Monocytes Production in Β -Induced IL-1 Δ Kinase C Associated Kinase-1

Total Page:16

File Type:pdf, Size:1020Kb

Monocytes Production in Β -Induced IL-1 Δ Kinase C Associated Kinase-1 IL-1R−Associated Kinase-1 Mediates Protein Kinase C δ-Induced IL-1β Production in Monocytes This information is current as Rajiv Lochan Tiwari, Vishal Singh, Ankita Singh and Manoj of October 1, 2021. Kumar Barthwal J Immunol published online 29 July 2011 http://www.jimmunol.org/content/early/2011/07/29/jimmun ol.1002526 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/07/29/jimmunol.100252 Material 6.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 29, 2011, doi:10.4049/jimmunol.1002526 The Journal of Immunology IL-1R–Associated Kinase-1 Mediates Protein Kinase Cd-Induced IL-1b Production in Monocytes Rajiv Lochan Tiwari, Vishal Singh, Ankita Singh, and Manoj Kumar Barthwal The role of IL-1R–associated kinase (IRAK)1 and its interaction with protein kinase C (PKC)d in monocytes to regulate IL-1b production has not been reported so far. The present study thus investigates such mechanisms in the THP1 cell line and human monocytes. PMA treatment to THP1 cells induced CD11b, TLR2, TLR4, CD36, IRAK1, IRAK3, and IRAK4 expression, IRAK1 kinase activity, PKCd and JNK phosphorylation, AP-1 and NF-kB activation, and secretory IL-1b production. Moreover, PMA- induced IL-1b production was significantly reduced in the presence of TLR2, TLR4, and CD11b Abs. Rottlerin, a PKCd-specific inhibitor, significantly reduced PMA-induced IL-1b production as well as CD11b, TLR2 expression, and IRAK1–JNK activation. In PKCd wild-type overexpressing THP1 cells, IRAK1 kinase activity and IL-1b production were significantly augmented, whereas recombinant inactive PKCd and PKCd small interfering RNA significantly inhibited basal and PMA-induced IRAK1 activation and IL-1b production. Endogenous PKCd–IRAK1 interaction was observed in quiescent cells, and this interaction was Downloaded from regulated by PMA. IRAK1/4 inhibitors, their small interfering RNAs, and JNK inhibitor also attenuated PMA-induced IL-1b production. NF-kB activation inhibitor and SN50 peptide inhibitor, however, failed to affect PMA-induced IL-1b production. A similar role of IRAK1 in IL-1b production and its regulation by PKCd was evident in the primary human monocytes, thus signifying the importance of our finding. To our knowledge, the results obtained demonstrate for the first time that IRAK1 and PKCd functionally interact to regulate IL-1b production in monocytic cells. A novel mechanism of IL-1b production that involves TLR2, CD11b, and the PKCd/IRAK1/JNK/AP-1 axis is thus being proposed. The Journal of Immunology, 2011, 187: 000–000. http://www.jimmunol.org/ nterleukin-1b is an important proinflammatory cytokine that aa region in their cytoplasmic tail called the Toll-IL-1R domain, has a role in varied types of diseases, including type 1 and which plays an important role in inducing the signals from this I type 2 diabetes, atherosclerosis, metabolic syndrome, and receptor (9). Consequently, signaling induced by these receptors is autoimmune diseases such as rheumatoid arthritis and inflam- very similar and culminates into activation of the NF-kB and JNK/ matory bowel disease (1–3). IL-1b is induced by TLRs or by AP-1 pathways (9–11). IL-1b induces the activation of NF-kBand cytokines such as TNF or IL-1b itself (2, 3). Before secretion, the JNK pathways by recruiting MyD88, IRAK1, TNFR-associated inactive form of the cytokine is processed by caspase-1, leading factor 6, and TGF-b–activated kinase 1 (1, 9). IL-1b–induced by guest on October 1, 2021 to its maturation and secretion (2, 3). Blood monocytes, tissue JNK and NF-kB activation diverges at IRAK (12). The IRAK macrophages, and dendritic cells are the major source of IL-1b; family consists of four members, namely IRAK1, IRAK2, IRAK3 however, NK cells and B lymphocytes also produce this cytokine (IRAKM), and IRAK4. IRAK1, IRAK2, and IRAK4 positively (1). Monocyte-derived resident macrophages often play a crucial regulate the immune response, and IRAKM usually antagonizes role in the generation of inflammatory responses in atherosclerosis their effect by disrupting the IRAK1/TNFR-associated factor 6 (4) and diabetes (1–3). Cytokines such as IL-1b secreted by these complex (7, 9). Out of all of these kinases, IRAK1 and IRAK4 are cells often amplify the inflammatory response leading to lesion more worked-out proteins and are said to be true kinases, although progression and b cell death. IL-1b Ab is positioned for the their kinase activity is still under investigation (9). IRAK4 activates treatment of such disorders (5). IRAK1 by phosphorylating Thr387 and Ser376 present in the latter The IL-1R–associated kinase (IRAK) family of proteins repre- activation loop (13). Both IRAKM and IRAK2 are predicted to be sents important mediators of innate immunity and plays a crucial inactive kinases (9, 14), although recent work has shed more light role in the signaling cascade induced by the TLR/IL-1R family (6– on IRAK2 activity and its role in TLR signaling (14, 15). IRAK1- 9). Members of the TLR and IL-1R family possess a common 200- deficient macrophages and fibroblasts show impaired cytokine pro- duction in response to LPS and IL-1b (8, 16, 17). Division of Pharmacology, CSIR-Central Drug Research Institute, Council of Scien- Although previous studies demonstrate the role of IRAK1 in tific and Industrial Research, Lucknow 226 001, India TLR/IL-1R–induced signaling events (17), its role and regulation Received for publication July 28, 2010. Accepted for publication June 24, 2011. during IL-1b production are not known. It has been demonstrated This work was supported by the Department of Science and Technology, India (to that IRAK1 interacts and phosphorylates PKCi and regulates the M.K.B.) and by Fellowships from the Indian Council of Medical Research (to V.S.), NF-kB pathway (18). At the same time, PKCz also plays an im- the Council of Scientific and Industrial Research (to R.L.T.), and the University Grants Commission (to A.S.). This is CDRI communication number 8090. portant role in endotoxin-induced macrophage activation by acti- vating the TLR4/IRAK1 pathway (19). Furthermore, previous Address correspondence and reprint requests to Dr. Manoj Kumar Barthwal, Division of Pharmacology, CSIR-Central Drug Research Institute, 1 M.G. Marg, Lucknow 226 studies suggest a role of PKCd in IL-1b production from mono- 001, India. E-mail address: [email protected] cytes (20), but its interaction with IRAK1 is not known. Rottlerin, The online version of this article contains supplemental material. a PKCd-specific inhibitor, affects signaling events and cytokine Abbreviations used in this article: EGFP, enhanced GFP; INH, inhibitor; IRAK, IL- production in human monocytes stimulated by PMA and LPS 1R–associated kinase; MBP, myelin basic protein; PKC, protein kinase C; siRNA, (20). Therefore, the present study was undertaken to elucidate the small interfering RNA; WT, wild-type. role of the IRAK family of proteins in IL-1b production. At the Copyright Ó 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00 same time, we checked the hypothesis that PKCd could regulate www.jimmunol.org/cgi/doi/10.4049/jimmunol.1002526 2 IRAK1 REGULATES IL-1b PRODUCTION Downloaded from FIGURE 1. PMA induces time-dependent CD11b, TLR2, TLR4, and CD36 expression and IL-1b production. A, THP1 cells were stimulated with PMA http://www.jimmunol.org/ for different times and IL-1b production was measured in culture media by ELISA. B, CD11b, (C) TLR2, (D) TLR4, and (E) CD36 expression on THP1 cells was measured by flow cytometry after PMA stimulation for 24 and 72 h. Values represent means 6 SE. *p , 0.05, **p , 0.01, ***p , 0.001 versus control; ##p , 0.01, ###p , 0.001. IRAK1 for IL-1b production. In this study we report the role of regulated by PKCd. With this finding IRAK1 can be positioned as IRAK family members in PMA-induced IL-1b production and an attractive target for regulating IL-1b production in various a novel IRAK1-mediated pathway of IL-1b production that is metabolic and autoimmune disorders. by guest on October 1, 2021 FIGURE 2. Time-dependent expression of IRAKs. A, THP1 cells stimulated with PMA for different time points were analyzed for IRAK1, IRAK2, IRAK3, and IRAK4 expressions by Western blotting. B, Densitometric analysis of the expressed IRAK isoforms in relative image quant units. C, IRAK1 kinase activity measured in an in vitro kinase assay at different times of PMA treatment. Cells were lysed, and immunoprecipitated IRAK1 was subjectedto kinase assay in the presence of [g-32P]ATP and MBP as substrate. Values represent means 6 SE. *p , 0.05, **p , 0.01, ***p , 0.001 versus control. The Journal of Immunology 3 Materials and Methods Human monocyte isolation, cell culture, and treatments Materials Human primary circulating monocytes were isolated as described earlier (21) with slight modification from healthy donors after their informed Pharmacological inhibitors, including IRAK1/4 inhibitor (INH), JNK INH 3 II, rottlerin, NF-kB activation INH, SN50, Go6976, Ro-31-8220, caspase- consent.
Recommended publications
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Kinaseseeker™ Full-Length Panel (112 Wild-Type Kinases)
    KinaseSeeker™ Full-Length Panel (112 Wild-Type Kinases) Kinase Group Kinase Group ABL1 full-length TK DDR1 intracellular module TK ACVR1 intracellular module TKL DDR2 intracellular module TK AKT1 full-length AGC EGFR intracellular module TK AKT2 full-length AGC EPHA1 intracellular module TK AKT3 full-length AGC EPHA2 intracellular module TK AMPKa1 full-length CAMK EPHA3 intracellular module TK BLK full-length TK EPHA4 intracellular module TK BTK full-length TK EPHA5 intracellular module TK CAMK1D full-length CAMK EPHA6 intracellular module TK CAMK1G full-length CAMK EPHA7 intracellular module TK CAMK2A full-length CAMK EPHA8 intracellular module TK CAMK2B full-length CAMK EPHB3 intracellular module TK CAMK2D full-length CAMK EPHB4 intracellular module TK CAMK2G full-length CAMK ERBB2 intracellular module TK CAMKK1 full-length Other ERBB4 intracellular module TK CAMKK2 full-length Other FAK full-length TK CASK full-length CAMK FGFR2 intracellular module TK CDKL5 full-length CMGC FGFR3 intracellular module TK CK1d full-length CK1 FGR full-length TK CLK1 full-length CMGC FLT1 intracellular module TK CLK2 full-length CMGC FLT2 intracellular module TK CLK3 full-length CMGC FLT4 intracellular module TK CSF1R intracellular module TK FRK full-length TK CSK full-length TK FYN full-length TK DAPK1 full-length CAMK GRK7 full-length AGC Legend: Full-Length: Construct contains Full-length kinase Intracellular Module: Construct contains Cytoplasmic Region in Receptor Tyrosine Kinases Page 1 of 3 KinaseSeeker™ Full-Length Panel (112 Wild-Type Kinases)
    [Show full text]
  • Informationpackage.Pdf
    TABLE OF CONTENTS Sample Preparation PDF Page No. 1. Introduction ……………………………………………………………………………………….……. 3 2. Quantity of lysate required …………………………………………………………………………… 5 3. Preparation of cell lysates A. Adherent cells ………………………………………………………………………..…….……. 6 B. Suspension cells ………………………………………………………………………...……… 6 4. Preparation of cell pellets …………………………………………………………………….……… 7 5. Tissue preparation ……………………………………………………………………………………. 7 6. Sample buffer preparation …………………………………………………………………………… 8 Shipping & Pricing 7. Preparation for storage and shipping of samples ……………………………………………..…. 8 8. Shipping information ………………………………………………………………………………….. 8 9. Pricing information ……………………………………………………………………………………. 9 Description of Follow Up Services 10. Follow up services ……………………………………………………………………………………. 9 11. Forms to be completed ………………………………………………………………………………. 10 Sample Buffer Protocol 12. Appendix A - KinetworksTM Sample Buffer protocol ………………………………………………. 15 KinetworksTM Phospho-Site Screening Services 13. Appendix B - List of 38 phosphorylation sites in KPSS-1.3 - Broad Signalling Pathway ….… 16 14. Appendix C - List of 44 phosphorylation sites in KPSS-10.1 - Cell Cycle Status Screen….... 17 15. Appendix D - List of 37 phosphorylation sites in KPSS-11.0 - Protein Kinase Screen …....... 18 16. Appendix E - List of 40 phosphorylation sites in KPSS-12.1 - Substrates of Kinases Screen 19 KinetworksTM Expression Level Profiling Services 17. Appendix F - List of 76 proteins tracked in KPKS-1.2 Screen – Protein Kinase Screen ....… 20 18. Appendix G - List
    [Show full text]
  • IRAK-M Associates with Susceptibility to Adult-Onset Asthma and Promotes Chronic Airway Inflammation
    IRAK-M Associates with Susceptibility to Adult-Onset Asthma and Promotes Chronic Airway Inflammation This information is current as Yi Liu, Mingqiang Zhang, Lili Lou, Lun Li, Youming of September 28, 2021. Zhang, Wei Chen, Weixun Zhou, Yan Bai and Jinming Gao J Immunol published online 7 January 2019 http://www.jimmunol.org/content/early/2019/01/04/jimmun ol.1800712 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/01/04/jimmunol.180071 Material 2.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 7, 2019, doi:10.4049/jimmunol.1800712 The Journal of Immunology IRAK-M Associates with Susceptibility to Adult-Onset Asthma and Promotes Chronic Airway Inflammation Yi Liu,*,†,1 Mingqiang Zhang,*,1 Lili Lou,* Lun Li,* Youming Zhang,‡ Wei Chen,x Weixun Zhou,{ Yan Bai,‖ and Jinming Gao* IL-1R–associated kinase (IRAK)-M regulates lung immunity during asthmatic airway inflammation.
    [Show full text]
  • Overview of Research on Fusion Genes in Prostate Cancer
    2011 Review Article Overview of research on fusion genes in prostate cancer Chunjiao Song1,2, Huan Chen3 1Medical Research Center, Shaoxing People’s Hospital, Shaoxing University School of Medicine, Shaoxing 312000, China; 2Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, China; 3Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310000, China Contributions: (I) Conception and design: C Song; (II) Administrative support: Shaoxing Municipal Health and Family Planning Science and Technology Innovation Project (2017CX004) and Shaoxing Public Welfare Applied Research Project (2018C30058); (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: C Song; (V) Data analysis and interpretation: H Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Chunjiao Song. No. 568 Zhongxing Bei Road, Shaoxing 312000, China. Email: [email protected]. Abstract: Fusion genes are known to drive and promote carcinogenesis and cancer progression. In recent years, the rapid development of biotechnologies has led to the discovery of a large number of fusion genes in prostate cancer specimens. To further investigate them, we summarized the fusion genes. We searched related articles in PubMed, CNKI (Chinese National Knowledge Infrastructure) and other databases, and the data of 92 literatures were summarized after preliminary screening. In this review, we summarized approximated 400 fusion genes since the first specific fusion TMPRSS2-ERG was discovered in prostate cancer in 2005. Some of these are prostate cancer specific, some are high-frequency in the prostate cancer of a certain ethnic group. This is a summary of scientific research in related fields and suggests that some fusion genes may become biomarkers or the targets for individualized therapies.
    [Show full text]
  • Inhibition of ERK 1/2 Kinases Prevents Tendon Matrix Breakdown Ulrich Blache1,2,3, Stefania L
    www.nature.com/scientificreports OPEN Inhibition of ERK 1/2 kinases prevents tendon matrix breakdown Ulrich Blache1,2,3, Stefania L. Wunderli1,2,3, Amro A. Hussien1,2, Tino Stauber1,2, Gabriel Flückiger1,2, Maja Bollhalder1,2, Barbara Niederöst1,2, Sandro F. Fucentese1 & Jess G. Snedeker1,2* Tendon extracellular matrix (ECM) mechanical unloading results in tissue degradation and breakdown, with niche-dependent cellular stress directing proteolytic degradation of tendon. Here, we show that the extracellular-signal regulated kinase (ERK) pathway is central in tendon degradation of load-deprived tissue explants. We show that ERK 1/2 are highly phosphorylated in mechanically unloaded tendon fascicles in a vascular niche-dependent manner. Pharmacological inhibition of ERK 1/2 abolishes the induction of ECM catabolic gene expression (MMPs) and fully prevents loss of mechanical properties. Moreover, ERK 1/2 inhibition in unloaded tendon fascicles suppresses features of pathological tissue remodeling such as collagen type 3 matrix switch and the induction of the pro-fbrotic cytokine interleukin 11. This work demonstrates ERK signaling as a central checkpoint to trigger tendon matrix degradation and remodeling using load-deprived tissue explants. Tendon is a musculoskeletal tissue that transmits muscle force to bone. To accomplish its biomechanical function, tendon tissues adopt a specialized extracellular matrix (ECM) structure1. Te load-bearing tendon compart- ment consists of highly aligned collagen-rich fascicles that are interspersed with tendon stromal cells. Tendon is a mechanosensitive tissue whereby physiological mechanical loading is vital for maintaining tendon archi- tecture and homeostasis2. Mechanical unloading of the tissue, for instance following tendon rupture or more localized micro trauma, leads to proteolytic breakdown of the tissue with severe deterioration of both structural and mechanical properties3–5.
    [Show full text]
  • Screen for Kinases Affecting Amyloidogenic Cleavage by BACE1
    Screen for kinases affecting amyloidogenic cleavage by BACE1 Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Biologie vorgelegt von Stephan Penzkofer Konstanz, Juli 2011 Tag der mündlichen Prüfung: 24.10.2011 1. Referent: Professor Dr. Marcel Leist 2. Referent: Professor Dr. Daniel Dietrich Summary: The Amyloid β peptide (Aβ) is suspected to be a causal agent for Alzheimer’s disease (AD). Therefore a screen for kinases downregulating the initial step of its production, the cleavage of the Amyloid Precursor Protein (APP) by Beta-site of APP Cleaving Enzyme 1 (BACE1), was conducted in this study. Briefly, HEK293 cells were colipofected with one of in total 1357 siRNAs against 60% of the human kinome and either an APP construct with only the β-cleavage site left or normally cleavable APP as control. Remaining β-cleavage was for logistic reasons firstly measured with an activity-test for secreted alkaline phosphatase (SEAP) fused to both types of APP and subjected to Aβ-ELISA when interesting. Before the screen, the APP-constructs were characterized in the cell types HEK293 and CGCs with regards to cleavage, especially by BACE1. The screen resulted in 38 hits of which one, Testis Specific Serine Kinase 3, was confirmed once more. In a second, bioinformatic project, an initially suspected APLP-like pseudogenic-like sequence in C3orf52 was refuted. Further, analysis of C3orf52 gene expression data hints on a role in myeloid leukemia. Lastly, the phylogenetic relationship of the APP family paralogs was examined, also in comparison to neighboring gene families, and found in the topology (APLP1)(APLP2/APP).
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Profiling Data
    Entrez Gene Percent Compound Compound Name DiscoveRx Gene Symbol Symbol Control Concentration (nM) THZ-P1-2 AAK1 AAK1 100 1000 THZ-P1-2 ABL1(E255K)-phosphorylated ABL1 21 1000 THZ-P1-2 ABL1(F317I)-nonphosphorylated ABL1 93 1000 THZ-P1-2 ABL1(F317I)-phosphorylated ABL1 100 1000 THZ-P1-2 ABL1(F317L)-nonphosphorylated ABL1 71 1000 THZ-P1-2 ABL1(F317L)-phosphorylated ABL1 44 1000 THZ-P1-2 ABL1(H396P)-nonphosphorylated ABL1 5.8 1000 THZ-P1-2 ABL1(H396P)-phosphorylated ABL1 6.6 1000 THZ-P1-2 ABL1(M351T)-phosphorylated ABL1 12 1000 THZ-P1-2 ABL1(Q252H)-nonphosphorylated ABL1 24 1000 THZ-P1-2 ABL1(Q252H)-phosphorylated ABL1 20 1000 THZ-P1-2 ABL1(T315I)-nonphosphorylated ABL1 93 1000 THZ-P1-2 ABL1(T315I)-phosphorylated ABL1 100 1000 THZ-P1-2 ABL1(Y253F)-phosphorylated ABL1 2.4 1000 THZ-P1-2 ABL1-nonphosphorylated ABL1 13 1000 THZ-P1-2 ABL1-phosphorylated ABL1 8.1 1000 THZ-P1-2 ABL2 ABL2 36 1000 THZ-P1-2 ACVR1 ACVR1 94 1000 THZ-P1-2 ACVR1B ACVR1B 100 1000 THZ-P1-2 ACVR2A ACVR2A 94 1000 THZ-P1-2 ACVR2B ACVR2B 91 1000 THZ-P1-2 ACVRL1 ACVRL1 90 1000 THZ-P1-2 ADCK3 CABC1 77 1000 THZ-P1-2 ADCK4 ADCK4 97 1000 THZ-P1-2 AKT1 AKT1 95 1000 THZ-P1-2 AKT2 AKT2 95 1000 THZ-P1-2 AKT3 AKT3 100 1000 THZ-P1-2 ALK ALK 92 1000 THZ-P1-2 ALK(C1156Y) ALK 93 1000 THZ-P1-2 ALK(L1196M) ALK 71 1000 THZ-P1-2 AMPK-alpha1 PRKAA1 93 1000 THZ-P1-2 AMPK-alpha2 PRKAA2 100 1000 THZ-P1-2 ANKK1 ANKK1 97 1000 THZ-P1-2 ARK5 NUAK1 83 1000 THZ-P1-2 ASK1 MAP3K5 100 1000 THZ-P1-2 ASK2 MAP3K6 95 1000 THZ-P1-2 AURKA AURKA 99 1000 THZ-P1-2 AURKB AURKB 100 1000 THZ-P1-2 AURKC AURKC 83 1000
    [Show full text]
  • Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM 014911.2 KIAA1048, Dkfzp686k16132 AP2 Associated Kinase 1
    Gene Symbol Accession Alias/Prev Symbol Official Full Name AAK1 NM_014911.2 KIAA1048, DKFZp686K16132 AP2 associated kinase 1 (AAK1) AATK NM_001080395.2 AATYK, AATYK1, KIAA0641, LMR1, LMTK1, p35BP apoptosis-associated tyrosine kinase (AATK) ABL1 NM_007313.2 ABL, JTK7, c-ABL, p150 v-abl Abelson murine leukemia viral oncogene homolog 1 (ABL1) ABL2 NM_007314.3 ABLL, ARG v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-related gene) (ABL2) ACVR1 NM_001105.2 ACVRLK2, SKR1, ALK2, ACVR1A activin A receptor ACVR1B NM_004302.3 ACVRLK4, ALK4, SKR2, ActRIB activin A receptor, type IB (ACVR1B) ACVR1C NM_145259.2 ACVRLK7, ALK7 activin A receptor, type IC (ACVR1C) ACVR2A NM_001616.3 ACVR2, ACTRII activin A receptor ACVR2B NM_001106.2 ActR-IIB activin A receptor ACVRL1 NM_000020.1 ACVRLK1, ORW2, HHT2, ALK1, HHT activin A receptor type II-like 1 (ACVRL1) ADCK1 NM_020421.2 FLJ39600 aarF domain containing kinase 1 (ADCK1) ADCK2 NM_052853.3 MGC20727 aarF domain containing kinase 2 (ADCK2) ADCK3 NM_020247.3 CABC1, COQ8, SCAR9 chaperone, ABC1 activity of bc1 complex like (S. pombe) (CABC1) ADCK4 NM_024876.3 aarF domain containing kinase 4 (ADCK4) ADCK5 NM_174922.3 FLJ35454 aarF domain containing kinase 5 (ADCK5) ADRBK1 NM_001619.2 GRK2, BARK1 adrenergic, beta, receptor kinase 1 (ADRBK1) ADRBK2 NM_005160.2 GRK3, BARK2 adrenergic, beta, receptor kinase 2 (ADRBK2) AKT1 NM_001014431.1 RAC, PKB, PRKBA, AKT v-akt murine thymoma viral oncogene homolog 1 (AKT1) AKT2 NM_001626.2 v-akt murine thymoma viral oncogene homolog 2 (AKT2) AKT3 NM_181690.1
    [Show full text]
  • A Genome-Wide Sirna Screen in Mammalian Cells for Regulators of S6 Phosphorylation
    A Genome-Wide siRNA Screen in Mammalian Cells for Regulators of S6 Phosphorylation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Papageorgiou, Angela, Joseph Rapley, Jill P. Mesirov, Pablo Tamayo, and Joseph Avruch. 2015. “A Genome-Wide siRNA Screen in Mammalian Cells for Regulators of S6 Phosphorylation.” PLoS ONE 10 (3): e0116096. doi:10.1371/journal.pone.0116096. http:// dx.doi.org/10.1371/journal.pone.0116096. Published Version doi:10.1371/journal.pone.0116096 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:14351232 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE A Genome-Wide siRNA Screen in Mammalian Cells for Regulators of S6 Phosphorylation Angela Papageorgiou1,2,3, Joseph Rapley1,2,3, Jill P. Mesirov4, Pablo Tamayo4, Joseph Avruch1,2,3* 1 Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, United States of America, 2 Diabetes Unit, Medical Services, Massachusetts General Hospital, Boston, MA, 02114, United States of America, 617–726–6909, 3 Department of Medicine, Harvard Medical School, Boston, MA, 02115, United States of America, 4 Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts, 02142, United States of America * [email protected] Abstract mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers.
    [Show full text]
  • A Genome-Wide Sirna Screen in Mammalian Cells for Regulators of S6 Phosphorylation
    RESEARCH ARTICLE A Genome-Wide siRNA Screen in Mammalian Cells for Regulators of S6 Phosphorylation Angela Papageorgiou1,2,3, Joseph Rapley1,2,3, Jill P. Mesirov4, Pablo Tamayo4, Joseph Avruch1,2,3* 1 Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, United States of America, 2 Diabetes Unit, Medical Services, Massachusetts General Hospital, Boston, MA, 02114, United States of America, 617–726–6909, 3 Department of Medicine, Harvard Medical School, Boston, MA, 02115, United States of America, 4 Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts, 02142, United States of America * [email protected] Abstract mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Ap- plying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave OPEN ACCESS significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 Citation: Papageorgiou A, Rapley J, Mesirov JP, and is significantly enriched in genes whose depletion affects the proliferation/viability of the Tamayo P, Avruch J (2015) A Genome-Wide siRNA large set of cancer cell lines in the Achilles database in a manner paralleling that caused by Screen in Mammalian Cells for Regulators of S6 Phosphorylation. PLoS ONE 10(3): e0116096. mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene doi:10.1371/journal.pone.0116096 products on S6-P in TSC1 null mouse embryo fibroblasts.
    [Show full text]