Animal Models of Pain: Progress and Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Animal Models of Pain: Progress and Challenges REVIEWS Animal models of pain: progress and challenges Jeffrey S. Mogil Abstract | Many are frustrated with the lack of translational progress in the pain field, in which huge gains in basic science knowledge obtained using animal models have not led to the development of many new clinically effective compounds. A careful re-examination of animal models of pain is therefore warranted. Pain researchers now have at their disposal a much wider range of mutant animals to study, assays that more closely resemble clinical pain states, and dependent measures beyond simple reflexive withdrawal. However, the complexity of the phenomenon of pain has made it difficult to assess the true value of these advances. In addition, pain studies are importantly affected by a wide range of modulatory factors, including sex, genotype and social communication, all of which must be taken into account when using an animal model. Therapeutic index Pain is both a highly important health problem and an The debate is complicated by the lack of published The ratio of the minimum dose increasingly mature topic of study. Experiments on pain negative data, both from animal studies and from clini- of a drug that causes toxic using human subjects are practically challenging, funda- cal trials. However, in general animal models are thought effects to the therapeutic dose, mentally (and perhaps inescapably) subjective, and ethi- to be fairly effective in ‘backward’ validation (detecting used as a relative measure of cally self-limiting, and thus laboratory animal models analgesic activity of drugs already known to be clini- drug safety. of pain are widely used (BOX 1). However, pain studies cally effective)7,8, but less so in the forward validation Neuropathic pain using non-human animals pose their own significant required for the drug development process. It should be Pain arising as a direct challenges and ethical constraints. Moreover, a vigor- noted that the blame for a failed clinical trial should not consequence of a lesion or ous debate as to the value of currently popular animal automatically be shouldered by the animal model; poor disease affecting the somatosensory system. models has emerged among pain researchers. clinical-trial design or implementation and the lack of Frustration is mounting over the limited success of the sufficiently sensitive toxicity screens for important side Reflexive measures field in translating the veritable explosion of basic scien- effects may also play their part. Excellent discussions of Measures of involuntary tific data collected over the past few decades using animal the predictive validity of animal models of neuropathic movements made in response models into truly new, effective and safe clinical analge- pain can be found in recent reviews7–10. to a stimulus. For example, the nociceptive withdrawal reflex is sics. Failures have been related to both adverse side effects Assuming that current animal models of pain are a spinal (segmental) reflex and lack of efficacy in humans of drugs that seemed to suboptimal, proposals for improvement can be grouped intended to protect the body be safe and effective in animal models. Although pain into several categories: refinement of current models to from potentially damaging is by no means alone in having an uninspiring transla- improve their accuracy and reduce their variability 11, noxious stimuli. 1 Spino-bulbospinal reflexes, lost tion record , some have called for the abandonment of development of new models more directly applicable after spinal transection but animal pain studies in favour of more extensive testing of to prevalent painful conditions or more accurately able to preserved after decerebration, humans2. Notably, the field has endured one very high pro- predict the outcome measures used in clinical trials, include licking, guarding, file efficacy-related failure in neurokinin 1 (substance P) replacement of reflexive measures with non-reflexive (operant) vocalizing and jumping. receptor antagonists3, and less discussed failures such as measures12, replacement of measurements of evoked 4 + 5 Department of Psychology glycine-site antagonists and Na channel blockers . By responses with measurements of spontaneous behav- 13 and Alan Edwards Centre for contrast, the synthetic ω-conotoxin ziconotide (Prialt) iours , and the use of a broader range of ‘quality of life’ Research on Pain, McGill provides an example of a ‘rationally designed’ analgesic6, measures14. University, Montreal, Quebec the efficacy of which in humans was correctly predicted The present Review endeavours to describe the nature H3A 1B1, Canada. by animal models. However, ziconotide is hardly an and implementation of behavioural animal models of pain, e-mail: [email protected] unqualified success story: its intrathecal route of admin- with an emphasis on their complexities and limitations and doi:10.1038/nrn2606 istration and narrow therapeutic index have prevented it on strategies for improvement. The stakes are enormous, Published online 4 March 2009 from being widely adopted clinically. given the impact of pain (which costs US$1 trillion per NATURE REVIEWS | NEUROSCIENCE VOLUME 10 | APRIL 2009 | 283 )''0DXZd`ccXeGlYc`j_\ijC`d`k\[%8cci`^_kji\j\im\[ REVIEWS 15 16 Non-reflexive (operant) year in developed countries ) on society and the central both experimental and clinical pain . Nonetheless, the measures role of animal models in analgesic drug development and subjectivity of these measures has led to a decades-long Measures of behaviours that the basic science that drives it. I discuss topics related search for surrogate biomarkers. To date, no objective require spinal-cerebrospinal to the choice of subjects (and modulatory factors), assays surrogate with acceptably high sensitivity and specificity integration, which are lost after decerebration. The use of and finally measures in pain studies using animals. has been found and independently replicated. Individual operant measures specifically functional-imaging scans may one day provide a reliable requires a learned, motivated Behaving animals as the subjects of pain studies and objective measurement of the subjective percep- behaviour that terminates Why do we need animal models? Human self-ratings tion of pain17, but that day has not yet arrived. Genetic exposure to the noxious of pain, using both questionnaires and scales, are reli- biomarkers are another theoretical option; however, it is stimulus. able, accurate and versatile for the measurement of likely that too many genes are involved18 for any genetic ‘pain fingerprint’ to be developed in the foreseeable future. Even if this were achieved, genomic DNA vari- Box 1 | What exactly is an animal ‘model’? ants would predict trait sensitivity to pain rather than ongoing levels of pain. Subject Assay Measure Non-human animals cannot self-report, but their Species Etiology Reflex behaviours in response to noxious stimuli can be reli- + . Nociceptive . Heat or cold (thermal, mechanical, . Mechanical ably and objectively scored. However, the most reliable Strain chemical or electrical) + and commonly scored behaviours are simple reflexes + . Inflammatory Spontaneous or innate responses (such as licking an inflamed paw), (algogen, sensitizing . Autotomy which seem to lack clinical face validity. Some basic pain Mutant? compound, inflammatory . Directed behaviours researchers have opted to use proxy models — in which + mediator, polyarthritic (biting, flinching, guarding, or monoarthritic) licking, lifting and shaking) animals are either anaesthetized or in vitro or ex vivo Sex . Neuropathic . Gait or posture preparations are used. Techniques used include cell cul- + (surgical or chemical) + ture, the measurement of immediate-early gene expres- Age . Disease state Operant sion or neuronal firing, and small-animal imaging. In (e.g. cancer, complex + . Learned escape some cases these proxies can be combined with behav- regional pain syndrome 1) . Place aversion Husbandry + . Reinforcement conflict ioural measures; for example, under light anaesthesia . Cage density + electrophysiological recordings and observation of reflex- . Diet Body part . Cutaneous Pain-affected complex ive withdrawals from noxious stimuli can be performed . Social factors 19 . Muscular behaviours simultaneously . Much important information has been + .Orofacial . Anxiety learned from these models. Furthermore, one could Testing procedures . Visceral . Attention . Disability argue that behavioural measures are themselves proxies . Arousal + . Communication . Sociability of a subjective perception to which the experimenter has . Handling Time point . Sleep no direct access. However, with awake, behaving animals no . Restraint post-injury assumptions regarding anatomy and pathophysiology When animal models of pain are discussed, confusion can result from the use of the single need to be made. Therefore the dominant paradigm word ‘model’ to refer to three entirely separate entities: the subject, the assay and the in basic science and analgesic drug development is to Nature Reviews | Neuroscience measure (see the figure). Some use the word model to refer to the experimental subject, use behavioural pharmacology in laboratory animals. such as a transgenic mutant, or a species or strain that is sensitive (or resistant) to pain or Indeed, experiments featuring behavioural measure- that spontaneously develops a painful disease. When selecting a subject, other ments of pain in animals are becoming more common considerations include
Recommended publications
  • Failure to Launch? the Influence of Limb Autotomy on the Escape Behavior of a Semiaquatic Grasshopper Paroxya Atlantica
    Behavioral Ecology doi:10.1093/beheco/arr045 Advance Access publication 4 May 2011 Original Article Failure to launch? The influence of limb autotomy on the escape behavior of a semiaquatic grasshopper Paroxya atlantica (Acrididae) Philip W. Batemana,b,c and Patricia A. Flemingb aDepartment of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa, bSchool of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia, and cArchbold Biological Station, Lake Placid, PO Box 2057, Lake Placid, FL 33862, USA Downloaded from Autotomy is an extreme escape tactic where an animal sheds an appendage to escape predation. Many species alter their behavior postautotomy to compensate for this loss. We examined the escape behavior in the field of a semiaquatic grasshopper (Paroxya atlantica) that could escape either by flight and landing in vegetation or flight and landing in water and swimming to safety. We predicted that animals missing a hind limb would be more reactive (i.e., have longer flight initiation distances; FID) and would beheco.oxfordjournals.org prefer to escape to vegetation rather than to water as loss of a limb is likely to reduce swimming ability. However, our predictions were not supported. FID in autotomized animals was not different from that in intact animals. Furthermore, although autotom- ized grasshoppers paused more often and swam slower than intact individuals, autotomized grasshoppers more often escaped to water, reaching it via shorter flights that were lateral to the approach of the observer (intact grasshoppers more often flew directly away from the observer). We also noted differences in behavior before disturbance: Autotomised animals perched lower on emergent vegetation than did intact ones, presumably in readiness for escape via water, and also showed a greater likelihood to at Murdoch University on June 19, 2011 hide (squirreling) from the approaching observer prior to launch into flight.
    [Show full text]
  • Mantodea (Insecta), with a Review of Aspects of Functional Morphology and Biology
    aua o ew eaa Ramsay, G. W. 1990: Mantodea (Insecta), with a review of aspects of functional morphology and biology. Fauna of New Zealand 19, 96 pp. Editorial Advisory Group (aoimes mae o a oaioa asis MEMBERS AT DSIR PLANT PROTECTION Mou Ae eseac Cee iae ag Aucka ew eaa Ex officio ieco — M ogwo eae Sysemaics Gou — M S ugae Co-opted from within Systematics Group Dr B. A ooway Κ Cosy UIESIIES EESEAIE R. M. Emeso Eomoogy eame ico Uiesiy Caeuy ew eaa MUSEUMS EESEAIE M R. L. ama aua isoy Ui aioa Museum o iae ag Weigo ew eaa OESEAS REPRESENTATIVE J. F. awece CSIO iisio o Eomoogy GO o 1700, Caea Ciy AC 2601, Ausaia Series Editor M C ua Sysemaics Gou SI a oecio Mou Ae eseac Cee iae ag Aucka ew eaa aua o ew eaa Number 19 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy G W Ramsay SI a oecio M Ae eseac Cee iae ag Aucka ew eaa emoa us wig mooogy eosigma cooaio siuaio acousic sesiiiy eece eaiou egeeaio eaio aasiism aoogy a ie Caaoguig-i-uicaio ciaio AMSAY GW Maoea (Iseca – Weigo SI uisig 199 (aua o ew eaa ISS 111-533 ; o 19 IS -77-51-1 I ie II Seies UC 59575(931 Date of publication: see cover of subsequent numbers Suggese om o ciaio amsay GW 199 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy Fauna of New Zealand [no.] 19. —— Fauna o New Zealand is eae o uicaio y e Seies Eio usig comue- ase e ocessig ayou a ase ie ecoogy e Eioia Aisoy Gou a e Seies Eio ackowege e oowig co-oeaio SI UISIG awco – sueisio o oucio a isiuio M C Maews – assisace wi oucio a makeig Ms A Wig – assisace wi uiciy a isiuio MOU AE ESEAC CEE SI Miss M oy
    [Show full text]
  • Tail Autotomy Plays No Important Role in Influencing Locomotor Performance and Antipredator Behavior in a Cursorial Gecko
    ethology international journal of behavioural biology Ethology Tail Autotomy Plays No Important Role in Influencing Locomotor Performance and Anti-Predator Behavior in a Cursorial Gecko Hong-Liang Lu* , Guo-Hua Ding , Ping Ding* & Xiang Ji * Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangz- hou 310058, Zhejiang, China Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China Correspondence Abstract Xiang Ji, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life We used the frog-eyed sand gecko (Teratoscincus scincus) as a model sys- Sciences, Nanjing Normal University, Nanjing tem to evaluate the locomotor costs of tail loss, and to examine whether 210046, Jiangsu, China. tailless geckos use alternative anti-predator behavior to compensate for E-mail: [email protected], xiangji150@ the costs of tail loss. Of the 16 field-captured geckos, eight were used as hotmail.com experimental animals and the remaining ones as controls. Locomotor performance, activity level and anti-predator behavior were measured Received: January 21, 2010 Initial acceptance: February 22, 2010 for experimental geckos before and after the tail-removing treatment. Final acceptance: March 15, 2010 Control geckos never undergoing the tail-removing manipulation were (J. Kotiaho) measured to serve as controls for the measurements taken at the same time for experimental geckos. Experimental geckos did not differ from doi: 10.1111/j.1439-0310.2010.01780.x controls in activity level before they underwent the tail-removing manipulation, but became less active thereafter.
    [Show full text]
  • Characterization of Arm Autotomy in the Octopus, Abdopus Aculeatus (D’Orbigny, 1834)
    Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roy L. Caldwell, Chair Professor David Lindberg Professor Damian Elias Fall 2013 ABSTRACT Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Autotomy is the shedding of a body part as a means of secondary defense against a predator that has already made contact with the organism. This defense mechanism has been widely studied in a few model taxa, specifically lizards, a few groups of arthropods, and some echinoderms. All of these model organisms have a hard endo- or exo-skeleton surrounding the autotomized body part. There are several animals that are capable of autotomizing a limb but do not exhibit the same biological trends that these model organisms have in common. As a result, the mechanisms that underlie autotomy in the hard-bodied animals may not apply for soft bodied organisms. A behavioral ecology approach was used to study arm autotomy in the octopus, Abdopus aculeatus. Investigations concentrated on understanding the mechanistic underpinnings and adaptive value of autotomy in this soft-bodied animal. A. aculeatus was observed in the field on Mactan Island, Philippines in the dry and wet seasons, and compared with populations previously studied in Indonesia.
    [Show full text]
  • Science, Sentience, and Animal Welfare
    WellBeing International WBI Studies Repository 1-2013 Science, Sentience, and Animal Welfare Robert C. Jones California State University, Chico, [email protected] Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/ethawel Part of the Animal Studies Commons, Ethics and Political Philosophy Commons, and the Nature and Society Relations Commons Recommended Citation Jones, R. C. (2013). Science, sentience, and animal welfare. Biology and Philosophy, 1-30. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Science, Sentience, and Animal Welfare Robert C. Jones California State University, Chico KEYWORDS animal, welfare, ethics, pain, sentience, cognition, agriculture, speciesism, biomedical research ABSTRACT I sketch briefly some of the more influential theories concerned with the moral status of nonhuman animals, highlighting their biological/physiological aspects. I then survey the most prominent empirical research on the physiological and cognitive capacities of nonhuman animals, focusing primarily on sentience, but looking also at a few other morally relevant capacities such as self-awareness, memory, and mindreading. Lastly, I discuss two examples of current animal welfare policy, namely, animals used in industrialized food production and in scientific research. I argue that even the most progressive current welfare policies lag behind, are ignorant of, or arbitrarily disregard the science on sentience and cognition. Introduction The contemporary connection between research on animal1 cognition and the moral status of animals goes back almost 40 years to the publication of two influential books: Donald Griffin’s The Question of Animal Awareness: Evolutionary Continuity of Mental Experience (1976) and Peter Singer’s groundbreaking Animal Liberation (1975).
    [Show full text]
  • Do Avian Predators Avoid Autotomous Tails?
    Cent. Eur. J. Biol. • 6(2) • 2011 • 293-299 DOI: 10.2478/s11535-010-0119-9 Central European Journal of Biology Seeing through the lizard’s trick: do avian predators avoid autotomous tails? Research Article Bart Vervust*, Hans Van Loy, Raoul Van Damme Laboratory for Functional Morphology, Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium Received 24 June 2010; Accepted 16 November 2010 Abstract: Counter-adaptations of predators towards their prey are a far less investigated phenomenon in predator-prey interactions. Caudal autotomy is generally considered an effective last-resort mechanism for evading predators. However, in victim-exploiter relationships, the efficacy of a strategy will obviously depend on the antagonist’s ability to counter it. In the logic of the predator-prey arms race, one would expect predators to develop attack strategies that minimize the chance of autotomy of the prey and damage on the predator. We tested whether avian predators preferred grasping lizards by their head. We constructed plasticine models of the Italian wall lizard (Podarcis sicula) and placed them in natural habitat of the species. Judging from counts of beak marks on the models, birds preferentially attack the head and might also avoid the tail and limb regions. While a preference for the head might not necessarily demonstrate tail and limb avoidance, this topic needs further exploration because it suggests that even unspecialised avian predators may see through the lizard’s trick-of-the-tail. This result may have implications for our understanding of the evolution of this peculiar defensive system and the loss or decreased tendency to shed the tail on island systems with the absence of terrestrial predators.
    [Show full text]
  • Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae)
    insects Article Comparative Morphology of the Stinger in Social Wasps (Hymenoptera: Vespidae) Mario Bissessarsingh 1,2 and Christopher K. Starr 1,* 1 Department of Life Sciences, University of the West Indies, St Augustine, Trinidad and Tobago; [email protected] 2 San Fernando East Secondary School, Pleasantville, Trinidad and Tobago * Correspondence: [email protected] Simple Summary: Both solitary and social wasps have a fully functional venom apparatus and can deliver painful stings, which they do in self-defense. However, solitary wasps sting in subduing prey, while social wasps do so in defense of the colony. The structure of the stinger is remarkably uniform across the large family that comprises both solitary and social species. The most notable source of variation is in the number and strength of barbs at the tips of the slender sting lancets that penetrate the wound in stinging. These are more numerous and robust in New World social species with very large colonies, so that in stinging human skin they often cannot be withdrawn, leading to sting autotomy, which is fatal to the wasp. This phenomenon is well-known from honey bees. Abstract: The physical features of the stinger are compared in 51 species of vespid wasps: 4 eumenines and zethines, 2 stenogastrines, 16 independent-founding polistines, 13 swarm-founding New World polistines, and 16 vespines. The overall structure of the stinger is remarkably uniform within the family. Although the wasps show a broad range in body size and social habits, the central part of Citation: Bissessarsingh, M.; Starr, the venom-delivery apparatus—the sting shaft—varies only to a modest extent in length relative to C.K.
    [Show full text]
  • Tail Autotomy Effects on the Escape Behavior of the Lizard Gonatodes Albogularis (Squamata: Sphaerodactylidae), from C Rdoba
    Domínguez-López et al. Revista Chilena de Historia Natural (2015) 88:1 DOI 10.1186/s40693-014-0010-6 RESEARCH Open Access Tail autotomy effects on the escape behavior of the lizard Gonatodes albogularis (Squamata: Sphaerodactylidae), from Córdoba, Colombia Moisés E Domínguez-López1*, Ángela M Ortega-león2 and Gastón J Zamora-abrego3 Abstract Background: Caudal autotomy appears to be an adaptation strategy to reduce the risk of being preyed upon. In an encounter with a predator, the prey must reduce the risk of being preyed upon, and one of the strategies that has exerted a strong pressure on selection has been tail loss. In lizards, it has been demonstrated that tail loss reduces the probability of survival in the event of a second attack; therefore, they must resort to new escape strategies to reduce the risk of falling prey. In order to evaluate the effect of tail loss on the escape behavior of Gonatodes albogularis in natural conditions, we took samples from a forest interior population. We expected that individuals that had not lost their tails would allow the predator to get closer than those that had lost it. For each sample, we recorded the following: (1) escape behavior, measured through three distances (e.g., approach distance, escape distance, and final distance); (2) distance to shelter; and (3) length of tail. We included only males in the study since we did not record any females without a tail and far fewer with a regenerated tail. Results: We found that tail loss does have an effect on the escape behavior of G.
    [Show full text]
  • Tail Autotomy, Tail Size, and Locomotor Performance in Lizards*
    669 Tail Autotomy, Tail Size, and Locomotor Performance in Lizards* Eric J. McElroy1,† Introduction Philip J. Bergmann2 Autotomy is a widespread phenomenon in which an animal 1Department of Biology, College of Charleston, Charleston, voluntarily sheds an appendage, as defined by Fredericq (1892) South Carolina 29401; 2Department of Biology, Clark and reviewed by Maginnis (2006). Perhaps the most conspic- University, Worcester, Massachusetts 01610 uous form of autotomy involves the loss of the tail, as exhibited by many species of lizards and salamanders (Wake and Dresner Accepted 3/2/2013; Electronically Published 11/5/2013 1967; Arnold 1984, 1988). Tail autotomy is most often asso- ciated with attempted predation, with the animal sacrificing its tail to a predator in order to escape. The most obvious benefit to this behavior is that the animal survives the predation at- ABSTRACT tempt (Daniels et al. 1986), with the potential for future re- The effect of tail autotomy on locomotor performance has been productive output. studied in a number of lizard species. Most of these studies Whereas the benefits of tail autotomy are simple and obvious, (65%) show that tail autotomy has a negative effect on sprint the costs associated with this behavior are more diverse and speed, some studies (26%) show no effect of autotomy on sprint obscure (recently reviewed in Clause and Capaldi 2006; Bate- speed, and a few (9%) show a positive effect of autotomy on man and Fleming 2009). Several decades of research have sprint speed. A variety of hypotheses have been proposed to shown that autotomy can result in the loss of fat reserves (Dial explain the variation across these studies, but none has been and Fitzpatrick 1981; Wilson and Booth 1998); reduced time tested.
    [Show full text]
  • Nothing in Cognitive Neuroscience Makes Sense Except in the Light of Evolution
    Perspective Nothing in Cognitive Neuroscience Makes Sense Except in the Light of Evolution Oscar Vilarroya 1,2 1 Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Cerdanyola del Valles, 08193 Barcelona, Spain; [email protected] 2 Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain Abstract: Evolutionary theory should be a fundamental guide for neuroscientists. This would seem a trivial statement, but I believe that taking it seriously is more complicated than it appears to be, as I argue in this article. Elsewhere, I proposed the notion of “bounded functionality” As a way to describe the constraints that should be considered when trying to understand the evolution of the brain. There are two bounded-functionality constraints that are essential to any evolution-minded approach to cognitive neuroscience. The first constraint, the bricoleur constraint, describes the evolutionary pressure for any adaptive solution to re-use any relevant resources available to the system before the selection situation appeared. The second constraint, the satisficing constraint, describes the fact that a trait only needs to behave more advantageously than its competitors in order to be selected. In this paper I describe how bounded-functionality can inform an evolutionary-minded approach to cognitive neuroscience. In order to do so, I resort to Nikolaas Tinbergen’s four questions about how to understand behavior, namely: function, causation, development and evolution. The bottom line of assuming Tinbergen’s questions is that any approach to cognitive neuroscience is intrinsically tentative, slow, and messy. Citation: Vilarroya, O. Nothing in Keywords: evolutionary constraints; neuroscientific theories; evolution of the brain Cognitive Neuroscience Makes Sense Except in the Light of Evolution.
    [Show full text]
  • Conference Program Innovations in Gender, Sex, and Health Research
    Innovations in Gender, Sex, and Health Research Every Cell is Sexed, Every Person is Gendered CIHR Institute of Gender and Health Conference Program November 22-23, 2010 The Four Seasons Hotel 21 Avenue Road, Toronto, Ontario M5R 2G1 © 2010 CIHR-IGH - All Rights Reserved. Acknowledgements CIHR Institute of Genetics Institut de génétique des IRSC CIHR Institute of Health Services and Policy Research Institut des services et des politiques de la santé des IRSC CIHR Institute of Human Development, Child and Youth Health Institut du développement et de la santé des enfants et des adolescents des IRSC CIHR Institute of Neurosciences, Mental Health and Addiction Institut des neurosciences, de la santé mentale et des toxicomanies des IRSC CIHR Institute of Musculoskeletal Health and Arthritis Institut de l’appareil locomoteur et de l’arthrite des IRSC CIHR Institute of Population and Public Health Institut de la santé publique et des populations des IRSC CIHR Institute of Infection and Immunity Institut des maladies infectieuses et immunitaires des IRSC CIHR III - CIHR HIV/AIDS Research Initiative III des IRSC - Initiative de recherche sur VIH/sida des IRSC CIHR Knowledge Translation Branch La Direction de l’application des connaissances des IRSC CIHR Knowledge Translation and Public Outreach Portfolio Le Portefeuille de l’application des connaissances et sensibilisation du public des IRSC - Drug Safety and Effectiveness Network - Le Réseau sur l’innocuité et l’efficacité des médicaments CIHR Partnerships and Citizen Engagement Branch La Direction
    [Show full text]
  • Get the Program
    QPRN presents: An Educational Initiative of IASP and ACTTION Where Does it Hurt and Why: Peripheral and Central Contributions to Pain Throughout the Body Program June 25 – June 29, 2017 Chateau Montebello Montebello, QC, Canada www.northamericanpainschool.com #NAPainSchool Executive Committee Prof. Jeffrey S. Mogil, Ph.D. Prof. Anne-Louise Oaklander, (Director) M.D., Ph.D. E.P. Taylor Professor of Pain Associate Professor of Neurology Studies / Canada Research Chair Director, Nerve Unit Harvard in the Genetics of Pain (Tier 1) / Medical School and Massachusetts Dept. of Psychology / Director, General Hospital Alan Edwards Centre for Research on Pain, McGill University Prof. Petra Schweinhardt, M.D., Ph.D. Prof. Christine T. Chambers, Adjunct Professor, Faculty of Ph.D. (Assistant Director) Dentistry and Alan Edwards Centre Canada Research Chair in for Research on Pain, McGill Children’s Pain (Tier 1) / Prof., University / Senior Scientist, Depts. of Pediatrics and Interdisciplinary Spinal Research, Psychology & Neuroscience Department of Chiropractic Dalhousie University and IWK Medicine, University of Zurich Health Centre Prof. Michael S. Gold, Ph.D. Prof. Roger B. Fillingim, Ph.D. Professor, Dept. of Anesthesiology Distinguished Professor, University of Pittsburgh School of University of Florida College of Medicine Dentistry / Director, UF Pain Research and Intervention Center of Excellence Prof. Nicolas Beaudet, Ph.D. Coordination Assistant Director, Quebec Pain Research Network / Adjunct Dr. Alexandre J. Parent, Ph.D. Professor, Dept. of Anesthesiology, Head coordinator, Quebec Pain Faculty of Medicine and Health Research Network / Coordinator, Sciences, Université de Sherbrooke North American Pain School Vision of NAPS The North American Pain School (NAPS) will bring together leading experts in the fields of pain research and management to provide a unique educational and networking experience for the next generation of basic science and clinical pain researchers.
    [Show full text]