Development of an Experimental Platform for Architectural-Scale Robotics: the Digital Construction Platform by Julian Leland Bell

Total Page:16

File Type:pdf, Size:1020Kb

Development of an Experimental Platform for Architectural-Scale Robotics: the Digital Construction Platform by Julian Leland Bell Development of an Experimental Platform for Architectural-Scale Robotics: The Digital Construction Platform by Julian Leland Bell B.S., Engineering and Public Policy, Swarthmore College, 2012 Submitted to the Department of Mechanical Engineering in Partial Fulfilment of the Requirements for the Degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology September 2017 2017 Massachusetts Institute of Technology. All rights reserved Signature of Author: .................................................................................................................... Department of Mechanical Engineering August 11th, 2017 Certified by: ................................................................................................................................. Neri Oxman Associate Professor of Media Arts and Sciences Thesis Co-Supervisor Certified by: ................................................................................................................................. David L. Trumper Professor of Mechanical Engineering Thesis Co-Supervisor Accepted by: ................................................................................................................................ Rohan Abeyaratne Professor of Mechanical Engineering Chairman, Committee on Graduate Students 1 2 Development of an Experimental Platform for Architectural-Scale Robotics: The Digital Construction Platform by Julian Leland Bell Submitted to the Department of Mechanical Engineering on August 18, 2017 in partial fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract This thesis describes the development and refinement of the second prototype of the Digital Construction Platform, or DCP. The DCP is a serial-link micro-macro manipulator robot intended for architectural-scale fabrication tasks, originally conceived of and presented by Keating in [1]. It is envisioned primarily as a platform for experimentation in automated construction, rather than as a closed, single-application system. In the work described here, a second prototype of the DCP – referred to as the DCP v.2 – was developed over two distinct periods. During the first period, from September 2015 through August 2016, the DCP v.2 system was assembled and a basic command and control architecture was developed to operate it. A series of experiments were conducted to examine the system’s performance, including pose repeatability testing in accordance with the ISO 9283-1998 robot performance characterization standard; and the fabrication of an architectural-scale dome structure from spray polyurethane foam. During the second period, from September 2016 through August 2016, the DCP v.2 system and command/control architecture were modified in a variety of ways to improve performance, reliability, accessibility to new users, and adaptability to new tasks. These modifications included transition to a modular, hard-real-time control architecture; installation of additional sensor systems on the vehicle; and the refinement and standardization of the system’s toolpath generation architecture. The impact of this work was demonstrated through a second set of demonstrations, including large-scale light paintings leveraging the new control architecture’s capabilities; and re-characterization of the system’s ISO 9283 pose repeatability, demonstrating a 59% improvement in this metric. Thesis Co-Supervisor: Dr. Neri Oxman Title: Associate Professor of Media Arts and Sciences, Program in Media Arts and Sciences Thesis Co-Supervisor: Dr. David Trumper Title: Professor of Mechanical Engineering, Department of Mechanical Engineering 3 Acknowledgements My path through this project begins with the DCP team. Steve Keating is the original inventor of the DCP and Print-in-Place concepts – basically, all the really good ideas here – and led the DCP project through August 2016. It is thanks to him that I have had the opportunity to be a part of this incredible project, and to help turn these visions into reality: I am deeply grateful. Along the way, many other people have lent their talents to the project, including Levi Cai, Selam Gano, John Zhang, Barrak Darweesh, Owen Trueblood, Damien Martin, and Grant Sellers. Thank you all for your help, patience, guidance and good humour. Second, I would like to acknowledge my advisors: Dr. Neri Oxman and Dr. David Trumper. In coming to MIT, I wanted to grow as an engineer, but also to reach beyond my discipline in my work. The two of you have made this possible, enabling me to pursue a mechanical engineering degree while working on the DCP project, and providing equal parts technical rigor and multidisciplinary grace in your mentorship. It has been an honor to learn from each of you. The Mediated Matter Group has also played an instrumental role in helping me develop beyond being “just an engineer.” I doubt I will ever again have the opportunity to surround myself with such intellectual diversity, and I cannot thank you all enough for inviting me to be a part of this rare team. MIT is much more than just students and professors. I would particularly like to thank the many shop masters I have bothered over the past two years, including John DiFrancesco and Tom Lutz at the Media Lab shop; Tara Fadenrecht at the DMSE shop; Mark Belanger at Edgerton; and Jen O’Brien at the Architecture shop. Additionally, as with any large institution there are a small set of people at MIT who do a huge amount to keep the entire operation running smoothly: Leslie Reagan in Mechanical Engineering, Keira Horowitz at the Media Lab, and the indomitable Kelly Donovan at Mediated Matter. Thank you all for your patience, help and kindness. A range of companies and organizations have helped make my work with the DCP possible through their support, including the following: - Altec, Inc.: I am particularly grateful to David Boger, whose persistent belief in our vision for the DCP has made realizing that vision possible. I would also like to thank the many Altec employees who have generously given their time to support our work, including Ali Khodadadi, Jessica Patel, Dan Nelson, Mike Whittaker, Jesse Thompson, and Tim Mourlam. 4 - Dow Chemical: Dow Chemical generously donated the FROTH-PAK™ spray foam insulation used in the dome print. I would like to particularly thank EJ Herst, Sven Claessens, and Ed Greer for their support in making this happen. - Autodesk: Finally, for the past year, the DCP has been housed at the Autodesk BUILD Space. I would like to thank Rick Rundell, BUILD Space mastermind, for giving me the opportunity to work in this amazing environment. I would also like to thank the incomparable BUILD Space shop team for their support and kindness, including Adam Allard, Athena Moore, Taylor Tobin, Tim Brinkerhoff, Joe Aronis, and Josh Aigen. I have been lucky to have a team of wise engineers as mentors and advisors who have helped me get to – and through – MIT, including Dr. Faruq Siddiqui, Dr. Lynne Molter, Dr. Erik Cheever, Dr. Bill Townsend, Dave Wilkinson, and Scott Harris. Your counsel and support is invaluable, and I look to your example as I begin to mentor the next generation of engineers. From an early age, I was taught that education is beyond value. Thanks to the hard work and sacrifice of my parents and grandparents, I have had the privilege to learn at some of the finest institutions in the world, for which I cannot overstate my gratitude. I am particularly grateful to my parents, Annette and Jonathan Leland, who have always given me their unwavering support throughout my educational journey. Finally, to my wife, Avery Davis Bell. The life we continue to build together is my finest project, and I could not ask for a better partner to build it with. 5 Author’s Note This thesis has turned out to be quite long, which I think is unfortunately more of a reflection of my limitations as a writer than the magnitude of my contributions. However, this length allows for a corresponding degree of detail to describe the work I have done on the Digital Construction Platform (DCP). Particularly for a project where my primary objective has been to provide a tool that others can use, my hope is that this detail will prove useful for future users and developers of the DCP system. In light of this, there are two ways this thesis may be read: - For the reader who is interested in learning about the DCP and its contributions to the field of automated construction, I recommend reading Chapter 1, followed by the System Implementations sections in Chapters 2 and 3. This provides a brief review of the history of automated construction as well as the early development of the DCP concept; followed by detailed descriptions of the tasks the DCP v.2 system has been used for. The reader may also wish to refer to [2] and [3] for further information about the project and its history. - Future users of the DCP v.2 platform are advised to skip directly to Chapter 3, and use it as a guide to explore the dcpctrl_v2 repository, which hosts the DCP’s software architecture. Other sections of this thesis may be useful as reference sources, but this chapter contains the material most relevant to the DCP as it exists in August 2017. I hope that this is helpful. This thesis was formatted using the LaTeX 7 template by Sebastian Nilsson [4]. 6 Dedicated to the memory of my grandfather, Benjamin Towne Leland, engineer, aviator and eternally curious mechanical mind, who would have thought this project was pretty nifty. 7 Table
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Surface Newsletter // Summer 2021 New Application 3
    SUMMER 2021 Newsletter SURFSurface imaging, analysis & metrologyACE news from Digital Surf Join us! www.digitalsurf.com USING FIB-SEM TOMOGRAPHY TO ANALYZE THE CHEMICAL IN THIS COMPOSITION OF A MAGNET ISSUE NEW APPLICATION Investigating next-gen engine components at the nanoscale CUSTOMER STORY Intra-oral scanners for tooth erosion detection RESEARCH Analyzing data from a large- scale multi-instrument project EXPLAINER What are multi-channel cubes? A research team based at JEOL France recently studied the composition of magnet material used SURFACE METROLOGY in the development of DC motors. A FIB-SEM tech- Q&A Revision of ISO 25178-2: nique coupled with Mountains® 9 software analysis what’s coming? provided accurate, visual results. … Turn to page 2 … Register for our webinar Watch our The Microscopy & Microanalysis 2021 Conference & Exhibit will be a virtual edition. Come visit our online booth on August 2-5 and sign- WEBINARS up for the webinar we’ll be giving on “Chemical and morphological analysis in SEM”: bit.ly/3kANjN3 NEWSLETTER // DIGITAL SURF // SUMMER 2021 2 NEW APPLICATION INVESTIGATING NEXT-GEN ENGINE COMPONENTS AT THE NANOSCALE Currently, one of the major challenges in the automotive industry is the development of di- rect current (DC) electrical motors. A DC vehicle motor incorporates strong magnetic fields at the rotor location. The higher the magnetic field in a reduced volume, the better the engine efficiency factor. A research team based at JEOL France re- cently studied the composition of such a magnet using a FIB-SEM technique coupled with a specialized analysis software package. COMPOSITION OF A CERIUM- (a) ALLOYED Nd-Fe-B MAGNET The key component of the engine is the perma- nent magnet located inside the rotor assembly which must have very high efficiency.
    [Show full text]
  • 3. Morphological Method Based on the Alpha Shape
    University of Huddersfield Repository Lou, Shan Discrete algorithms for morphological filters in geometrical metrology Original Citation Lou, Shan (2013) Discrete algorithms for morphological filters in geometrical metrology. Doctoral thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/18103/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ DISCRETE ALGORITHMS FOR MORPHOLOGICAL FILTERS IN GEOMETRICAL METROLOGY SHAN LOU A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Huddersfield May 2013 1 COPYRIGHT STATEMENT i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes.
    [Show full text]
  • Roughness Control and Surface Texturing in Lubrication 8H35 9H15 Keynote Speaker D
    1 Web site www.metprops2019.org #Met&PropsLYON 2 Local Organising Committee CHAIR: Prof. Hassan Zahouani (University of Lyon, France - Halmstad University, Sweden) Prof. Cyril-Pailler Mattéi (University of Lyon, France) Prof. Haris procopiou (Université Paris I, Panthéon-Sorbonne, France) Prof Philippe Kapsa (CNRS, France) Dr. Roberto Vargiolu (Univesity of Lyon, France) Dr. Coralie Thieulin (University of Lyon, France) International Program Committee Prof. Liam Blunt (University of Huddersfield, UK) Prof. Christopher Brown (WPI Worcester Polytech Institute, USA) Prof. Thomas Kaiser (University of Hamburg, Germany) Prof. Mohamed El Mansori (Ecole Nationale Supérieure d'Arts et Métiers (ENSAM), France) Prof. Richard Leach (University of Nottingham, UK) Prof. Bengt-Göran, BG, Rosén (Halmstad University, Sweden) Dr. Ellen Schulz-Kornas, (Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Germany) Prof. Tom R Thomas (Halmstad University, Sweden) Prof. Michael Wieczorowski (University of Poznan, Poland) Prof. Hassan Zahouani (University of Lyon - ENISE - Ecole Centrale de Lyon, France) International Scientific Committee A. Archenti, Royal Institute of Technology, Sweden K. Adachi, Tohoku University, Japan F. Blateyron, Digital Surf, France L. Blunt, University of Huddersfield, UK D. Butler, Nanyang Tech. Uni. NTU, Singapore C. Boulocher , Veagro-sup , France C. Brown, Worcester Polytechic Institute, USA M. El-Mansori, Ecole Nationale Superieure d'Arts et Metiers , France C. Evans, University of North Carolina - Charlotte, USA C. Giusca, National Physical Laboratory, UK S. Gröger, Chemnitz University of Technology, Germany W. Hongjun, Beijing Information Science & Technology University, China T. Kaiser University of Hamburg, Germany M. Kalin, University of Lubljana, Slovenia P. Kapsa, CNRS, France P. Krajnik, Chalmers University of Technology, Sweden R.
    [Show full text]
  • 3D Laser Scanning for Heritage Advice and Guidance on the Use of Laser Scanning in Archaeology and Architecture Summary
    3D Laser Scanning for Heritage Advice and Guidance on the Use of Laser Scanning in Archaeology and Architecture Summary The first edition of 3D Laser Scanning for Heritage was published in 2007 and originated from the Heritage3D project that in 2006 considered the development of professional guidance for laser scanning in archaeology and architecture. Publication of the second edition in 2011 continued the aims of the original document in providing updated guidance on the use of three-dimensional (3D) laser scanning across the heritage sector. By reflecting on the technological advances made since 2011, such as the speed, resolution, mobility and portability of modern laser scanning systems and their integration with other sensor solutions, the guidance presented in this third edition should assist archaeologists, conservators and other cultural heritage professionals unfamiliar with the approach in making the best possible use of this now highly developed technique. This document has been prepared by Clive Boardman MA MSc FCInstCES FRSPSoc of Imetria Ltd/University of York and Paul Bryan BSc FRICS.This edition published by Historic England, January 2018. All images in the main text © Historic England unless otherwise stated. Please refer to this document as: Historic England 2018 3D Laser Scanning for Heritage: Advice and Guidance on the Use of Laser Scanning in Archaeology and Architecture. Swindon. Historic England. HistoricEngland.org.uk/advice/technical-advice/recording-heritage/ Front cover: The Iron Bridge is Britain’s best known industrial monument and is situated in Ironbridge Gorge on the River Severn in Shropshire. Built between 1779 and 1781, it is 30m high and the first in the world to use cast iron construction on an industrial scale.
    [Show full text]
  • Diapositive 1
    MountainsMap® SPM Surface metrology software for scanning probe microscopes Highly intuitive, state of the art imaging and analysis MountainsMap® SPM software is a best in class solution for Powered by industry-standard Mountains Technology®, SPM imaging and analysis for nanotechnology and MountainsMap® SPM runs in a highly intuitive desktop nanoscience applications . It inputs multi-channel images publishing environment that takes all of the pain out of (topography, phase, deflection, etc.) from SPM’s (AFM’s, creating a surface metrology report. The standard STM’s, NSOM’s). You can manipulate the images MountainsMap® SPM software can be enhanced by adding simultaneously, overlay any image (for example phase) on optional modules for surface stitching (the automatic the surface topography to facilitate the study of correlations, assembly of multiple surface into a single surface), grains and of course study any image independently. Intelligent and particles analysis, force spectroscopy, advanced surface filters ensure that you see high quality images of everything texture analysis, nano-contour analysis, spectral analysis and that the SPM has measured. You carry out geometric filtering, the analysis of surface evolution, wavelets analysis, analysis, analysis of roughness and surface texture, image co-localization and statistics. Report functional analysis and more, all in accordance with the latest standards and methods. Analyze Analyze Visualize Visualize Powered by Mountains Technology® Work comfortably in a desktop publishing environment with full metrological traceability Visual analysis reports Powerful automation features Working in one of six European languages, Japanese, Any step can be fine tuned at any time and all of the Korean or Mandarin Chinese, you build a visual analysis dependent steps are recalculated automatically.
    [Show full text]
  • Give Your Profilometer the Very Best in Surface Analysis Software
    www.digitalsurf.com Give your profilometer the very best in surface analysis software What’s inside MountainsMap® 8? Used by engineers, scientists and metrologists worldwide, MountainsMap® software is the gold standard in profile (2D) and areal (3D) surface texture analysis for use with profilometers and other surface measuring instruments. Selected dedicated features Ra Surface roughness Surface geometry Calculate roughness and surface texture Analyze surface geometry: calculate dis- parameters according to ISO 25178, ISO tances, areas, angles, step heights, volumes 4287, ISO 13565 and other standards. and much more. New in version 8: Freeform surface d (shell) analysis Advanced contour Sub-surface analysis Apply geometric dimensioning and toler- Partition regions of interest, then study them ancing (GD&T). Fit elements, calculate form in the same way as complete measured deviation and compare with CAD models. surfaces. Data correction High quality 3D views Core benefits Prepare your measured surface data for View surface topography in high quality 3D MountainsMap® 8 is based on Digital Surf’s Mountains® software platform, widely recognized analysis by removing outliers and noise. and visualize profiles, images, series etc. as the industry-standard and tool of choice for surface metrology and image analysis. It is our goal to provide high-performance yet easy-to-use tools to metrologists, researchers and engineers addressing the scientific challenges of tomorrow. Automotive Document layout Total traceability Aerospace Metallurgy Organize steps of your surface data pro- The analysis workflow lets you see and Manufacturing cessing on 1+ pages & publish them directly revert back to analysis steps applied to data Data storage Semiconductors Powerful automation Works with any profiler Materials science Green energy Automate your repetitive work and speed MountainsMap® can process data from any up your batch analysis process profilometer, 2D or 3D, contact or optical Optics Etc.
    [Show full text]
  • Présentation Powerpoint
    MountainsMap® Universal Modular surface imaging, analysis & metrology software for confocal microscopes - optical interferometric microscopes - scanning probe microscopes – contact and non-contact profilometers – form & vision systems – more + extensions for scanning electron microscopes - hyperspectral microscopes Incremental customizable software for microscopes and profilers Cutting edge surface imaging and overlays to speed up location of surface features Correction of measurement defects and anomalies – intelligent image enhancement State of the art analysis of surface geometry and texture at any scale Full set of optional modules for advanced applications Smart metrology report creation with powerful automation features Easy integration into any research or production environment MountainsMap Universal See everything that you measure Real time 3D imaging of surface topography Zoom in, rotate and amplify heights in real time. Define a flight plan, fly over features of interest and Apply image enhancement tools. save your flight as a video for presentations Choose the best lighting conditions & renderings. Extract 2D profiles from a 3D surface for visualization Define your own color palette. and analysis. Topography of a US coin measured using a scanning profiler equipped with a chromatic single point sensor: MountainsMap Universal® easily manages not only non-rectangular data, like this coin, but also more complex or random patterns containing measured/non- measured areas. This is essential when working with optical profilers that generate data sets with missing points or outliers. Data preparation and correction prior to analysis Normalize spatial position Level with respect to the whole surface or selected zone(s). Flip and rotate the surface. Extract regions of interest for independent analysis. Eliminate data acquisition defects Correct/remove bad lines (scanning profilers).
    [Show full text]
  • Diapositive 1
    MountainsMap® Imaging Topography Surface metrology software for 3D optical microscopes State of the art surface analysis with visual metrology reports Powered by industry-standard Mountains Technology®, You can use MountainsMap® Imaging Topography to MountainsMap® Imaging Topography is a best in class visualize 3D surface topography in real time, assemble solution for laboratories, research institutes and industrial multiple surfaces into a single surface to increase field of facilities that design, test or manufacture functional surfaces. view, analyze sub-surface layers in the same way as full The software provides a comprehensive solution for surfaces, and generate the latest ISO 25178 3D parameters. visualizing and analyzing surface texture and geometry and With the 3D color image optional module you can input multi- for generating detailed visual surface metrology reports. It is channel topography, color and intensity images, manipulate dedicated to 3D optical microscopes including confocal them simultaneously, and view the topography in true color. microscopes and optical interferometric microscopes (white There are also optional modules for advanced surface texture light interferometers) as well as infinite focus and digital analysis, contour analysis, grains and particles analysis, holographic microscopes. spectral analysis, statistical analysis and more. Report Analyze Analyze Visualize Visualize Powered by Mountains Technology® Highly intuitive desktop publishing environment Full metrological traceability Visual analysis reports Powerful automation features Working in one of six European languages, Japanese, Any step can be fine tuned at any time and all of the Korean or Mandarin Chinese, you build a visual analysis dependent steps are recalculated automatically. Common report frame by frame, page by page, carrying out graphical sequences of steps can be saved in a library and inserted and analytical studies of the surface under study, applying into any document at any time to gain time.
    [Show full text]
  • Analytical and Simulation-Based Prediction of Surface Roughness for Micromilling Hardened HSS
    Journal of Manufacturing and Materials Processing Article Analytical and Simulation-Based Prediction of Surface Roughness for Micromilling Hardened HSS Alexander Meijer 1,*, Jim A. Bergmann 2 , Eugen Krebs 1, Dirk Biermann 2 and Petra Wiederkehr 1,2 1 Institute of Machining Technology, TU Dortmund University, 44227 Dortmund, Germany 2 Virtual Machining, Chair for Software Engineering, TU Dortmund University, 44227 Dortmund, Germany * Correspondence: [email protected]; Tel.: +49-231-755-5820 Received: 28 June 2019; Accepted: 8 August 2019; Published: 12 August 2019 Abstract: The high quality demand for machined functional surfaces of forming tools, entail extensive investigations for the adjustment of the manufacturing process. Since the surface quality depends on a multitude of influencing factors in face micromilling, a complex optimization problem arises. Through analytical and simulative approaches, the scope of the experimental investigation to meet the requirements for surface roughness can be significantly reduced. In this contribution, both analytical and simulation-based approaches are presented in the context of predicting the roughness of a machined surface. The consideration of actual tool geometry and shape deviations are used in a simulation system to achieve the agreement with experimental results. Keywords: surface roughness prediction; geometrical simulation; micromilling 1. Introduction Surface roughness is an important quality criterion of functional components [1]. To achieve low roughness values in manufacturing process chains, finishing operations can be used. Thereby, additional manufacturing steps, like polishing, are often costly and still need to be carried out manually. To design an optimized manufacturing line, the resulting roughness values of each process have to be known. However, due to the dependence on a high number of influencing factors in each machining step, the prediction of these values is challenging.
    [Show full text]
  • Mountains® 7.3 Release
    Fall 2015 Surface imaging, analysis & metrology news from Digital Surf ® In this issue Mountains 7.3 release: all the key features explained Whatever your microscope or profilometer, the new Mountains® What’s new in 7.3 ? 7.3 update to be released this winter has something for you. - for Surface New features include automatic detection of step heights on topography surfaces, revolutionary SEM image colorization, options for - for Scanning electron advanced profile analysis and much, much more. microscopy - for Profile analysis - for Scanning Probe Microscopy - General features p. 2 Research Using Mountains® to process STM/STS measurements p. 6 Automatic step height detection Surface metrology Q&A Profile standards are set to change: what you need to know p. 8 Read more overleaf News in brief A look back at this summer's shows p. 10 Coming soon Deconvoluting a multi-peak curve p. 11 Probing electrical structure at the Metrologists: how will the upcoming atomic scale: Mountains® helps revision of profile parameters researchers reveal hidden details standards affect you? p. 6 p. 8 Join us on Facebook, PLUS LinkedIn and YouTube! Visitors to the 2015 MRS Fall Meeting & Exhibit in Boston, Massachusetts, USA (November 29 - December 4) are invited to preview new Mountains® 7.3 features at Digital Surf's booth 704. www.digitalsurf.com 2 MOUNTAINS 7.3 WHAT’S NEW FOR SURFACE TOPOGRAPHY? FACTS Step-height calculation Just got easier! Step height calculation has never The color-code allows you to quickly been easier thanks to Mountains® find measurements related to each new automatic detection method. plane in the parameters table.
    [Show full text]
  • Nanosurf Report History V6.Pdf
    Digital Surf 16 rue Lavoisier, 25000 Besançon, France www.digitalsurf.fr [email protected] Tel : +33 38150 4800 Release Notes Fax : +33 38150 9224 Mountains v 6.1.5905 released on MARCH 4th, 2011 March 4th 2011 Version 6.1.5905 New features Wavelets Module Visualize the scales where phenomena occur on 2D (x, z) profiles using one or more wavelet families (in many case with a selectable index or number of coefficients): Coiflet (1-5), Daubechies (1-10), Discrete Meyer, Gauss (1-8), Mexican Hat, Morlet and Symlet (1-8). Specify the decomposition range (the upper and lower limits of the scale shown on the Y axis). User interface in Brazilian In Mountains 6.1 the user interface is available in Brazilian Portuguese bringing the number of Portugese languages supported to ten. Note that while the user interface is available in ten languages, the Help files are displayed in English when Italian, Chinese, Polish, Korean and Portuguese are selected. Force spectrocopy Module Normalize force curve baselines using the force curve normalization module. Calibrate cantilever sensitivity and specify the spring constant. Image Co-localization The main application of the module is to automatically co-localize a simultaneous AFM module topography image with one or more fluorescence images, for example in order to obtain useful information on cell morphology. Color fluorescence images by selecting one of ten laser wavelengths. Fine tune the size and rotation of the overlaid topography image if required, together with its transparency. Lead Analysis (Twist) Implements 2nd generation lead analysis in the automotive industry in accordance with Mercedes- Module Benz Engineering Standard (Measurement and Evaluation Method for the Assessment of Lead- Reduced Dynamic Sealing Surfaces, 2009), widely adopted in the automotive industry.
    [Show full text]