Parks Canada Glass Glossary for the Description of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CASE 6 Shelf 1 #1 Fancy Opaque Glass 1982.65 WATER Challinor Taylor and Paneled Flower Funds Provided PITCHER Co., Pittsburgh, PA, Pattern, No
CASE 6 Shelf 1 #1 Fancy Opaque Glass 1982.65 WATER Challinor Taylor and Paneled Flower Funds provided PITCHER Co., Pittsburgh, PA, pattern, No. 23, by the Fifth patent June 1, 1886 pressed purple slag Annual Benefit opaque soda-lime Antiques Show glass Shelf 1 #2 Fancy Opaque Glass 1990.78 ELECTRIC New Martinsville Peachblow or Gift of Mrs. LIGHT Glass Mfg. Co., New Sunburst line, shaded Betty Woods SHADE Martinsville, WV, pink mold-blown Daniel about 1905-1910 glass with iridescent gold lining 1982.183AB BRIDE’S New Martinsville New Martinsville Gift of Mrs. BOWL ON Glass Mfg. Co., New Peachblow, pink Betty Woods STAND Martinsville, WV, shaded to white Daniel about 1905-1910 mold-blown glass, silver plated stand Shelf 1 #3 Opalescent and Iridescent 1981.138 BERRY Northwood Glass Diamond Funds provided BOWL Company, Indiana, Spearhead pattern, by Mr. Arthur B. PA, about 1900 deep blue shaded to Beaumont opalescent pressed glass 1990.109.1 TWO Dugan Glass Co., Diamond Museum 1990.109.2 MATCHING Indiana, PA, about Spearhead pattern, purchase INDIVIDUAL 1910 deep blue shaded to BERRY opalescent pressed BOWLS glass Shelf 1 #4 Opalescent and Iridescent 1000.164 DISH Dugan Glass Co., Peach opalescent Museum Indiana, PA, about pressed soda-lime purchase 1910-1914 glass with iridescent finish CASE 6 - Page 1 1989.72 BOWL Dugan Glass Co., Petals and Fans Museum Indiana, PA, about pattern on front with purchase 1910-1914 Jeweled Heart pattern on back, amethyst pressed soda-lime glass with deep iridescent finish 1994.39 PLATE Dugan Glass Co., Persian -
Art Glass Classes 2017 CONTENTS
Art Glass Classes 2017 CONTENTS About Kiln-Glass 2 Kilncasting 15 Bullseye Resource Centers 3 Open Studio 17 Introductory Classes 4 Instructors 18 Kilnforming Techniques 7 Registration and Policies 23 Drawing, Painting and Printmaking 13 Locations 23 ABOUT KILN GLASS Richard Parrish. See his class on page 11. Kiln-glass provides an enormous range of levels—from glass fusing beginners to advanced kilnformers—in a techniques and results that are easily accessible. supportive and inspirational environment. Working with this remarkable material requires two things that most artists already possess: an And as you learn to do amazing things with kiln-glass, you’ll also benefit from Bullseye’s decades of research into materials, processes, understanding of design, composition, and color products, and equipment. theory; and the ability to conceive of layers of process and material application. Note: This catalog provides an overview of the kinds of courses we offer, but our Research & Education team continues to design While kiln-glass does require technical knowledge, this can be new courses. The complete schedule of offerings is available at obtained in short order through courses in this catalog, developed bullseyeglass.com/classes. You can also sign up for email updates at by Bullseye through years of collaboration with artists from bullseyeglass.com/email (we never share or sell your address). many mediums. We offer classes year round for students at all 2 BULLSEYE RESOURCE CENTERS Bullseye’s Resource Centers are world-class teaching centers, offering short courses year round for students at all levels, as well as free artist talks and demonstrations. -
The Meter Greeters
Journal of Applied Communications Volume 59 Issue 2 Article 3 The Meter Greeters C. Hamilton Kenney Follow this and additional works at: https://newprairiepress.org/jac This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. Recommended Citation Kenney, C. Hamilton (1976) "The Meter Greeters," Journal of Applied Communications: Vol. 59: Iss. 2. https://doi.org/10.4148/1051-0834.1951 This Article is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Journal of Applied Communications by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. The Meter Greeters Abstract The United States and Canada became meter greeters away back in the 1800's. The U.S. Congress passed an act in 1866 legalizing the metric system for weights and measures use, and metric units were on the law books of the Dominion of Canada in 1875. This article is available in Journal of Applied Communications: https://newprairiepress.org/jac/vol59/iss2/3 Kenney: The Meter Greeters The Meter Greeters C. Hamilton Kenney The United States and Canada became meter greeters away back in the 1800's. The U.S. Congress passed an act in 1866 legalizing the metric system for weights and measures use, and metric units were on the law books of the Dominion of Canada in 1875. The U.S. A. was a signatory to the Treaty of the Meter l signed in Paris, France. in 1875, establishing the metric system as an international measurement system, but Canada did not become a signatory nation until 1907. -
The Investigation Into the Development of Glass As an Expressive Medium in China Through Direct Contact with Western Methods of Making, Decoration and Forming
The investigation into the development of glass as an expressive medium in China through direct contact with Western methods of making, decoration and forming. By XUE LU (Shelly) MA. BA (Hons) A thesis submitted in partial fulfilment of the requirement of the University of Wolverhampton for the Degree of Doctor of Philosophy 2009 This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purpose of assessment, publications or for any other purpose (unless previously indicated). Save for any express acknowledgements, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own effects and of no other person. The right of XUE LU to be identified as author of this work is asserted in accordance with ss.77 and 78 of the copyright, Design and Patents Act 1988. At this date copyright is owned by the author. Signature: …………………. Date: ………………………. Abstract 2 Abstract This thesis is an investigation into the development of glass as an expressive medium in China through direct contact with Western methods of making, decoration and forming glass. The investigation proceeds through an analysis of the parallels between glass objects produced from Kangxi (1662-1722) to Qianlong period (1736-96), and contemporary practitioners’ (2000-2009), which is complemented by my own practice. The investigation mainly looks at three aspects and their inter-relationship within these strands. They are: 1) the history of glassmaking from 1696 to 1795 in the Qing dynasty with Western influences; 2) the analysis of Contemporary Chinese studio/academic glass within the imported UK model; 3) the development of my personal glass practice within this matrix. -
Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass
Envelopes in Architecture (A4113) Designing holistic envelopes for contemporary buildings Silvia Prandelli, Werner Sobek New York A4113 ENVELOPES IN ARCHITECTURE - FALL 2016 Supply chain for holistic facades 2 Systems Door systems Media Facades Rainscreen facades Dynamic facades Mesh System Structural glass/Cable Glass floors Multiple skins Shading systems Green facades Panelized systems Stick/Unitized systems 3 Curtain wall facades 4 What are the components of a façade system? 5 What are the components of a façade system? 6 What are the components of a façade system? 7 Glass 8 Glass Types Base Glass (float glass) Heat Treated Glass Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass 9 Base Glass (Float Glass) 10 3500 BC Glass Making: Man-made glass objects, mainly non-transparent glass beads, finds in Egypt and Eastern Mesopotamia 1500 BC Early hollow glass production: Evidence of the origins of the hollow glass industry, finds in Egypt 11 27 BC - 14 AD Glass Blowing: Discovery of glassblowing, attributed to Syrian craftsmen from the Sidon- Babylon area. > The blowing process has changed very little since then. 12 Flat Glass Blown sheet 13 15th century Lead Crystal Glass: During the 15th century in Venice, the first clear glass called cristallo was invented. In 1675, glassmaker George Ravenscroft invented lead crystal glass by adding lead oxide to Venetian glass. 14 16th century Sheet Glass: Larger sheets of glass were made by blowing large cylinders which were cut open and flattened, then cut into panes 19th century Sheet Glass: The first advances in automating glass manufacturing were patented in 1848 by Henry Bessemer, an English engineer. -
Chapter 22 Reflection and Refraction of Light
Chapter 22 Reflection and Refraction of Light Problem Solutions 22.1 The total distance the light travels is d2 Dcenter to R Earth R Moon center 2 3.84 108 6.38 10 6 1.76 10 6 m 7.52 10 8 m d 7.52 108 m Therefore, v 3.00 108 m s t 2.51 s 22.2 (a) The energy of a photon is sinc nair n prism 1.00 n prism , where Planck’ s constant is 1.00 8 sinc sin 45 and the speed of light in vacuum is c 3.00 10 m s . If nprism 1.00 1010 m , 6.63 1034 J s 3.00 10 8 m s E 1.99 1015 J 1.00 10-10 m 1 eV (b) E 1.99 1015 J 1.24 10 4 eV 1.602 10-19 J (c) and (d) For the X-rays to be more penetrating, the photons should be more energetic. Since the energy of a photon is directly proportional to the frequency and inversely proportional to the wavelength, the wavelength should decrease , which is the same as saying the frequency should increase . 1 eV 22.3 (a) E hf 6.63 1034 J s 5.00 10 17 Hz 2.07 10 3 eV 1.60 1019 J 355 356 CHAPTER 22 34 8 hc 6.63 10 J s 3.00 10 m s 1 nm (b) E hf 6.63 1019 J 3.00 1029 nm 10 m 1 eV E 6.63 1019 J 4.14 eV 1.60 1019 J c 3.00 108 m s 22.4 (a) 5.50 107 m 0 f 5.45 1014 Hz (b) From Table 22.1 the index of refraction for benzene is n 1.501. -
Collecting Vintage & Antique Milk Glass
COLLECTING MARCH 9, 2020 ADIRONDACK GIRL @ HEART MILK GLASS Some History Venetian glass makers devel- oped milky white glass some- time in the the 16th century and called it opal glass. The term we use today, milk glass, may have first been used by the Victorians who fell in love with it, due in part to its similarity to porcelain, which only the very wealthiest families could afford. After falling out of favor in the early 20th century, companies like Fenton, Westmoreland, and Indiana Glass ushered in a "golden age" of milk glass that extended After another serious down-turn, this simple white from about 1940 to 1970. glass entered our decorating consciousness again in the 2000's and it remains popular even now, in Victorian milk glass is often 2020. rather ornate and somewhat Interestingly enough, milk glass comes in a variety translucent, while newer pieces of colors, including, pink, yellow, blue, brown, and tend to be simpler and opaque. black. [You can see some examples in the blog post on this topic.] Quality milk glass has no mold marks and has a smooth, glossy Helpful Hints: finish. Florist grade glass is often I find milk glass most cheaply at garage sales, textured and contains unsightly sometimes for as little as a quarter and at thrift mold marks. stores, usually for $2-3/piece. Buy it only if you love it because you are unlikely to Fenton & Westmoreland Marks make a lot of profit on it if you try to sell it(!). If you want to sell it, colored milk glass sells better for me than plain white. -
Indoor Glass Cleaning Brochure
Clean Windows and Glass Faster, Safer and with Less Chemicals Indoor Glass Cleaning A Complete Line For All Glass Cleaning Needs ungerglobal.com Safely and Efficiently Clean All Your Indoor Glass Cleaning professionals face two key challenges when cleaning indoor surfaces such as windows, mirrors and elevators: safety and efficiency. Current window and glass cleaning tools lead to time-consuming and dangerous issues, like re-arranging furniture and reaching high or unusually positioned windows. Unger’s line of indoor window and glass cleaning tools increase productivity and safety by eliminating time spent moving furniture or climbing ladders. Clean Windows The Award Winning Choice 25% Faster and use for Indoor Glass Cleaning The Unger Stingray Ultimate Indoor 39% Less Chemicals Cleaning Tool provides a variety of glass and * window cleaning options, while the multiple than traditional spray and cloth cleaning lightweight extension poles enable you to clean high access areas without the use of ladders! The cleaning solution is powered by 3M Scotchgard™ Protection, which reduces the need to clean glass as often over time and can clean up to 1600 sq. ft. of windows before replacement. SRKT8 Stingray® Indoor Cleaning Kit - Deluxe 10’ shown *Source: Market Research – Professional Window Cleaners. Germany/UK, 2015, SR Strategy Routes Stingray® Indoor glass and window cleaning with Maximum Refillable System The Unger Stingray Flexibility, with new Refillable Refillable System allows ™ you to use your preferred Bottles and QuikPads window cleaning solution while still gaining all the QuikPad™ eliminates the need for laundering safety, speed and cleaning benefits Stingray provides. The QuikPad™ provides even more flexibility, allowing you to clean Adapter Plate used without having to launder with QuikPad™ Refillable bottle allows pads. -
ORNAMENT 30.3.2007 30.3 TOC 2.FIN 3/18/07 12:39 PM Page 2
30.3 COVERs 3/18/07 2:03 PM Page 1 992-994_30.3_ADS 3/18/07 1:16 PM Page 992 01-011_30.3_ADS 3/16/07 5:18 PM Page 1 JACQUES CARCANAGUES, INC. LEEKAN DESIGNS 21 Greene Street New York, NY 10013 BEADS AND ASIAN FOLKART Jewelry, Textiles, Clothing and Baskets Furniture, Religious and Domestic Artifacts from more than twenty countries. WHOLESALE Retail Gallery 11:30 AM-7:00 PM every day & RETAIL (212) 925-8110 (212) 925-8112 fax Wholesale Showroom by appointment only 93 MERCER STREET, NEW YORK, NY 10012 (212) 431-3116 (212) 274-8780 fax 212.226.7226 fax: 212.226.3419 [email protected] E-mail: [email protected] WHOLESALE CATALOG $5 & TAX I.D. Warehouse 1761 Walnut Street El Cerrito, CA 94530 Office 510.965.9956 Pema & Thupten Fax 510.965.9937 By appointment only Cell 510.812.4241 Call 510.812.4241 [email protected] www.tibetanbeads.com 1 ORNAMENT 30.3.2007 30.3 TOC 2.FIN 3/18/07 12:39 PM Page 2 volumecontents 30 no. 3 Ornament features 34 2007 smithsonian craft show by Carl Little 38 candiss cole. Reaching for the Exceptional by Leslie Clark 42 yazzie johnson and gail bird. Aesthetic Companions by Diana Pardue 48 Biba Schutz 48 biba schutz. Haunting Beauties by Robin Updike Candiss Cole 38 52 mariska karasz. Modern Threads by Ashley Callahan 56 tutankhamun’s beadwork by Jolanda Bos-Seldenthuis 60 carol sauvion’s craft in america by Carolyn L.E. Benesh 64 kristina logan. Master Class in Glass Beadmaking by Jill DeDominicis Cover: BUTTERFLY PINS by Yazzie Johnson and Gail Bir d, from top to bottom: Morenci tur quoise and tufa-cast eighteen karat gold, 7.0 centimeters wide, 2005; Morenci turquoise, lapis, azurite and fourteen karat gold, 5.1 centimeters wide, 1987; Morenci turquoise and tufa-cast eighteen karat gold, 5.7 centimeters wide, 2005; Tyrone turquoise, coral and tufa- cast eighteen karat gold, 7.6 centimeters wide, 2006; Laguna agates and silver, 7.6 centimeters wide, 1986. -
FLIGHTS (Cal 270) 10.50 (Cal 280) 12.25 (Cal 170-345) Price Varies Cabernet Sauvignon, Paso Robles STAG's LEAP WINE CELLARS HANDS of TIME Goblet Only
23 OUNCE ASK ABOUT PUB GLASS ADDITIONAL DRAFT $2 MORE SELECTIONS beer GOBLETS l PINTs l pub glass l HALF YARDS PINT or 23oz HALF CRISP • REFRESHING GOBLET PUB GLASS YARD BOTTLES • CANS HOUSE BEERS pint or goblet (cal 200) • pub glass (cal 290) • half yard (cal 410) OMISSION PALE ALE (cal 180) 6.00 5.8% • gluten-sensitive • or HOUSE GOLDEN PILSNER 7.00 9.00 15.00 4.8% • pilsner • fort collins, co (cal 100) 6.00 OMISSION ULTIMATE LIGHT 4.2% • gluten-sensitive • or STELLA ARTOIS 6.50 8.50 14.00 5.2% • pilsner • belgium HEINEKEN 0.0 (cal 70) 6.00 0.0% • zero alcohol • netherlands STONE TROPIC OF THUNDER 7.75 9.75 16.50 5.8% • hoppy lager • escondido, ca LAGUNITAS HOPPY REFRESHER (cal 0) 6.00 0.0% • zero alcohol • ca PINT or 23oz HALF IPA • HOPPY GOBLET PUB GLASS YARD pint or goblet (cal 270) • pub glass (cal 390) • half yard (cal 550) PINT or 23oz HALF HOUSE IPA 6.00 8.00 13.00 GOBLET PUB GLASS YARD 6.2% • india pale ale • escondido, ca wine 6oz 9oz Bottle pint or goblet (cal 200) • pub glass (cal 290) • half yard (cal 410) YARD HOUSE 23RD ANNIVERSARY: SPARKLING + WHITE + ROSÉ HOUSE GOLDEN PILSNER 7.00 9.00 15.00 NOBLE PURSUIT 7.75 9.75 16.50 6.9% • india pale ale • fort collins, co • • 4.8% pilsner fort collins, co 6oz (cal 150) • 9oz (cal 220) • bottle (cal 630) LAGUNITAS SUPER CLUSTER 8.00 − − 6.00 8.00 13.00 HOUSE HONEY BLONDE 8.0% • imperial ipa • petaluma, ca RIONDO 9.25 - 46.00 4.9% • honey beer • escondido, ca (5.25oz, cal 130) prosecco, veneto LIQUID COMPASS 8.25 − − HOUSE WHITE ALE 7.00 9.00 15.00 8.5% • imperial ipa • escondido, -
Glass in a Slump
Rochester Institute of Technology RIT Scholar Works Theses 5-1-1984 Glass in a slump Peter Andres Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Andres, Peter, "Glass in a slump" (1984). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. ROCHESTER INSTITUTE OF TECHNOLOGY A Thesis Submitted to the Faculty of The College of Fine and Applied Arts in Candidacy for the Degree of MASTER OF FINE ARTS GLASS IN A SLUMP By PETER V. ANDRES May 198* APPROVALS Adviser: [Illegible] ~~ ~ Date: ~\~"-+-\~'------------------ Associate Advisor: Graham Marks Date: ~y3C3/2~Y Associate Advisor;. Lawrence M. Williams Date: ~At7 (~~r- _ Assistant to the Dean for Graduate Affairs: Fred Meyer Date: Dean, College of Fine & Applied Arts: I Robert H. Johnston Ph.D Date: I, Peter V. Andres , hereby (grant, ""'" permission to the Wallace Memorial Library of RIT, to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Date: TABLE OF CONTENTS PAGE NO. PREFACE SECTION ONE: PROCESS AND DESIRES SECTION TWO: AESTHETIC INCLINATIONS 10 PHOTOGRAPHIC SECTION 22 ENDNOTES 30 PREFACE This thesis has been formed in two major segments. The first portion deals with glass information including processes and techniques. The second addresses my work in terms of personal issues, manner of approach, symbolism, composition, visual eclecticism and internal source of imagery. -
Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding
Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng He Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Dissertation Committee: Dr. Allen Y. Yi, Advisor Dr. Jose M. Castro Dr. L. James Lee Copyright by Peng He 2014 Abstract Precision glass molding is a net-shaping process to fabricate glass optics by replicating optical features from precision molds to glass at elevated temperature. The advantages of precision glass molding over traditional glass lens fabrication methods make it especially suitable for the production of optical components with complicated geometries, such as aspherical lenses, diffractive hybrid lenses, microlens arrays, etc. Despite of these advantages, a number of problems must be solved before this process can be used in industrial applications. The primary goal of this research is to determine the feasibility and performance of nonconventional optical components formed by precision glass molding. This research aimed to investigate glass molding by combing experiments and finite element method (FEM) based numerical simulations. The first step was to develop an integrated compensation solution for both surface deviation and refractive index drop of glass optics. An FEM simulation based on Tool-Narayanaswamy-Moynihan (TNM) model was applied to predict index drop of the molded optical glass. The predicted index value was then used to compensate for the optical design of the lens. Using commercially available general purpose software, ABAQUS, the entire process of glass molding was simulated to calculate the surface deviation from the adjusted lens geometry, which was applied to final mold shape modification.