Iot Safety Belt Alarm System

Total Page:16

File Type:pdf, Size:1020Kb

Iot Safety Belt Alarm System INDUSTRIALISATION IoT Safety Belt Alarm System Modular Integrated Construction (MiC) The LSCM R&D Centre has developed a real-time sensing system to monitor the deployment of safety belts at work site. The system will detect any dangerous situations, such as the absence of the lifeline, the irregular positioning of the lock, or the Modular Integrated Construction (MiC) offers an alternative to convention construction by improper engagement status of the hook. It will notify the site workers in real time to remind them to properly engage their adopting the concept of “factory assembly followed by on-site installation”and the mode of safety devices. manufacturing, labour intensive processes can be accomplished in off-site prefabrication yard with a view to improving the productivity, safety and long-term cost effectiveness. MiC offers a free-standing module solution consisting of steel and fire-resistance structural, architectural Cloud-based Quality Management System and MEP components (complete with finishes for walls, floors and ceilings). Cloud-based Quality Management System such as SnagR can help collect, report, manage and analyse defects on site and identify potential issues for construction projects. Through the Voided biaxial slab mobile device and web-based software, SnagR help saves time and money spent in the quality and field management. The field data assists construction professionals to make better MatrixDeck System is a type of lightweight wide slab floors with integrated lattice girders and decisions and modify management process from time to time. lower reinforcement. Airboxes are positioned on the slabs in a fixed pattern that allows greater column span and minimises the usage of concrete and steel reinforcement. Real-time temperature and maturity monitoring of concrete Wireless sensor networks have many potential applications in construction management Rubberised paving blocks such as monitoring the temperature and maturity of concrete. Strength data are collected in real-time without the need to do destructive tests. Up to 50% direct test cost can be saved Waste tyres are creating a huge burden on landfills in Hong Kong with the increasing number for determination of in-place strength of concrete done by on-site people. of vehicles. Rubber mats and stamped rubber are currently the only recycling products derived from waste tyres. With the use of nanomaterials and surface treatment, rubberised paving blocks are now made possible by incorporating comparatively higher content of waste tyre rubber. Rubberised paving blocks deliver optimised compressive strength which makes them Photogrammetry by UAV (Unmanned Aerial Vehicle) ideal for footpath and cycle path paving application. Photogrammetry by UAV (Unmanned Aerial Vehicle) is more productive and takes less time in site inspection and land surveying compared with traditional methods. Data collected can be INFORMATISATION easily shared with modelling platforms such as BIM to enable easy and timely visualisation of the Construction Workers Registration System (CWRS) site and its details by construction professionals. CWRS is developed by the CIC to implement a registration system for construction workers as required by the Construction Workers Registration Ordinance (Cap.583). It enables the Building Information Modelling (BIM) collection of accurate attendance records and their analysis for overall manpower planning. A new card reading device (“CIC Device”) has been developed to simplify the registration process 3D Virtual Reality (VR) Experience for Xiqu Centre for construction workers and support new CWR Card which stores multiple qualifications and card tapping records. Virtual reality and augmented reality, with the help of Building Information Modelling (BIM), have significant potential to deliver customer focused products. For example, rather than looking at pictures of what a scheme may look like, we can experience it in a simulated 3D environment, like the West Kowloon Cultural District Xiqu Centre. This enables them to IoT (Internet of Things) Safety Helmet experience the structure as if it had already been built and understand what the structure will look like before it is finished, so that they can give more detailed and accurate feedback on the proposals before construction commences. IoT (Internet of Things) Safety Helmet is a smart device that can monitor the health and the safety of construction workers. It has various sensors to resist collision and monitor the body temperature, heart rate and movement of construction practitioners. It can be easily adapted to INTELLIGENTISATION existing safety helmets and can be implemented in every construction site. Data collected is stored and analysed by a cloud-based management portal. Autonomous Guided Vehicles Building Information Modelling (BIM) The latest AGVs are able to navigate around the warehouses by following tags embedded on the floor of the warehouse with the deployment of Ultra-wideband (UWB) technologies, 4D Virtual Reality (VR) Experience for Construction Site Walkthrough which ensure the navigation scope is within 10 cm and provide enhanced collision avoidance Fuzor VR (Virtual Reality) turns the construction sequence simulation to VR in one-click. It capability. These robots navigate around on a predetermined route and can assist in offers a fully immersive environment for construction professionals to walk through the performing inventory stocktaking and move around with a maximum loading of 200kg. virtual construction site to understand and identify potential hazards before going to the real construction site. This helps reduce accidents, cost and time by allocating resources better and in advance. Service Robot for Repair of Exterior Gas Pipe Tunnel Access Control System (TACS) The service robot is a custom-built robotic system for exterior gas pipe repair. This service robot equipped with camera and advanced sensing devices such that user could monitor and TACS is a sophisticated safety management system in challenging tunnel environments. Using helmet-mounted RFID control the robot at ground station remotely. This robot is designed to remove rusts from the tags, TACS can accurately record the number of workers entering and leaving the tunnel. The system can also alert the gas pipe surface and then apply anti-rust compound on the pipe surface. The application of operator if the qualification of the worker has expired as soon as he enters the tunnel. It can also record, monitor and this service robot could eliminate the risk of work-at-height and also increase the possibility display the total number of workers as well as identifying every worker in each of the tunnel sections. of repair operation at areas that are not easily accessible. Exoskeleton Power assist suit is an integrated robot that senses the wearer’s motion and reduce the burden of the lower back by supporting the operator’s movement while handling the heavy things. Manual handling operations are very often involved in everyday construction work. Construction practitioner always suffer from either short-term or chronic back pain health issue. This power assist suit can help reduce the physical strain during the load carrying work and reduce the risk of injury. ZeroG Arm ZeroG arm allows user to maneuver heavy tools and parts as if they were weightless with complete freedom of motion. This technology assists industry practitioners to operate power tools or maneuver heavy parts by reducing stress during the prolonged drilling and fixing works. Robotics technology allows practitioners to comfortably operate heavy tools. The application of robotic arm could reduce injury and fatigue due to heavy and repetitive tasks and hence increase the workplace safety and health. INTEGRATION Material Management System Material Management System (MTS) is a fully automated testing system that could handle substantial amount of concrete and reinforcement bars in infrastructure project. This technology integrated QR codes, RFID, 3G, digital signature, automatic measuring devices and wireless LAN with machine-to-machine communication to streamline the construction material testing process. INFINITY 3D Printed Concrete Wall 3D concrete printing is a form of additive manufacturing technology where the concrete wall is built from successive layers of concrete material. This technology facilitates the production of customized concrete structure without the use of formwork that is required for traditional concrete fabrication. Ultra-ductile cementitious waterproofing rendering Ultra-ductile cementitious waterproofing rendering is a kind of cementitious rendering that possesses enhanced bending load bearing capacity and increased flexibility. This technology is not only a new generation of waterproof rendering material, it also turns waste plastic bottles into usable plastic fibers that reduce the generation of waste disposal and also reduce the consumption of fresh raw materials. Foamed concrete Foamed concrete is a lightweight cementitious material containing entrapped homogeneous pores in the cementitious matrix. Polymer nanocomposites are utilized to create a stable foam with improved integrity of the bubble surface. By optimising the mixed compositions, foamed concrete with excellent heat insulation, satisfactory strength and high dimensional stability can be achieved. Self-healing concrete Self-healing concrete contains harmless limestone-producing bacteria, natural enzymes, organic and inorganic salts and is specifically developed for permanent sealing and waterproofing
Recommended publications
  • The Images, Which He Read Before. the Illustration Section Will Meet the Artist’S Vision Their Imagination
    the images, which he read before. The illustration section will meet the artist’s vision their imagination. There is important that illustrations does not appear in front of visitors unexpectedly, it will be logical continuation of the previous stages. Thus, it will be demonstrated as unseparated text, image, and importance of their harmony combination. 5. Associative composition of simple geometric shapes: Further illustrations will be transformed in associative composition of simple geometric shapes. It is destroy of perfection, which was attained in the harmony fonts and illustrations. Knowing how to read the materials human nature can successfully create book. We can only try to look into this nonobjective world. Last section demonstrate that whole maze it is only beginning of the journey into the world of books. Conclusion. Suggested study is the opportunity of every visitor to face the problems, which usually are met by designers and text creators. Project will show that printing is not only a source of information, but it is artwork also. Project is developed to increase the quality of daily graphic design on the base of EI. References 1. Coleman, Andrew (2008). A Dictionary of Psychology (3 ed.). Oxford University Press. ISBN 9780199534067 . 2. Mayer, J.D., & Salovey, P. (1997). What is emotional intelligence? In P. Salovey & D. Sluyter (Eds.), Emotional development and emotional intelligence: Implications for educators (pp. 3-31). New York: Basic Books. 3. Salovey P and Grewal D (2005) The Science of Emotional Intelligence. Current directions in psychological science, Volume 14 -6. VOIDED BIAXIAL SLABS IN CIVIL ENGINEERING NAUMENKO YULIIA , post-graduate student O.
    [Show full text]
  • Parametric Investigation on the Seismic Response of Voided and Solid Flat Slab Systems
    IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 5 Issue 3, March 2018 ISSN (Online) 2348 – 7968 www.ijiset.com Parametric Investigation on the Seismic Response of Voided and Solid Flat Slab Systems Jerry Paul Varghese2 and Manju George2 1 Civil Engineering Department, APJ Abdul Kalam Technological University, Mar Baselios Institute of Technology and Science Nellimatam, Ernakulam, India 2Civil Engineering Department, APJ Abdul Kalam Technological University, Mar Baselios Institute of Technology and Science Nellimatam, Ernakulam, India Abstract early 1900s so that we can reduce the weight-to- Demand for safer and lighter concrete floor system and to stiffness/strength ratios. improve the span limit has always troubled with the high weight- The inclusion of the voids is intuitively expected to to-stiffness/strength ratios of solid reinforced concrete slab. It led compromise the stiffness and structural capacity of the slab. to the emergence of spherically voided biaxial slab (SVBS). A However, the extent of the compromise is not explicitly square and a rectangular slab models with a thickness of 28 cm were developed as solid and voided, simulated under uniform known. Therefore, in this paper, the seismic responses load including seismic force to compare the deflection responses exhibited by different configurations of voided slabs are and structural capacities of these slabs by conducting a pushover investigated in comparison to same configurations of solid analysis in ANSYS 16.0. Directional and the Equivalent stress slabs with equal dimensions. 3D non-linear finite element results are found to be slightly higher for voided slab that of solid analyses software, namely ANSYS 16.0 has been chosen to slab.
    [Show full text]
  • Formworkpress XI/2020
    FormworkPress Professional Formwork News XI/2020 The XT factor Flexibility on residential contracts – page 8 FormworkPress XI/20 Contents News Joint venture in Australia, sites in Austria and Germany .................................. 4 50 years of MEVA Simply smart! ................................................................................................ 6 Stress test passed with flying colours ULLIBau puts StarTec XT through its paces under taxing conditions .............. 8 Care home in Norway Mammut XT plays to its strengths ............................................................... 10 Triumphant premiere in Cyprus Office block built with MevaDec and StarTec .............................................. 12 New splendour on the Ku‘damm Gloria office and commercial building in Berlin............................................ 14 Safety and flexibility MT 60 shoring tower supports south German food market .......................... 17 Architectural gem for Budapest The Pesterzsébeti Makovecztemplom ......................................................... 18 Sprouting up quickly, but safely MEVA32 and StarTec in use at Chilean copper mine ..................................... 20 Underground impressionists Danish museum extension cast with StarTec ............................................... 22 Imprint Site photos show situations which do not always depict the final assembly of formwork with regard to safety regulations. Imprint: Edition XI/2020. Circulation: 2600 copies. Publisher: MEVA SchalungsSysteme GmbH, Industriestr.
    [Show full text]
  • ANALYSIS of REINFORCED CONCRETE FRAMES EXPOSED to FIRE Based on Advanced Calculation Methods
    ANALYSIS OF REINFORCED CONCRETE FRAMES EXPOSED TO FIRE Based on Advanced Calculation Methods HÉLDER FRANCISCO BRÁS XAVIER Dissertation submitted in partial fulfilment of the requirements for the degree of MASTER IN CIVIL ENGINEERING — STRUCTURAL ENGINEERING BRANCH Scientific Supervisor: Associate Professor Doctor Rui Manuel Carvalho Marques de Faria JULY , 2009 MASTERS IN CIVIL ENGINEERING 2008/2009 DEPARTMENT OF CIVIL ENGINEERING Tel. +351-22-508 1901 Fax +351-22-508 1446 [email protected] Edited by FACULTY OF ENGINEERING OF THE UNIVERSITY OF PORTO Rua Dr. Roberto Frias 4200-465 PORTO Portugal Tel. +351-22-508 1400 Fax +351-22-508 1440 [email protected] http://www.fe.up.pt Partial reproductions of this document are allowed on the condition that the Author is mentioned and that reference is made to Masters in Civil Engineering – 2008/2009 – Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal, 2009. The opinions and information included in this document represent solely the point of view of the respective Author, while the Editor cannot accept any legal responsibility or other with respect to errors or omissions that may exist. This document was produced from an electronic version supplied by the respective Author. “… Por mares nunca dantes navegados…” in Os Lusíadas, I-1 Analysis of Reinforced Concrete Frames Exposed to Fire ACKNOWLEDGEMENTS First of all, I am compelled to express my deepest gratitude towards my scientific supervisor, Professor Rui Faria from the University of Porto, for the invaluable guidance, encouragement and dedication displayed during the course of this work. I am also extremely grateful to Professor Paulo Vila Real and Professor Nuno Lopes from the University of Aveiro, for kindly providing the access to the software SAFIR as well as for guiding me during the first steps in its application.
    [Show full text]
  • Waste Management Plan - a Case Study of a Medium Sized Building Contractor in Ireland
    Implementing a site waste management plan - A case study of a medium sized building contractor in Ireland. _______________________ Jan Göttsche Supervisor: Dr. Mark Kelly A Dissertation Submitted in Partial Fulfilment of the Masters in Environmental Systems. Galway – Mayo Institute of Technology. 2011/2012 Plagiarism Declaration – September 2012 I, Jan Gӧttsche, declare that this thesis is an original work carried out by the author with due reference and acknowledgements given where necessary towards the work of others. No part of this thesis has previously been accepted for any degree and is not concurrently submitted for any other award. I declare that the work contained in this thesis is my original work unless otherwise stated. All information including tables and diagrams which is copied from or based on the work of others has its source clearly acknowledged in the text and its reference clearly outlined at the end of the document. Signature: ____________________________ Date: _____________ i This thesis has been printed on 100% recyclable paper. The paper is FSC certified, carries the EU Ecolabel as well as having ISO 9001 and ISO 14001 certification. ii Abstract Construction and demolition waste management is becoming increasingly important on construction sites as landfill space in Ireland is rapidly depleting and waste management costs are rising. Due to these factors waste management plans are seen as a good response to minimising waste on site and this thesis aims to investigate how to implement such a plan on a practical case study as well as investigating the legislation regarding construction and demolition waste along with market availability for the reuse of the waste.
    [Show full text]
  • Structural Behavior of Bubbledeck* Slabs and Their Application to Lightweight Bridge Decks
    Structural Behavior of BubbleDeck* Slabs And Their Application to Lightweight Bridge Decks By Tina Lai Bachelor of Science in Civil Engineering, 2009 Massachusetts Institute of Technology Submitted to the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Engineering MAssAcHUSETTS INST1TUTE' in OF TECHNOLOGY Civil and Environmental Engineering JUL 15 2010 at the Massachusetts Institute of Technology LABRARIES ARCHWiE8 June 2010 © 2010 Tina Lai All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. So Signature of Author:___________________________ Department of Civil and Environmental Engineering May 7 h, 2010 Certified by: Jerome J. Connor Professarnf Civi nd Environm taLEngineering Accepted by: Daniele Veneziano Chairman, Departmental Committee for Graduate Students TABLE OF CONTENTS 1. EX EC UTIVE SUM M A RY .................................................................................................................. 5 2. IN TRO D UCTIO N................................................................................................................................6 2.1. CONCRETE FLOOR SYSTEM S ........................................................................................................... 6 2.1.1. Hollow -Core Slabs...................................................................................................................7
    [Show full text]
  • To Study the Behaviour of Conventional Slab and Buble Deck Slab
    Vol-6 Issue-1 2020 IJARIIE-ISSN(O)-2395-4396 TO STUDY THE BEHAVIOUR OF CONVENTIONAL SLAB AND BUBLE DECK SLAB Tushar pundir1, Reeta joshi2 1 Tushar pundir Asst. professor, Dept. of civil engineering , Roorkee college of engineering, India 2Reeta joshi Asst. professor, Dept. of civil engineering , Roorkee college of engineering, India ABSTRACT Fortified solid chunks are one of the most widely recognized parts in current structure development . piece is a biggest part which devours concrete and when burden following up on the section is enormous or clean range between segments is more the chunk thickness is expanding .it prompts expend more materials, for example, cement and steel because of that , self – weight of section is expanded, to keep away from these disservices different examinations are does and inquires about propose voided section framework Fortified solid section with plastic voids is new and creative kinds of basic solid chunk framework created to take into consideration lighter self load of the structure while keeping up comparable burden conveying limit of a strong piece. Plastics voided slabs are capable of reducing the amount of concrete necessary to construct a building by30 percent or more. This reduction can be beneficial in terms of financial saving as well as building performance. Long span flat slab systems with internal void formers have been used in Europe for decade the main advantages is the possibility of long spans due to the significant reduction in self weight as well as the construction sequence Keyword : - of , chunks, framework, and concrete 1. INTRODUCTION This paper displays the empty center piece innovation that have showed up over last twenty years.The voided chunks are strengthened solid sections in which voids permit to diminish the sum (volume) of concrete.The creation of the empty section was in 1950s.
    [Show full text]
  • Seismic Analysis of Kinematic Bearings Using Voided Biaxial Slab
    © 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162) SEISMIC ANALYSIS OF KINEMATIC BEARINGS USING VOIDED BIAXIAL SLAB Mirajj Ketan Thaker , Dilesh Solanki, Dhruval Suriya ,Venkatesh Rajput Student, Student , Student , Assistant Professor Civil engineering Department, Universal College of Engineering, Mumbai, India. Shreya Gaikwad, Student, St. Francis Institute of Technology, Mumbai , India. Abstract The basic intention of seismic protection systems is to decouple the building structure from the damaging components of the earthquake input motion, that is, to prevent the superstructure of the building from absorbing the earthquake energy. This paper reviews the experimental study and model simulation of kinematic bearings with use of voided biaxial slab system (uboot technology). Shaking table test was done. from moderate to severe vibrations and effects like gyro, acceleration, drift, maximum displacement was derived. The aim is to build such type of structure which provides maximum stability and minimum damage to building components during seismic action, also to make structure economical and environmentally sustainable in seismic zones Keywords- seismic waves, polypropylene, rubber Bearings, voided slab. 1. INTRODUCTION Earthquake is amongst the catastrophic natural calamities where an abrupt movement or tremor is initiated under earth’s causing major damage to mankind. Although a great deal of research has been carried out regarding seismic isolation, there is a lack of proper research on its behavior and implementing technique in low to medium seismic region. From past earthquakes, it is demonstrated that a significant number of structure are absolutely/somewhat harmed because of earthquake and now-a-days it has turned out to be important to decide seismic reactions over such structures.
    [Show full text]
  • SEPTEMBER 2019 4 Editorial - Ar Anand Palaye
    REFEREED JOURNAL OF IIA | ISSN-0019-4913 2019 SEPTEMBER | VOLUME 84 | ISSUE 09 | 100 happiness through architecture JIIA IS REFEREED JOURNAL ISSN-0019-4913 REGISTERED UNDER SOCIETIES REGISTRATION ACT, XXI OF 1860 JOURNAL OF THE INDIAN INSTITUTE OF ARCHITECTS Contents VOL-84 ISSUE 09 - SEPTEMBER 2019 4 Editorial - Ar Anand Palaye 5 President’s Message - Ar Divya Kush 6 Deconstructing the Ideology and Identity of Urban Sociology - Ar Rahat Varma & Ar Divya Yadav' 9 JIIA Subscription Form 10 IIA Student Membership Form 11 Architectural Education Paradigm for Contemporary India - Ar Abhirami A 13 Safety of women on the streets - Ar Gore Shivani Nikhil 17 45 Construction Terms & Concepts All Architects Should Know - Courtesy - Wikipedia & archdaily 22 The Invisible Australian - Animish B Thaker ALL RIGHTS RESERVED 2006. No part of this publication may be reproduced or transmitted in any IIA OFFICE BEARERS 2015-2017 form or by any means, electronic or mechanical, photocopying, recording or any information storage or retrieval system without permission in writing from THE INDIAN INSTITUTE OF ARCHITECTS. Ar Divya Kush - President Only materials accompanied by stamped and self-addressed envelopes can be returned. No responsibility Ar Prakash Deshmukh - Imm Past President is taken for damage or safe return by the Editor of JIIA. The Editor of the THE INDIAN INSTITUTE OF ARCHITECTS takes no responsibility for author's opinion expressed in the signed articles. Ar Vilas V Avachat - Vice President Printed & Published by Ar Anand Palaye on behalf of The Indian Institute of Architects and printed by Ar Amogh Kumar Gupta - Jr Vice President Krishna Graphics, A-511, Royal Sands, A-Wing, 5th Floor, Behind Citi Mall, Shastri Nagar, Andheri (W), Mumbai-400 053 and Published at The Indian Institute of Architects, Prospect Chambers Annexe, 5th Ar Sunil R Degwekar - Hon Treasurer Floor, Dr D N Road, Fort, Mumbai – 400 001.
    [Show full text]
  • IABSE SYMPOSIUM VANCOUVER, 2017 Engineering the Future
    IABSE SYMPOSIUM VANCOUVER, 2017 Engineering the Future REPORT International Association for Bridge and Structural Engineering IABSE Publisher IABSE c/o ETH Hönggerberg C H - 8093 Z ür ich, Switzer land Tel: +41 – 44–633 2647 Fax: +41 – 44–633 1241 e-mail: secretar iat@ iabse.or g Web: http: //www.iabse.or g 39th IABSE Symposium – Engineering the Future September 21-23 2017, Vancouver, Canada Scientific Committee Marianna Polak, Canada, Chair Fernando Madrazo Aguirre, UK Evan Bentz, Canada, Vice-Chair Ana Mandic Ivankovic, Croatia Adam Lubell, Canada, Vice-Chair Andrew Martin, Denmark Scott Walbridge, Canada, Vice-Chair Jose Campos e Matos, Portugal Colin van Niejenhuis, Canada, Secretary Philippe Menétrey, Switzerland Konstantinos Kris Mermigas, Canada Georgios Balomenos, USA Serge Montens, France F. Michael Bartlett, Canada John Newhook, Canada Malena Bastien-Masse, Switzerland Kazuyoshi Nishijima, Japan Mikael W. Braestrup, Denmark Markus Nöldgen, Germany Bruno Briseghella, Italy Alessandro Palermo, New Zealand Eugen Brühwiler, Switzerland Ignacio Paya-Zaforteza, Spain Maria Grazia Bruschi, USA Georgio Proestos, Canada Stathis Bousias, Greece Gianluca Ranzi, Australia Paolo Calvi, USA Robert Ratay, USA Laura Ceriolo, Italy Marion Rauch, Germany Eleni Chatzi, Switzerland Jose Romo Martin, Spain Jae-Yael Cho, Korea David Ruggiero, Canada Dong-Ho Choi, Korea Fathy Saad, Egypt John Duntemann, USA Luis Oliveira Santos, Portugal Jacob Egede Andersen, Denmark Martina Schnellenbach-Held, Germany Lennart Elfgren, Sweden Mauro Schulz, Brazil Michael Engelhardt, USA Ann Schumacher, Switzerland Paul Fast, Canada Ikuhide Shibata, Japan Ian Peter Thomas Firth, UK Tomasz Siwowski, Poland Markus Gabler, Germany H. H. (Bert) Snijder, Netherlands Aikaterini Genikomsou, Canada Juan Sobrino, Spain Branko Glisic, USA Devis Sonda, Italy David W.
    [Show full text]
  • Ac7cfdb6663641fff85b2bb1d77a
    Hindawi Publishing Corporation Shock and Vibration Volume 2015, Article ID 760394, 15 pages http://dx.doi.org/10.1155/2015/760394 Research Article Seismic Response Reduction of Structures Equipped with a Voided Biaxial Slab-Based Tuned Rolling Mass Damper Shujin Li,1 Liming Fu,1,2 and Fan Kong1 1 School of Civil Engineering and Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China 2Hubei Synthetic Space Building Technology Co. Ltd., Wuhan 430070, China Correspondence should be addressed to Fan Kong; [email protected] Received 25 February 2015; Accepted 14 May 2015 Academic Editor: Kumar V. Singh Copyright © 2015 Shujin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper proposes a novel tuned mass damper (TMD) embedded in hollow slabs of civil structures. The hollow slabs inthis context, also referred to as “voided biaxial reinforced concrete slabs,” feature a large interior space of prefabricated voided modules that are necessary in the construction of this special structural system. In this regard, a tuned rolling mass damper system (“TRoMaDaS”) is newly proposed, in combination with hollow slabs, to act as an ensemble passive damping device mitigating structural responses. The main advantage of this TMD configuration lies in its capacity to maintain architectural integrity. To further investigate the potential application of the proposed TRoMaDaS in seismic response mitigation, theoretical and numerical studies, including deterministic and stochastic analyses, were performed. They were achieved by deterministic dynamic modeling using Lagrange’s equation and the statistical linearization method.
    [Show full text]
  • Implementering Av VBS System I Sverige
    Examensarbete 15 högskolepoäng C-nivå Implementering av VBS system i Sverige Asmaa Tarek och Zhir Farhad Byggingenjörsprogrammet 180 högskolepoäng Örebro vårterminen 2020 Examinator: Mats Persson Implementation of VBS system in Sweden ​ Örebro universitet Örebro University Institutionen för naturvetenskap och teknik School of Science and Technology 701 82 Örebro SE-701 82 Örebro, Sweden FÖRORD VBS (voided biaxial slab) är en teknik som går ut på att minimera betongen i plattorna och ersätta med ihåliga plastbollar istället. På så sätt reduceras betongplattans vikt, vilket medför fördelar till konstruktionen. Det tillämpas på flera håll i världen och i denna rapport görs en undersökning om VBS kan implementeras i Sverige också. Fördelar och nackdelar av VBS systemet lyfts fram och jämförs med konventionell massiv betongplatta. Detta examensarbete är utförd av Asmaa Tarek och Zhir Farhad som är studenter vid Örebro universitet, högskoleingenjörsprogrammet i byggteknik. 1 2 SAMMANFATTNING Betong är idag ett av de material som vi använder mest i byggbranschen och det har sina följder. Mer än 50 % av energiutsläppen från byggplatsen kommer från cementtillverkningen. Voided biaxial slab eller VBS är en revolutionerande teknik där man gjuter in plastbollar i betongen tillsammans med armeringen. Arbetstiden samt torktiden kortas ned samtidigt som vi bevarar hållfastheten och dess funktionalitet. I den här rapporten kommer vi titta närmare på VBS teknik och jämföra det med konventionell betongplatta och se om tekniken är lämplig för att implementeras i Sverige. Vi har använt oss av en kvalitativ metod i form av källanalys från internet och tryckta källor. Även en komparativ metod i de fallen vi har hittat information från mer än en källa.
    [Show full text]