...................................................................................................... 5 2.1 Survey design ................................................................................. 5 2.2 Site and species information ......................................................... 6 2.3 Data management ......................................................................... 7 2.4 Analysis of regional diversity ....................................................... 7 2.5 Multivariate analysis..................................................................... 7 2.6 Coleman curves ............................................................................. 8 2.7 Significant vascular plant taxa within the study area ............... 9 2.8 Structural information ................................................................. 9 3 Results .............................................................................................................. 10 3.1 Site stratification ......................................................................... 10 3.2 Floristics ....................................................................................... 10 3.3 Community definition ................................................................. 16 3.4 Coleman curves and richness estimation .................................. 20 3.5 Description of plant communities .............................................. 25 3.5.1 Ironbark – White Pine ............................................. 25 3.5.2 Green Mallee - Wilga .............................................. 32 3.5.3 Ooline ...................................................................... 38 3.5.4 White Pine ............................................................... 45 3.5.5 White Pine – Ironbark - Motherumbah ................... 51 3.5.6 Spurwing Wattle – Kaputar Kunzea ....................... 60 3.5.7 Ironbark – Black Pine.............................................. 66 3.5.8 Black Pine ............................................................... 73 3.5.9 River Oak – Black Tea-tree..................................... 78 3.6 Structural information ............................................................... 82 3.7 Reservation status of communities and comparison with other studies ........................................................................ 86 Dr John T. Hunter (02) 6775 2452 iii Vegetation of Deriah AA 3.8 Fire responses of individual taxa ............................................... 87 3.9 Description of taxa of conservation significance .................... 115 3.9.1 Cadellia pentastylis ............................................... 115 3.9.2 Leionema viridiflorum ........................................... 118 3.9.3 Pomaderris queenslandica .................................... 121 3.9.4 Tylophora linearis ................................................. 123 4 Discussion ..................................................................................................... 127 4.1 General comments..................................................................... 127 4.2 Fire.............................................................................................. 127 4.3 Introduced species ..................................................................... 133 4.4 Management considerations ..................................................... 133 References & Bibliography .......................................................................... 136 Appendix A: Site record forms .................................................................... 170 Appendix B: Taxon list with authorities and common name ........... 172 Appendix C: Introduced taxa: life history, control & distribution .... 181 Appendix D: Two-way table: sp. occurrences in communities .......... 197 Appendix E: Locality and site information ............................................... 204 Appendix F: Uses of plants .......................................................................... 207 Appendix G: Original dendrogram ............................................................. 227 Acknowledgements ............................................................................. 228 Dr John T. Hunter (02) 6775 2452 iv Vegetation of Deriah AA Tables 1 Dominant species ............................................................................................... 12 2 Comparison of sp. richness for other recently surveyed areas in region ..... 13 3 Comparison of structural characteristics of selected reserves ..................... 84 3 Conservation status of communities................................................................ 87 4 Known fire responses and traits of taxa found in the study area ................. 88 5 Suggested fire regimes for each of the five defined communities ............... 132 Dr John T. Hunter (02) 6775 2452 v Vegetation of Deriah AA Plates 1 Photographs of Community 1 .......................................................................... 30 2 Photographs of Community 1 .......................................................................... 31 3 Photographs of Community 2 .......................................................................... 37 4 Photographs of Community 3 .......................................................................... 43 5 Photographs of Community 3 .......................................................................... 44 6 Photograph of Community 4............................................................................ 49 7 Photograph of Community 4............................................................................ 50 8 Photographs of Community 5 .......................................................................... 57 9 Photographs of Community 5 .......................................................................... 58 10 Photographs of Community 5 ........................................................................ 59 11 Photographs of Community 6 ........................................................................ 65 12 Photographs of Community 7 .......................................................................
Recommended publications
  • Supplementary Materialsupplementary Material
    10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell.
    [Show full text]
  • A Biological Survey of the Southern Mount Lofty Ranges
    Southern Mount Lofty Ranges Biological Survey APPENDIX I DESCRIPTION OF ENVIRONMENTAL ASSOCIATIONS OCCURRING IN SURVEY REGION BOUNDARY. Part 1. Environmental associations in study area occurring within FLEURIEU IBRA sub-region Environmental Total % of Description Association Area vegetation (ha) remaining 3.2.1 Mt. Rapid 12,763 3.9 Hills and ridges on interbedded shale and arkose, locally overlain by tillite. Relict fans form broad flat surfaces near Cape Jervis where some coastal cliffs occur. Open parkland with sown pasture is used for livestock grazing. The scenery of the coastline is dominated by tall cliffs that vary in form and steepness, the amount of rock outcrop and vegetative cover. 3.2.2 Deep Creek 12,984 30.2 A long dissected ridge of phyllite and greywacke with cliffs, or beaches and dunes along the coastline. The cover is predominantly open parkland over sown pasture with widespread remnants of woodland and forest. Inland views tend to be middle-ground panoramic, featuring grassy ridge crests and valley floors with bracken and reed or remnant forest vegetation. 3.2.3 Fleurieu 30,389 15.6 An undulating to hilly dissected tableland on lateritized sandstone. There is a mixed cover of open parkland, forest plantation and woodland. 3.2.4 Inman 37,130 4.4 A series of low dissected ridges and spurs on tillite and arkose, with dunes and beaches or Valley cliffs along the coast. The cover is open parkland over sown pastures and cereal crops. 3.2.5 Bob Tiers 15,761 21.3 Ridges on schist and gneiss with dissected slopes and remnantsof laterite-capped tableland.
    [Show full text]
  • Human-Mediated Introductions of Australian Acacias
    Diversity and Distributions, (Diversity Distrib.) (2011) 17, 771–787 S EDITORIAL Human-mediated introductions of PECIAL ISSUE Australian acacias – a global experiment in biogeography 1 2 1 3,4 David M. Richardson *, Jane Carruthers , Cang Hui , Fiona A. C. Impson , :H Joseph T. Miller5, Mark P. Robertson1,6, Mathieu Rouget7, Johannes J. Le Roux1 and John R. U. Wilson1,8 UMAN 1 Centre for Invasion Biology, Department of ABSTRACT - Botany and Zoology, Stellenbosch University, MEDIATED INTRODUCTIONS OF Aim Australian acacias (1012 recognized species native to Australia, which were Matieland 7602, South Africa, 2Department of History, University of South Africa, PO Box previously grouped in Acacia subgenus Phyllodineae) have been moved extensively 392, Unisa 0003, South Africa, 3Department around the world by humans over the past 250 years. This has created the of Zoology, University of Cape Town, opportunity to explore how evolutionary, ecological, historical and sociological Rondebosch 7701, South Africa, 4Plant factors interact to affect the distribution, usage, invasiveness and perceptions of a Protection Research Institute, Private Bag globally important group of plants. This editorial provides the background for the X5017, Stellenbosch 7599, South Africa, 20 papers in this special issue of Diversity and Distributions that focusses on the 5Centre for Australian National Biodiversity global cross-disciplinary experiment of introduced Australian acacias. A Journal of Conservation Biogeography Research, CSIRO Plant Industry, GPO Box Location Australia and global. 1600, Canberra, ACT, Australia, 6Department of Zoology and Entomology, University of Methods The papers of the special issue are discussed in the context of a unified Pretoria, Pretoria 0002, South Africa, framework for biological invasions.
    [Show full text]
  • Border Rivers Maranoa - Balonne QLD Page 1 of 125 21-Jan-11 Species List for NRM Region Border Rivers Maranoa - Balonne, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
    AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Recchia Sessiliflora (Surianaceae Arn.), Una Especie Nueva De La Cuenca Del Balsas En El Estado De Guerrero, México
    Acta Botanica Mexicana 108: 1-9 (2014) RECCHIA SESSILIFLORA (SURIANACEAE ARN.), UNA ESPECIE NUEVA DE LA CUENCA DEL BALSAS EN EL ESTADO DE GUERRERO, MÉXICO ANDRÉS GONZÁLEZ-MURILLO¹, RamIRO CRUZ-DURÁN²,³ Y JAIME JIMÉNEZ-RamÍREZ² ¹Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Ecología, Delegación Coyoacán, 04510 México, D.F., México. ²Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Comparada, Delegación Coyoacán, 04510 México, D.F., México. ³Autor para la correspondencia: [email protected] RESUMEN Se describe e ilustra a Recchia sessiliflora (Surianaceae Arn.), una especie nueva de la Cuenca del río Balsas en el estado de Guerrero, México. El nuevo taxon es afín a Recchia connaroides (Loes. & Soler) Standl., pero difiere de ella por tener folíolos más pequeños, que aumentan de tamaño hacia el ápice de la hoja, elípticos a suborbiculares, el raquis con alas evidentes, las inflorescencias en espiga y los pétalos oblanceolados con el ápice irregularmente emarginado. Esta especie se conoce hasta ahora solo de la localidad tipo, creciendo en bosque tropical caducifolio. Se presenta una comparación de las características de las especies afines, un mapa de distribución y una clave dicotómica para el reconocimiento de las especies conocidas del género Recchia Moc. & Sessé ex DC. Palabras clave: Cuenca del río Balsas, Guerrero, México, Recchia, Simaroubaceae, Surianaceae. ABSTRACT A new species from the Balsas Depression in the state of Guerrero, Mexico, Recchia sessiliflora (Surianaceae Arn.), is described and illustrated. This new species is similar to Recchia connaroides (Loes. & Soler) Standl., differing from the latter in having smaller, elliptic to suborbicular leaflets which increase in size towards the apex of the leaf, a rachis which is clearly winged, a spicate inflorescence and flowers with oblanceolate and irregularly 1 Acta Botanica Mexicana 108: 1-9 (2014) emarginate petals.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Flora Survey on Hiltaba Station and Gawler Ranges National Park
    Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia.
    [Show full text]
  • 'Soils' and 'Vegetation'?
    Is there a close association between ‘soils’ and ‘vegetation’? A case study from central western New South Wales M.O. Rankin1, 3, W.S Semple2, B.W. Murphy1 and T.B. Koen1 1 Department of Natural Resources, PO Box 445, Cowra, NSW 2794, AUSTRALIA 2 Department of Natural Resources, PO Box 53, Orange, NSW 2800, AUSTRALIA 3 Corresponding author, email: [email protected] Abstract: The assumption that ‘soils’ and ‘vegetation’ are closely associated was tested by describing soils and vegetation along a Travelling Stock Reserve west of Grenfell, New South Wales (lat 33° 55’S, long 147° 45’E). The transect was selected on the basis of (a) minimising the effects of non-soil factors (human interference, climate and relief) on vegetation and (b) the presence of various soil and vegetation types as indicated by previous mapping. ‘Soils’ were considered at three levels: soil landscapes (a broad mapping unit widely used in central western NSW), soil types (according to a range of classifications) and soil properties (depth, pH, etc.). ‘Vegetation’ was considered in three ways: vegetation type (in various classifications), density/floristic indices (density of woody species, abundance of native species, etc.) and presence/absence of individual species. Sites along the transect were grouped according to soil landscapes or soil types and compared to vegetation types or indices recorded at the sites. Various measures indicated low associations between vegetation types and soil landscapes or soil types. Except for infrequent occurrences of a soil type or landscape, any one soil type or landscape was commonly associated with a number of vegetation types and any one vegetation type was associated with a number of soil landscapes or soil types.
    [Show full text]
  • Exotic Plants in the Australian Alps Including a Case Study of the Ecology of Achillea Millefolium, in Kosciuszko National Park
    Exotic Plants in the Australian Alps Including a Case Study of the Ecology of Achillea Millefolium, in Kosciuszko National Park Author Johnston, Frances Mary Published 2006 Thesis Type Thesis (PhD Doctorate) School School of Environmental and Applied Science DOI https://doi.org/10.25904/1912/3730 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/365860 Griffith Research Online https://research-repository.griffith.edu.au EXOTIC PLANTS IN THE AUSTRALIAN ALPS INCLUDING A CASE STUDY OF THE ECOLOGY OF ACHILLEA MILLEFOLIUM, IN KOSCIUSZKO NATIONAL PARK Frances Mary Johnston B.Sc. (Hons) A thesis submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy School of Environmental and Applied Sciences Faculty of Environmental Sciences Griffith University Gold Coast August 2005 DECLARATION OF ORIGINALITY This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, this thesis represents my original research except where otherwise acknowledged in the text. Frances Johnston August 2005 FORWARD “In a small section of the garden a tiny weed spoke to the blooms that grew there. ‘Why,’ he asked, ‘does the gardener seek to kill me? Do I not have a right to life? Are my leaves not green, as yours are? Is it too much to ask that I be allowed to grow and see the sun?’ The blooms pondered on this, and decided to ask the gardener to spare the weed. He did so. Day by day the weed grew, stronger and stronger, taller and taller, its leaves covering the other plants, its roots spreading.
    [Show full text]