The Population of X-Ray Supernova Remnants in the Large Magellanic Cloud

Total Page:16

File Type:pdf, Size:1020Kb

The Population of X-Ray Supernova Remnants in the Large Magellanic Cloud A&A 585, A162 (2016) Astronomy DOI: 10.1051/0004-6361/201526932 & © ESO 2016 Astrophysics The population of X-ray supernova remnants in the Large Magellanic Cloud P. Maggi1,2, F. Haberl1,P.J.Kavanagh3, M. Sasaki3,L.M.Bozzetto4, M. D. Filipovic´4, G. Vasilopoulos1, W. Pietsch1,S.D.Points5, Y.-H. Chu6,J.Dickel7,M.Ehle8, R. Williams9, and J. Greiner1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette, France 3 Institut für Astronomie und Astrophysik Tübingen, Universität Tübingen, Sand 1, 72076 Tübingen, Germany 4 University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia 5 Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Cassilla 603 La Serena, Chile 6 Institute of Astronomy and Astrophysics, Academia Sinica, No.1, Sec. 4, Roosevelt Rd, 10617 Taipei, Taiwan, Republic of China 7 Physics and Astronomy Department, University of New Mexico, MSC 07-4220, Albuquerque, NM 87131, USA 8 XMM-Newton Science Operations Centre, ESA/ESAC, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 9 Columbus State University Coca-Cola Space Science Center, 701 Front Avenue, Colombus, GA 31901, USA Received 10 July 2015 / Accepted 28 September 2015 ABSTRACT Aims. We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). Using primarily XMM-Newton observations, we conduct a systematic spectral analysis of LMC SNRs to gain new insight into their evolution and the interplay with their host galaxy. Methods. We combined all the archival XMM-Newton observations of the LMC with those of our Very Large Programme LMC survey. We produced X-ray images and spectra of 51 SNRs, out of a list of 59 objects compiled from the literature and augmented with newly found objects. Using a careful modelling of the background, we consistently analysed all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. The locations of SNRs are compared to the distributions of stars, cold gas, and warm gas in the LMC, and we investigated the connection between the SNRs and their local environment, characterised by various star formation histories. We tentatively typed all LMC SNRs, in order to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We also compared the column densities derived from X-ray spectra to H i maps, thus probing the three-dimensional structure of the LMC. Results. This work provides the first homogeneous catalogue of the X-ray spectral properties of SNRs in the LMC. It offers a complete census of LMC remnants whose X-ray emission exhibits Fe K lines (13% of the sample), or reveals the contribution from hot supernova ejecta (39%), which both give clues to the progenitor types. The abundances of O, Ne, Mg, Si, and Fe in the hot phase of the LMC interstellar medium are found to be between 0.2 and 0.5 times the solar values with a lower abundance ratio [α/Fe] than = +0.11 in the Milky Way. The current ratio of core-collapse to type Ia SN rates in the LMC is constrained to NCC/NIa 1.35(−0.24), which is lower than in local SN surveys and galaxy clusters. Our comparison of the X-ray luminosity functions of SNRs in Local Group galaxies (LMC, SMC, M31, and M33) reveals an intriguing excess of bright objects in the LMC. Finally, we confirm that 30 Doradus and the LMC Bar are offset from the main disc of the LMC to the far and near sides, respectively. Key words. ISM: supernova remnants – Magellanic Clouds – ISM: abundances – supernovae: general – stars: formation – X-rays: ISM 1. Introduction may also explode as type Ia SNe (Sim et al. 2010; van Kerkwijk et al. 2010; Woosley & Kasen 2011). The thermonuclear burn- Supernova remnants (SNRs) are the imprints of stars that died ing front in a type Ia SN incinerates most of the progenitor to in supernova (SN) explosions on the interstellar medium (ISM). Fe-group elements. Despite the essential role of type Ia SNe SNRs return nucleosynthesis products to the ISM, enriching and in cosmology as standard candles, leading to the discovery that mixing it with freshly produced heavy elements. A core-collapse the expansion of the Universe is accelerating (Riess et al. 1998; (CC) SN is the explosion of a massive star, and it produces Perlmutter et al. 1999), the exact nature of the progenitor sys- large quantities of α-group elements (e.g. O, Ne, Mg, Si, S). tem as either a white dwarf accreting from a companion or a Thermonuclear (or type Ia) SNe mark the disruption of a carbon- merger of two white dwarves is still hotly debated (see Maoz & oxygen white dwarf (WD) that reached the Chandrasekhar limit, Mannucci 2012,forareview). although recent models suggest that sub-Chandrasekhar WDs SNe of either type instantaneously release a tremendous 51 Based on observations obtained with XMM-Newton,anESAsci- amount of kinetic energy (∼10 erg) in the ISM and conse- ence mission with instruments and contributions directly funded by quently have a profound and long-lasting impact on their sur- ESA Member States and NASA. rounding environment. SN ejecta are launched to velocities in Article published by EDP Sciences A162, page 1 of 52 A&A 585, A162 (2016) excess of 104 km s−1, producing shock waves that heat the ISM were presented in a wide collection of individual papers with lit- and ejecta up to X-ray emitting temperatures (>106 K). SNe are tle consistency in the instruments, spectral models, and analysis the main source of energy for the ISM, in the form of kinetic methods used. Furthermore, several known SNRs were observed energy and turbulence (e.g. Mac Low & Klessen 2004, and ref- for the first time with modern X-ray instrumentation during erences therein) or in the form of cosmic rays that are accelerated our XMM-Newton LMC survey (see Sect. 2.1) and their spectral at SNR shock fronts. properties are as yet unpublished (see Sect. 5.1 and Appendix D). X-ray observations are a powerful tool for studying SNRs Because of these limitations, it is not feasible to study the spec- (see e.g. the review of Vink 2012). While some SNRs ex- tral properties of the whole population of LMC remnants with a hibit non-thermal X-ray emission, originating in synchrotron- mere survey of the available literature. emitting electrons accelerated up to 100 TeV (see Koyama The main ambition of this work is to alleviate these limita- et al. 1995; Rho et al. 2002; Bamba et al. 2005, and refer- tions and provide for the first time an up-to-date study of the ences therein), most X-ray emitting SNRs have thermal spectra X-ray emission of LMC SNRs, using primarily XMM-Newton dominated by highly ionised species of C, N, O, Ne, Mg, Si, observations. To that end, we performed a systematic and ho- S, and Fe. At the typical electron temperatures of SNR shocks mogeneous X-ray spectral analysis of all LMC SNRs for which (kT ∼ 0.2−5 keV), all these astrophysically abundant elements XMM-Newton data are available. This allows meaningful com- have emission lines in the range accessible to X-ray space obser- parisons of remnants at various evolutionary stages, and provides vatories. Thus, the thermal X-ray spectrum of an SNR encrypts a complete census of various spectral features, such as Fe K or precious information about the temperature, ionisation state, and SN ejecta emission. In turn, SNRs are used as probes of their chemical composition of the hot plasma (Slane 2014). This, in surroundings, thanks to which one can derive the chemical abun- turn, provides clues to the evolutionary state of the remnant, am- dances in the hot phase of the LMC ISM, and compare those to bient density (of the inter- or circum-stellar medium), age, explo- abundances measured in older populations (globular clusters and sion energy, and the type of supernova progenitor. The distribu- red giant stars). tion of these parameters, the impact of the environment on them, In addition, we take advantage of the availability of star for- and their interrelations (e.g. temperature vs. size/age, luminos- mation history (SFH) maps of the LMC, based on spatially re- ity vs. ambient density) are valuable information to understand solved stellar photometry, to investigate the connection between the evolution of SNRs and their role in the hydrodynamical and LMC SNRs and their local environment, characterised by differ- chemical evolution of galaxies. ent SFHs. Doing so, we devise a method to tentatively type all Furthermore, SNRs are observable for a few tens of thou- LMC SNRs, which can then be used to retrieve the ratio of core- sands of years. Thus, even though SNe are rare events in a galaxy collapse to type Ia SN rates in the LMC. Then, via their X-ray (typically one per century or less), there will be tens or hundreds luminosity function, we compare SNR populations in galaxies of of SNRs for us to access. In our own Galaxy, the Milky Way the Local Group (M31, M33, LMC, SMC), which have different (MW), 294 SNRs are known (Green 2014). However, studies of metallicities and SFHs. Finally, we study the spatial distribution Galactic SNRs are plagued by the large distance uncertainties to- of SNRs in the LMC with respect to cool gas, star-forming re- wards sources in the Galactic plane.
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • 1 NASA Goddard Space Flight Center
    Source of Acquisition 1 NASA Goddard Space Flight Center \> SN 1987A AFTER 18 YEARS: MID-INFRARED GEMINI and SPITZER OBSERVATIONS OF THE REMNANT Patrice Bouchet1,2, Eli Dwek3, John Danziger4, Richard G. Arendt 5, I. James M. De Buizer', Sangwook Park7, Nicholas B. SuntzefF2, Robert P. Kirshners, and Peter Challis ABSTRACT We present high resolution 11.7 and 18.3 pm mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 pm flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 pm, on day 6130 with the IRAC in 3.6- 8 pm region, and on day 6190 with the IRS in the 12-37 ,urn instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662:; K, and the emitting dust mass is (2.6:;;:) x MB.Lines of [Ne 111 12.82 pm and [Ne 1111 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si 113 34.8 pm line. We also detect two lines near 26 pm which we tentatively ascribe to [Fe 117 25.99 pm and [0 IV] 25.91 pm. Comparison of the mid-IR Gemini 11.7 pm image with X-ray images obtained by Chandra, UV- optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths.
    [Show full text]
  • Portrait of a Dramatic Stellar Crib 21 December 2006
    Portrait of a dramatic stellar crib 21 December 2006 most massive stars known. The nebula owes its name to the arrangement of its brightest patches of nebulosity, that somewhat resemble the legs of a spider. They extend from a central 'body' where a cluster of hot stars (designated 'R136') illuminates and shapes the nebula. This name, of the biggest spiders on the Earth, is also very fitting in view of the gigantic proportions of the celestial nebula - it measures nearly 1,000 light-years across and extends over more than one third of a degree: almost, but not quite, the size of the full Moon. If it were in our own Galaxy, at the distance of another stellar nursery, the Orion Nebula (1,500 light-years away), it would cover one quarter of the sky and even be visible in daylight. One square degree image of the Tarantula Nebula and its surroundings. The spidery nebula is seen in the upper- center of the image. Slightly to the lower-right, a web of filaments harbors the famous supernova SN 1987A (see below). Many other reddish nebulae are visible in the image, as well as a cluster of young stars on the left, known as NGC 2100. Credit: ESO Known as the Tarantula Nebula for its spidery appearance, the 30 Doradus complex is a monstrous stellar factory. It is the largest emission nebula in the sky, and can be seen far down in the southern sky at a distance of about 170,000 light- years, in the southern constellation Dorado (The Swordfish or the Goldfish).
    [Show full text]
  • Formation of the Active Star Forming Region LHA 120-N 44 Triggered By
    Draft version December 24, 2018 Typeset using LATEX twocolumn style in AASTeX61 FORMATION OF THE ACTIVE STAR FORMING REGION LHA 120-N 44 TRIGGERED BY TIDALLY-DRIVEN COLLIDING HI FLOWS Kisetsu Tsuge,1 Hidetoshi Sano,1,2 Kengo Tachihara,1 Cameron Yozin,3 Kenji Bekki,3 Tsuyoshi Inoue,1 Norikazu Mizuno,4 Akiko Kawamura,4 Toshikazu Onishi,5 and Yasuo Fukui1,2 1Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; [email protected] 2Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan 3ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009, Australia 4National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan 5Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan (Accepted November 30, 2018) ABSTRACT N44 is the second active site of high mass star formation next to R136 in the Large Magellanic Cloud (LMC). We carried out a detailed analysis of Hi at 60 arcsec resolution by using the ATCA & Parkes data. We presented decomposition of the Hi emission into two velocity components (the L- and D-components) with the velocity separation of ∼60 km s−1. In addition, we newly defined the I-component whose velocity is intermediate between the L- and D-components. The D-component was used to derive the rotation curve of the LMC disk, which is consistent with the stellar rotation curve (Alves & Nelson 2000). Toward the active cluster forming region of LHA 120-N 44, the three velocity components of Hi gas show signatures of dynamical interaction including bridges and complementary spatial distributions.
    [Show full text]
  • The Distance to the Large Magellanic Cloud
    Proceedings Astronomy from 4 perspectives 1. Cosmology The distance to the large magellanic cloud Stefan V¨olker (Jena) In the era of modern cosmology it is necessary to determine the Hubble constant as precise as possible. Therefore it is important to know the distance to the Large Mag- ellanic Cloud (LMC), because this distance forms the fundament of the cosmological distance ladder. The determination of the LMC's distance is an suitable project for highschool students and will be presented in what follows. Calculating the distance to the LMC using the supernova SN 1987 A [1, 2] By combining the angular size α of an object with its absolute size R, one can calculate the distance d (at least for our cosmological neighborhood) using the equation R R d = ≈ (1) tan α α and the approximation d R. In the case of the SN 1987 A students can measure the angular size of the circumstellar ring on the Hubble Space Telescope (HST) image (Figure 1). The absolute size of the ring can be derived from the delay time due to light-travel effects seen in the emission light curve (also Figure 1). Once the supernova exploded, the UV-flash started 1,00 0,75 0,50 intensity (normalized) 0,25 0 0 500 1000 time t/d ESA/Hubble tP1' tP2' Figure 1: left: HST picture of the SN 1987 A; right: emission light curve of the circumstellar [2, 3] propagating and reached the whole ring at the same time, which started emitting immediately. The additional distance x is linked to the delay time by the equation x = c · ∆t = c · (t 0 − t 0 ).
    [Show full text]
  • Remerciements – Unité 1
    TVO ILC SNC1D Remerciements Remerciements – Unité 1 Graphs, diagrams, illustrations, images in this course, unless otherwise specified, are ILC created, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. Intro Video, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. All title artwork and graphics, unless otherwise specified, Copyright © 2018The Ontario Educational Communications Authority. All rights reserved. Logo: Science Presse , Agence Science-Presse, URL: https://www.sciencepresse.qc.ca/, Accessed 14/01/2019. Logo: Curium, Curium, URL: https://curiummag.com/wp-content/uploads/2017/10/logo_ curium-web.png, Accessed 14/01/2019. Logo: Science Étonnante, David Louapre, URL: https://sciencetonnante.wordpress.com/, Accessed 20/03/2018, © 2018 HowStuffWorks, a division of InfoSpace Holdings LLC, a System1 Company. Blog, blogging and blogglers theme, djvstock/iStock/Getty Images Logo: Wordpress, WordPress.com, Automattic Inc., URL: https://wordpress.com/, Accessed 20/03/2018, © The WordPress Foundation. Logo: Wix, Wix.com, Inc., URL: https://static.wixstatic.com/ media/9ab0d1_39d56f21398048df8af89aab0cec67b8~mv1.png, Accessed 14/01/2019. Logo: Blogger, Blogger, Inc., ZyMOS, URL: https://commons.wikimedia.org/wiki/File:Blogger. svg, Accessed 20/03/2018, © Google LLC. HOME A film by Yann Arthus-Bertrand, GoodPlanet Foundation, Europacorp and Elzévir Films, URL: https://www.youtube.com/watch?v=GItD10Joaa0, Published 04/02/2009, Accessed 20/04/2018, Courtesy of the GoodPlanet
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • Phys 321: Lecture 7 Stellar EvoluOn
    Phys 321: Lecture 7 Stellar Evolu>on Prof. Bin Chen, Tiernan Hall 101, [email protected] Stellar Evoluon • Formaon of protostars (covered in Phys 320; briefly reviewed here) • Pre-main-sequence evolu>on (this lecture) • Evolu>on on the main sequence (this lecture) • Post-main-sequence evolu>on (this lecture) • Stellar death (next lecture) The Interstellar Medium and Star Formation the cloud’s internal kinetic energy, given by The Interstellar Medium and Star Formation the cloud’s internal kinetic energy, given by 3 K NkT, 3 = 2 The Interstellar MediumK andNkT, Star Formation = 2 where N is the total number2 ofTHE particles. FORMATIONwhere ButNNisis the just total OF number PROTOSTARS of particles. But N is just M Mc N c , Our understandingN , of stellar evolution has= µm developedH significantly since the 1960s, reaching = µmH the pointwhere whereµ is the much mean of molecular the life weight. history Now, of by a the star virial is theorem, well determined. the condition for This collapse success has been where µ is the mean molecular weight.due to advances Now,(2K< byU the in) becomes observational virial theorem, techniques, the condition improvements for collapse in our knowledge of the physical | | (2K< U ) becomes processes important in stars, and increases in computational2 power. In the remainder of this | | 3MckT 3 GMc chapter, we will present an overview of< the lives. of stars, leaving de(12)tailed discussions 2 µmH 5 Rc of s3oMmeckTspecia3l pGMhasces of evolution until later, specifically stellar pulsation, supernovae, The radius< may be replaced. by using the initial mass density(12) of the cloud, ρ , assumed here µmH 5 Rc 0 and comtop beac constantt objec throughoutts (stellar theco cloud,rpses).
    [Show full text]
  • Twenty Years of SN 1987A
    Astronomical Science Twenty Years of Supernova 1987A Claes Fransson1 Prize in 2002 (shared with Riccardo scope covers. Some of the smaller tele- Roberto Gilmozzi 2 Giacconi for X-ray astronomy and Ray- scopes took their chance. The 61-cm Per Gröningsson1 mond Davis Jr. for solar neutrinos). Bochum telescope on La Silla was used, Reinhard Hanuschik 2 The most important implication of the on a nearly daily basis for more than Karina Kjær 2 neutrinos was that it confirmed the a year, to measure optical spectroscopy Bruno Leibundgut 2 hydrodynamic core collapse, releasing with photometric accuracy. Since the Jason Spyromilio 2 about 3 × 1053 ergs of gravitational LMC is circumpolar for most southern energy, mainly in neutrinos of all kinds. observatories, this also meant that This confirmed the predictions by Col- we have an uninterrupted record of the 1 Stockholm University gate, Arnett and others from the 1960s. photometry and spectroscopy; else 2 ESO Among many other results, the few we would have missed part of the peak neutrinos showed that the electron-neu- phase, which lasted into May of 1987. trino mass has to be rather small (m ≤ By July, the first conference on SN 1987A ve The unique supernova SN 1987A has 20 eV, superseded in the meantime by had already taken place at ESO in Gar- been a bonanza for astrophysicists. direct experiments) as no time-delay ching (Danziger 1987) to be followed by It provided several observational ‘firsts’, effects could be measured. Also, the fact several others during that year and fol- like the detection of neutrinos from that there is no structure in the neutrino lowing years.
    [Show full text]
  • Curriculum Vitae of You-Hua Chu
    Curriculum Vitae of You-Hua Chu Address and Telephone Number: Institute of Astronomy and Astrophysics, Academia Sinica 11F of Astronomy-Mathematics Building, AS/NTU No.1, Sec. 4, Roosevelt Rd, Taipei 10617 Taiwan, R.O.C. Tel: (886) 02 2366 5300 E-mail address: [email protected] Academic Degrees, Granting Institutions, and Dates Granted: B.S. Physics Dept., National Taiwan University 1975 Ph.D. Astronomy Dept., University of California at Berkeley 1981 Professional Employment History: 2014 Sep - present Director, Institute of Astronomy and Astrophysics, Academia Sinica 2014 Jul - present Distinguished Research Fellow, Institute of Astronomy and Astrophysics, Academia Sinica 2014 Jul - present Professor Emerita, University of Illinois at Urbana-Champaign 2005 Aug - 2011 Jul Chair of Astronomy Dept., University of Illinois at Urbana-Champaign 1997 Aug - 2014 Jun Professor, University of Illinois at Urbana-Champaign 1992 Aug - 1997 Jul Research Associate Professor, University of Illinois at Urbana-Champaign 1987 Jan - 1992 Aug Research Assistant Professor, University of Illinois at Urbana-Champaign 1985 Feb - 1986 Dec Graduate College Scholar, University of Illinois at Urbana-Champaign 1984 Sep - 1985 Jan Lindheimer Fellow, Northwestern University 1982 May - 1984 Jun Postdoctoral Research Associate, University of Wisconsin at Madison 1981 Oct - 1982 May Postdoctoral Research Associate, University of Illinois at Urbana-Champaign 1981 Jun - 1981 Aug Postdoctoral Research Associate, University of California at Berkeley Committees Served:
    [Show full text]
  • An Artist's Revelation in a Walking Canvas 3 Tale of Ansel Adams
    An Artist’s Revelation in a Walking Canvas 3 Tale of Ansel Adams Negatives Grows Hazy 5 Galaxies of Wire, Canvas and Velvety Soot 8 Single Neurons Can Detect Sequences 10 Antibiotics for the Prevention of Malaria 12 Shared Phosphoproteome Links Remote Plant Species 14 Asteroid Found in Gravitational 'Dead Zone' Near Neptune 15 Scientists Test Australia's Moreton Bay as Coral 'Lifeboat' 17 Hexagonal Boron Nitride Sheets May Help Graphene Supplant Silicon 20 Geologists Reconstruct Earth's Climate Belts Between 460 and 445 Million Years Ago 22 Neurological Process for the Recognition of Letters and Numbers Explained 24 Certain Vena Cava Filters May Fracture, Causing Life-Threatening Complications 26 Citizen Scientists Discover Rotating Pulsar 28 Scientists Outline a 20-Year Master Plan for the Global Renaissance of Nuclear Energy 30 Biochar Can Offset 1.8 Billion Metric Tons of Carbon Emissions Annually 33 Research Reveals Similarities Between Fish and Humans 36 Switchgrass Lessens Soil Nitrate Loss Into Waterways, Researchers Find 38 Free Statins With Fast Food Could Neutralize Heart Risk, Scientists Say 40 Ambitious Survey Spots Stellar Nurseries 42 For Infant Sleep, Receptiveness More Important Than Routine 44 Arctic Rocks Offer New Glimpse of Primitive Earth 46 Learn More in Kindergarten, Earn More as an Adult 48 Giant Ultraviolet Rings Found in Resurrected Galaxies 50 Faster DNA Analysis at Room Temperature 53 Biodiversity Hot Spots More Vulnerable to Global Warming Than Thought 55 Women Feel More Pain Than Men 57 Are We Underestimating
    [Show full text]
  • 2Df-Aaomega Spectroscopy of Massive Stars in the Magellanic Clouds the North-Eastern Region of the Large Magellanic Cloud?,??
    A&A 584, A5 (2015) Astronomy DOI: 10.1051/0004-6361/201525882 & c ESO 2015 Astrophysics 2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds The north-eastern region of the Large Magellanic Cloud?;?? C. J. Evans1, J. Th. van Loon2, R. Hainich3, and M. Bailey4;2 1 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK e-mail: [email protected] 2 Astrophysics Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratories, Keele University, ST5 5BG, UK 3 Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany 4 Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park ic2, 146 Brownlow Hill, Liverpool L3 5RF, UK Received 13 February 2015 / Accepted 5 August 2015 ABSTRACT We present spectral classifications from optical spectroscopy of 263 massive stars in the north-eastern region of the Large Magellanic Cloud. The observed two-degree field includes the massive 30 Doradus star-forming region, the environs of SN1987A, and a number of star-forming complexes to the south of 30 Dor. These are the first classifications for the majority (203) of the stars and include eleven double-lined spectroscopic binaries. The sample also includes the first examples of early OC-type spectra (AAΩ 30 Dor 248 and 280), distinguished by the weakness of their nitrogen spectra and by C IV λ4658 emission. We propose that these stars have relatively unprocessed CNO abundances compared to morphologically normal O-type stars, indicative of an earlier evolutionary phase. From analysis of observations obtained on two consecutive nights, we present radial-velocity estimates for 233 stars, finding one apparent single-lined binary and nine (>3σ) outliers compared to the systemic velocity; the latter objects could be runaway stars or large-amplitude binary systems and further spectroscopy is required to investigate their nature.
    [Show full text]