DIRECT and INDIRECT EFFECTS of WHITE-TAILED DEER (Odocoileus Virginianus) HERBIVORY on BEETLE and SPIDER ASSEMBLAGES in NORTHERN WISCONSIN

Total Page:16

File Type:pdf, Size:1020Kb

DIRECT and INDIRECT EFFECTS of WHITE-TAILED DEER (Odocoileus Virginianus) HERBIVORY on BEETLE and SPIDER ASSEMBLAGES in NORTHERN WISCONSIN DIRECT AND INDIRECT EFFECTS OF WHITE-TAILED DEER (Odocoileus virginianus) HERBIVORY ON BEETLE AND SPIDER ASSEMBLAGES IN NORTHERN WISCONSIN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Elizabeth Jo Sancomb B.S., University of Maryland, 2011 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 21, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY ElizABeth Jo SAncomb ENTITLED Direct And indirect effects of white-tailed deer (Odocoileus virginianus) herBivory on Beetle And spider AssemblAges in Northern Wisconsin BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science ___________________________________________ Thomas Rooney, Ph.D. Thesis Director ___________________________________________ David Goldstein, Ph.D., Chair DepArtment of BiologicAl Sciences College of Science And MAthematics Committee on FinAl ExAminAtion ____________________________________________ Don Cipollini, Ph.D. ____________________________________________ Thomas Rooney, Ph.D. ____________________________________________ John O. Stireman III, Ph.D. ____________________________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research And Dean of the Graduate School ABSTRACT Sancomb, Elizabeth Jo. M.S. Department of Biological Sciences, Wright State University, 2014. Direct and indirect effects of white-tailed deer (Odocoileus virginianus) herbivory on beetle and spider assemblages in Northern Wisconsin White-tailed deer directly impact vegetation structure and species composition through selective foraging, and indirectly impact other species by altering habitat, food-web interactions, and microclimate. I examined the direct effects of deer exclusion on vegetation communities, and indirect effects on beetle, spider, and web-building spider (WBS) assemblages. Forb and woody plant percent cover were higher in exclosures, while graminoid cover was higher in controls. There were no differences in beetle and spider assemblages between browsed and protected areas. The absence of differences could be attributed to legacy effects, or alternatively high vagility of individuals. WBS assemblages were more abundant and diverse in protected areas, reflecting differences in web site availability and litter depth. This suggests indirect effects of deer alter arthropod assemblages. Through selective feeding, deer act as ecosystem engineers. They are indirectly changing the WBS assemblages in this area, and may be changing beetle and spider assemblage composition. iii TABLE OF CONTENTS Page I. INTRODUCTION AND OBJECTIVES................................................................1 Indirect effects and ecosystem engineers...................................................1 Direct effects of White-tailed deer on forest vegetation..............................2 Indirect effects of deer on co-occurring animal assemblages.....................3 Direct and indirect effects of deer on arthropod assemblages....................4 Objectives...................................................................................................6 II. METHODS.........................................................................................................8 Study Area and Sites..................................................................................8 General Sampling.......................................................................................9 Vegetation Sampling.................................................................................10 Sweep Net Sampling.................................................................................11 Pitfall Sampling.........................................................................................12 Web-Building Spider Sampling.................................................................13 Data Analysis............................................................................................14 III. RESULTS.......................................................................................................20 Vegetation.................................................................................................20 Beetles......................................................................................................23 Spiders......................................................................................................28 Web-Building Spiders................................................................................33 Power analysis..........................................................................................38 iv IV. Discussion AND CONCLUSIONS..................................................................40 Vegetation.................................................................................................40 Beetles and Spiders..................................................................................41 Web-Building Spiders................................................................................43 Conclusions...............................................................................................45 V. REFERENCES................................................................................................48 VI. APPENDIX.....................................................................................................53 v LIST OF FIGURES Figure Page 1. Total percent vegetation cover.........................................................................20 2. Forage type percent cover...............................................................................21 3. Average vegetation height...............................................................................22 4. Total beetle rarefaction....................................................................................23 5. Beetle assemblage composition......................................................................24 6. Herbivorous beetle rarefaction.........................................................................25 7. Carabid beetle diversity...................................................................................25 8. Carabid beetle rarefaction................................................................................26 9. Total spider abundance...................................................................................28 10. Total spider rarefaction..................................................................................28 11. Spider assemblage composition....................................................................29 12. Web spider rarefaction...................................................................................30 13. Non-web spider rarefaction............................................................................30 14. Beetle and spider assemblage composition..................................................31 15. Web-building spider abundance....................................................................33 16. Web site availability at 0.5m..........................................................................33 17. Web-building spider rarefaction (family)........................................................34 18. Web-building spider rarefaction (species).....................................................34 19. Web-building spider family composition........................................................35 vi LIST OF FIGURES (Continued) 20. Relative abundance of web type....................................................................35 21. ANCOVA of web-building spider abundance compared across web site availability at 0.5m...............................36 22. ANCOVA of web-building spider richness compared across litter depth...............................................36 23. ANCOVA of web-building spider abundance compared across total prey availability..........................................37 Diagram Page 1. Exclosure/control plot schematic.......................................................................8 2. Web-building spider sampling schematic.........................................................13 vii LIST OF TABLES Table Page 1. Summary of vegetation results........................................................................22 2. Summary of beetle results...............................................................................27 3. Summary of spider results...............................................................................32 4. Summary of web-building spider results..........................................................38 A1. Genus/Spcies list and counts for all collected specimen...............................53 viii I. INTRODUCTION The ecological community historically assumed that direct interactions are more important than indirect interactions in community dynamics. More recently, however, the importance of these indirect effects (when the direct interaction of species 1 with species 2 indirectly impacts species 3) in community complexity and structure has been increasingly acknowledged (Menge 1997). Three main types of indirect effects have been recognized: numeric (change in abundance through predation, competition, or facilitation), behavioral (change in behavior or morphology independent of abundance), and environmental (change in abundance through changes in quality or structure of an abiotic resource) (Miller & Kerfoot 1987; Strauss 1991). These three indirect effect types can be manifested
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Spiders (Araneae) of Churchill, Manitoba: DNA Barcodes And
    Blagoev et al. BMC Ecology 2013, 13:44 http://www.biomedcentral.com/1472-6785/13/44 RESEARCH ARTICLE Open Access Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records Gergin A Blagoev1*, Nadya I Nikolova1, Crystal N Sobel1, Paul DN Hebert1,2 and Sarah J Adamowicz1,2 Abstract Background: Arctic ecosystems, especially those near transition zones, are expected to be strongly impacted by climate change. Because it is positioned on the ecotone between tundra and boreal forest, the Churchill area is a strategic locality for the analysis of shifts in faunal composition. This fact has motivated the effort to develop a comprehensive biodiversity inventory for the Churchill region by coupling DNA barcoding with morphological studies. The present study represents one element of this effort; it focuses on analysis of the spider fauna at Churchill. Results: 198 species were detected among 2704 spiders analyzed, tripling the count for the Churchill region. Estimates of overall diversity suggest that another 10–20 species await detection. Most species displayed little intraspecific sequence variation (maximum <1%) in the barcode region of the cytochrome c oxidase subunit I (COI) gene, but four species showed considerably higher values (maximum = 4.1-6.2%), suggesting cryptic species. All recognized species possessed a distinct haplotype array at COI with nearest-neighbour interspecific distances averaging 8.57%. Three species new to Canada were detected: Robertus lyrifer (Theridiidae), Baryphyma trifrons (Linyphiidae), and Satilatlas monticola (Linyphiidae). The first two species may represent human-mediated introductions linked to the port in Churchill, but the other species represents a range extension from the USA.
    [Show full text]
  • Direct and Indirect Effects of White-Tailed Deer (Odocoileus Virginianus) Herbivory on Beetle and Spider Assemblages in Northern Wisconsin
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 Direct and Indirect Effects of White-Tailed Deer (Odocoileus virginianus) Herbivory on Beetle and Spider Assemblages in Northern Wisconsin Elizabeth J. Sancomb Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biology Commons Repository Citation Sancomb, Elizabeth J., "Direct and Indirect Effects of White-Tailed Deer (Odocoileus virginianus) Herbivory on Beetle and Spider Assemblages in Northern Wisconsin" (2014). Browse all Theses and Dissertations. 1375. https://corescholar.libraries.wright.edu/etd_all/1375 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. DIRECT AND INDIRECT EFFECTS OF WHITE-TAILED DEER (Odocoileus virginianus) HERBIVORY ON BEETLE AND SPIDER ASSEMBLAGES IN NORTHERN WISCONSIN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Elizabeth Jo Sancomb B.S., University of Maryland, 2011 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 21, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY ElizABeth Jo SAncomb ENTITLED Direct And indirect effects of white-tailed deer (Odocoileus virginianus) herBivory on Beetle And spider AssemblAges in Northern Wisconsin BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science ___________________________________________ Thomas Rooney, Ph.D. Thesis Director ___________________________________________ David Goldstein, Ph.D., Chair DepArtment of BiologicAl Sciences College of Science And MAthematics Committee on FinAl ExAminAtion ____________________________________________ Don Cipollini, Ph.D.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Table S1. List of Identified Spider Species Including Total Count and Collection Locations. Bold Cells Include Counts of Mature Identified Species
    Table S1. List of identified spider species including total count and collection locations. Bold cells include counts of mature identified species. Unknown species linked to families or genera were largely immature individuals but may include several individuals with some bodily damage that prevented accurate identification. Individuals with unknown family had bodily damage that prevented identification. Family Genus Species Authority Total Count Collection Locations Agelenidae Unknown spp. 1 UNWR Amaurobiidae Cybaeopsis sp. 1 UNWR Antrodiaetidae Antrodiaetus pugnax Chamberlin, 1917 4 TNC-Z longipalpa Hentz, 1847 1 UNWR Corinnidae Castianeira spp. 3 TNC-Z; UNWR neglectus Keyserling, 1887 1 TNC-Z Drassodes saccatus Emerton, 1890 1 TNC-Z spp. 1 TNC-Z dromeus Chamberlin, 1922 3 TNC-B; TNC-Z Drassyllus lamprus Chamberlin, 1920 3 TNC-B; TNC-Z; UNWR californica Banks, 1904 17 TNC-B; UNWR Gnaphosa muscorum L. Koch, 1866 1 TNC-Z sericata L. Koch, 1866 2 TNC-B Haplodrassus hiemalis Emerton, 1909 1 TNC-B Gnaphosidae Nodocion voluntaries Chamberlin, 1919 1 TNC-Z Urozelotes rusticus L. Koch, 1872 1 TNC-B duplex Chamberlin, 1922 2 TNC-Z exiguioides Platnick & Shadab, 1983 1 TNC-Z fratis Chamberlin, 1920 2 TNC-Z Zelotes josephine Platnick & Shadab, 1983 3 TNC-Z puritanus Chamberlin, 1922 44 TNC-B; TNC-Z; UNWR sula Lowrie & Gertsch, 1955 1 TNC-Z tubuous Chamberlin, 1919 6 TNC-Z; UNWR Unknown spp. 184 TNC-B; TNC-Z; UNWR Hahniidae Neoantistea magna Keyserling, 1887 8 TNC-Z Linyphiidae Erigone dentosa O. Pickard-Cambridge, 1894 1 TNC-B spp. 1 TNC-Z Unknown spp. 13 TNC-Z; UNWR mccooki Montgomery, 1904 95 TNC-B; TNC-Z; UNWR Schizocosa minnesotensis Gertsch, 1934 25 TNC-B Lycosidae spp.
    [Show full text]
  • Awenda Provincial Park
    AWENDA PROVINCIAL PARK One Malaise trap was deployed at Awenda Provincial Park in 2014 (44.82534, -79.98458, 231m ASL; Figure 1). This trap collected arthropods for twenty weeks from April 29 – September 19, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 3029 BINs were obtained. Over half the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and true bugs (Hemiptera; Figure 2). In total, 595 arthropod species were named, representing 21.3% of the BINs from the Figure 1. Malaise trap deployed at Awenda Provincial site (Appendix 1). All the BINs were assigned at least Park in 2014. to family, and 54% were assigned to a genus (Appendix 2). Specimens collected from Awenda represent 214 different families and 705 genera. Diptera Hymenoptera Lepidoptera Hemiptera Coleoptera Trombidiformes Sarcoptiformes Psocodea Mesostigmata Araneae Entomobryomorpha Mecoptera Symphypleona Trichoptera Neuroptera Thysanoptera Dermaptera Pseudoscorpiones Stylommatophora Odonata Opiliones Orthoptera Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Awenda. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Clubionidae Clubiona Clubiona kastoni Dictynidae Emblyna Emblyna sublata Linyphiidae Ceraticelus Ceraticelus atriceps Ceraticelus fissiceps Ceratinella Ceratinella brunnea Ceratinops
    [Show full text]
  • Estimating Spider Species Richness in a Southern Appalachian Cove Hardwood Forest
    1996. The Journal of Arachnology 24:111-128 ESTIMATING SPIDER SPECIES RICHNESS IN A SOUTHERN APPALACHIAN COVE HARDWOOD FOREST Jonathan A. Coddington: Dept. of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA Laurel H. Young and Frederick A. Coyle: Dept. of Biology, Western Carolina University, Cullowhee, North Carolina 28723 USA ABSTRACT. Variation in species richness at the landscape scale is an important consideration in con- servation planning and natural resource management. To assess the ability of rapid inventory techniques to estimate local species richness, three collectors sampled the spider fauna of a "wilderness" cove forest in the southern Appalachians for 133 person-hours during September and early October 1991 using four methods: aerial hand collecting, ground hand collecting, beating, and leaf litter extraction. Eighty-nine species in 64 genera and 19 families were found. To these data we applied various statistical techniques (lognormal, Poisson lognormal, Chao 1, Chao 2, jackknife, and species accumulation curve) to estimate the number of species present as adults at this site. Estimates clustered between roughly 100-130 species with an outlier (Poisson lognormal) at 182 species. We compare these estimates to those from Bolivian tropical forest sites sampled in much the same way but less intensively. We discuss the biases and errors such estimates may entail and their utility for inventory design. We also assess the effects of method, time of day and collector on the number of adults, number of species and taxonomic composition of the samples and discuss the nature and importance of such effects. Method, collector and method-time of day interaction significantly affected the numbers of adults and species per sample; and each of the four methods collected clearly different sets of species.
    [Show full text]
  • Pukaskwa Taxonomy Report
    Pukaskwa Taxonomy Report Class Order Family Species Arachnida Araneae Agelenidae Agelenopsis utahana Amaurobiidae Callobius bennetti Cybaeopsis euopla Araneidae Hypsosinga rubens Clubionidae Clubiona canadensis Dictynidae Emblyna annulipes Emblyna phylax Linyphiidae Bathyphantes canadensis Ceraticelus atriceps Ceraticelus fissiceps Ceraticelus laetabilis Ceratinopsis nigriceps Dismodicus decemoculatus Drapetisca alteranda Grammonota angusta Lophomma depressum Phlattothrata flagellata Pityohyphantes subarcticus Pocadicnemis americana Sciastes truncatus Scyletria inflata Souessa spinifera Tapinocyba simplex Tapinocyba sp. 1GAB Lycosidae Pardosa hyperborea Pardosa moesta Pardosa xerampelina Philodromidae Philodromus peninsulanus Philodromus rufus vibrans Theridiidae Canalidion montanum Dipoena sp. 1GAB Theridion differens Theridion pictum Thomisidae Xysticus emertoni Xysticus montanensis Mesostigmata Blattisociidae Digamasellidae Dinychidae Laelapidae Parasitidae Phytoseiidae Trematuridae Trichouropoda moseri Pseudoscorpiones Chernetidae Sarcoptiformes Alycidae Ceratozetidae Oribatulidae Scheloribatidae 1 Tegoribatidae Trhypochthoniidae Trhypochthonius cladonicolus Trombidiformes Anisitsiellidae Anystidae Bdellidae Cunaxidae Erythraeidae Eupodidae Hydryphantidae Lebertiidae Limnesiidae Microdispidae Rhagidiidae Scutacaridae Siteroptidae Tetranychidae Trombidiidae Collembola Entomobryomorpha Entomobryidae Entomobrya comparata Entomobrya nivalis Isotomidae Tomoceridae Poduromorpha Brachystomellidae Symphypleona Bourletiellidae Katiannidae
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]
  • Spiders of Birch Mountains Wildland Provincial Park
    Spiders of Birch Mountains Wildland Provincial Park Xysticus obscures. Crab spider, Robert G. Holmberg Centre for Science, Athabasca University, Athabasca, Alberta, T9S 3A3 E-mail: [email protected] and Donald J. Buckle 620 Albert Avenue, Saskatoon, Saskatchewan, S7N 1G7 E-mail: [email protected] Prepared for the Parks and Protected Areas Division Alberta Tourism, Parks and Recreation Edmonton, Alberta, Canada December 2008 Contents Abstract ............................................................................................................................... 4 Introduction ......................................................................................................................... 4 Study Area .......................................................................................................................... 4 Methods............................................................................................................................. 10 Results ............................................................................................................................... 14 Species Collected .............................................................................................................. 14 A. Birch Mountains Wildland Provincial Park ............................................................. 26 Numbers of Species and Number of Specimens ....................................................... 26 Spiders Collected in Large Numbers .......................................................................
    [Show full text]
  • Biospeleologia De Les Cavitats De Les Illes Balears: Invertebrats Terrestres
    ENDINS, 35 / Mon. Soc. Hist. Nat. Balears, 17: 241-256 ISSN 0211-2515. Mallorca, 2011 BIOSPELEOLOGIA DE LES CAVITATS DE LES ILLES BALEARS: INVERTEBRATS TERRESTRES per Guillem X. PONS 1 i Mateo VADELL 2 Abstract In the caves of the Balearic Islands over 300 species of invertebrates (including terrestrial and aquatic species) are known until today. Of these, approximately 50 can be considered genuinely troglobiontic species. Over half of these are endemic species unique to the Islands, a percentage large enough in evolutionary terms to give an idea of its great heritage value and interest in its preservation. The cave organisms constitute a very important part of the catalog of endemic fauna in the Balearic Islands. Since Racovitza described Typhlocirolana moraguesi in 1905, the first step in the new science of biospeleology, have been many scientists who have penetrated to the caves in search of new and enigmatic species. The Balearics were also the birthplace of the discipline with the interest and constant presence of local researchers in national and international scientific publications. Since 1905 there have been many papers published on the ongoing findings of cave species. For the preparation of this article have been selected terrestrial cave species that are new to the catalogs of taxa published since 1995 (publication date of the monograph Endins 20) or those species that are important regarding biogeography, particularly the endemisms. Resum A les coves de les illes Balears s’han trobat més de 300 espècies d’invertebrats (entre espècies terrestres i aquàtiques). D’elles, aproximadament unes 50 poden considerar-se genuïnament troglòbies.
    [Show full text]
  • Kishidaia 100 号に感謝を込めて
    KISHIDAIA 創刊 100 号記念 KISHIDAIA 100 号に感謝を込めて 東京蜘蛛談話会会長 新 海 栄 一 東京蜘蛛談話会会誌「KISHIDAIA」が 100 号を迎えることになった.1969 年 1 月 に第 1 号(大河内哲二氏編集・印刷)を発行して以来,本年(2011 年)まで 42 年間 にわたり KISHIDAIA の編集,版下作成,印刷,発行,発送に当たられた歴代の編集幹 事,各担当ならびに関係者,また原稿をお寄せいただいた会員の皆様に厚く御礼申し上 げる.そして今日 KISHIDAIA 100 号を発行できるのも,談話会設立の礎となり,40 年の永きにわたり,献身的なご努力と博愛の精神を持って,我々にクモの研究の面白さ, クモの世界の不思議さと奥深さ,さらに解明すべき多くの研究テーマを教えていただき, また 1965 年から 30 年間,ご自宅を例会場として,あるいは教室として,あるいは会 員の交流の場として提供いただいた故 萱嶋 泉先生・満喜様ご夫妻のご厚情とご尽力が あったればこそと,ここにあらためて心より深く感謝の意を表する次第である. キシダイア(Kishidaia)は言うまでもなく,ワシグモ科ブチワシグモ属の名称で, 八木沼健夫先生が 1960 年に発行した「原色日本蜘蛛類大図鑑」の中で,新属として記 載し,日本蜘蛛学の祖である岸田久吉先生に献名した学名である.しかし今,この名前 は,クモの学名であるということより,東京蜘蛛談話会の会誌の名前だと思っている方 がいることを考えると,キシダイアが多くのクモ研究者に認知されていて,クモ研究の 上で大きな役割を果たしていることをうかがい知ることができる. 100 号を迎えてこの原稿を書きながら,キシダイアと言う名前をだれが言い出した のか考えているが,どうもはっきりした記憶が無い.談話会では 1968 年 12 月 21 日 に会誌の発行を決定したことは以前書いたが,その前段として会誌の発行と会誌名を何 にするかという話題は,すでに岸田先生のお宅で蔵書の整理をしながら出ていて,キシ ダイアもその中の候補として挙げられていた.会誌には岸田先生の蔵書目録と,先生の 遺稿,それとクモに関する研究論文を載せる.ページ数は多くなくてもいいから一人 1 号を担当して毎月 1 回出していく.というところまでは良く覚えているが,だれが名 称についての提案をしたのかははっきりしていない.ただ当時のメンバーは全員が Kishidaia の学名を知っていたので皆がそう思っていたことは間違いない.キシダイア と言う会誌名が決定した時,萱嶋先生は大変喜んでおられたので,先生も最初から会誌 名はキシダイアにしたいと考えていたのではないかと,今,思い起こしているところで ある. KISHIDAIA 第 1 号の冒頭,萱嶋先生の「キシダイアの発行にあたって」の文中には 次のような文面がある. 1 「私共は岸田先生の蔵書の膨大であるのに驚き,また,貴重な書物の多いのにも敬 服したのである.さらに岸田先生の未発表の多方面にわたる論文の原稿に接した時, なんと偉大な先生であったろうと,感激した次第である.この先生を何とかして後世 に伝えるのは私共,談話会の仕事ではないかと考えるようになった.そこでレギュラ ーメンバーで知恵をしぼった結果,考えついたのが,キシダイアの発行であった.」 この萱嶋先生の冒頭の挨拶のとおり,岸田先生の部屋には多方面にわたる多数の未発 表原稿が残されており,その中から当時発表可能と思われる原稿を選び順次掲載するこ ととした.キシダイア第 1,2,4 号には「クモの称呼」,第 8 号には「キブネグモの
    [Show full text]