The Biology of Lupinus L. (Lupin Or Lupine)

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Lupinus L. (Lupin Or Lupine) The Biology of Lupinus L. (lupin or lupine) Photograph courtesy of Alan Meldrum, Pulse Australia Version 1: April 2013 This document provides an overview of baseline biological information relevant to risk assessment of genetically modified forms of the species that may be released into the Australian environment. For information on the Australian Government Office of the Gene Technology Regulator visit <http://www.ogtr.gov.au> The Biology of Lupinus L. (lupin or lupine) Office of the Gene Technology Regulator The Biology of Lupinus L. (Lupin or Lupine) Office of the Gene Technology Regulator TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................ 1 PREAMBLE ................................................................................................................................................... 3 SECTION 1 TAXONOMY ...................................................................................................................... 3 SECTION 2 ORIGIN AND CULTIVATION ......................................................................................... 4 2.1 CENTRE OF DIVERSITY AND DOMESTICATION ............................................................ 4 2.2 COMMERCIAL USES ................................................................................................. 5 2.3 CULTIVATION IN AUSTRALIA ................................................................................... 6 2.3.1 Commercial propagation ........................................................................... 8 2.3.2 Scale of cultivation .................................................................................... 8 2.3.3 Cultivation practices ................................................................................. 9 2.4 CROP IMPROVEMENT ............................................................................................. 10 2.4.1 Breeding .................................................................................................. 10 2.4.2 Genetic modification ................................................................................ 11 SECTION 3 MORPHOLOGY .............................................................................................................. 13 3.1 PLANT MORPHOLOGY ............................................................................................ 13 3.1.1 Root ........................................................................................................ 14 3.1.2 Stem ......................................................................................................... 14 3.1.3 Leaf ......................................................................................................... 14 3.2 REPRODUCTIVE MORPHOLOGY ............................................................................... 14 SECTION 4 DEVELOPMENT ............................................................................................................. 15 4.1 REPRODUCTION..................................................................................................... 15 4.1.1 Asexual reproduction ............................................................................... 15 4.1.2 Sexual reproduction ................................................................................. 16 4.2 POLLINATION AND POLLEN DISPERSAL ................................................................... 17 4.3 SEED DEVELOPMENT AND SEED DISPERSAL ............................................................. 18 4.3.1 Seed development ..................................................................................... 18 4.3.2 Seed dispersal .......................................................................................... 18 4.4 SEED DORMANCY AND GERMINATION..................................................................... 19 4.5 VEGETATIVE GROWTH ........................................................................................... 20 SECTION 5 BIOCHEMISTRY............................................................................................................. 21 5.1 NUTRIENT COMPONENTS OF THE LUPIN SEED .......................................................... 21 5.1.1 Proteins and amino acids ......................................................................... 22 5.1.2 Carbohydrates ......................................................................................... 22 5.1.3 Lipids ....................................................................................................... 23 5.2 TOXINS ................................................................................................................. 23 5.2.1 Alkaloids .................................................................................................. 23 5.2.2 Phomopsins.............................................................................................. 24 5.3 ALLERGENS .......................................................................................................... 25 5.4 OTHER UNDESIRABLE PHYTOCHEMICALS ................................................................ 25 5.4.1 Soluble polysaccharides and oligosaccharides .......................................... 26 5.4.2 Phytic acid ............................................................................................... 26 5.4.3 Saponins .................................................................................................. 26 5.5 BENEFICIAL PHYTOCHEMICALS .............................................................................. 26 SECTION 6 ABIOTIC INTERACTIONS ............................................................................................ 27 6.1 ABIOTIC STRESSES................................................................................................. 27 6.1.1 Nutrient stress .......................................................................................... 27 6.1.2 Temperature stress ................................................................................... 28 6.1.3 Water stress ............................................................................................. 29 6.1.4 Other stresses........................................................................................... 30 6.2 ABIOTIC TOLERANCES ........................................................................................... 30 1 The Biology of Lupinus L. (Lupin or Lupine) Office of the Gene Technology Regulator SECTION 7 BIOTIC INTERACTIONS ............................................................................................... 30 7.1 WEEDS ................................................................................................................. 30 7.2 PESTS AND DISEASES ............................................................................................. 31 7.2.1 Pests ....................................................................................................... 31 7.2.2 Diseases .................................................................................................. 32 7.3 OTHER BIOTIC INTERACTIONS ................................................................................ 33 SECTION 8 WEEDINESS .................................................................................................................... 33 8.1 WEEDINESS STATUS ON A GLOBAL SCALE ............................................................... 33 8.2 WEEDINESS STATUS IN AUSTRALIA ........................................................................ 34 8.2.1 Weediness in agricultural ecosystems ....................................................... 34 8.2.2 Weediness in natural ecosystems .............................................................. 35 8.3 CONTROL MEASURES ............................................................................................. 35 SECTION 9 POTENTIAL FOR VERTICAL GENE TRANSFER ...................................................... 36 9.1 INTRASPECIFIC CROSSING ...................................................................................... 36 9.2 NATURAL INTERSPECIFIC CROSSING ....................................................................... 36 9.3 CROSSING UNDER EXPERIMENTAL CONDITIONS....................................................... 37 9.3.1 Crossing among New World species ......................................................... 37 9.3.2 Crossing among Old World species .......................................................... 37 9.3.3 Intergeneric crossing................................................................................ 38 REFERENCES ............................................................................................................................................. 39 APPENDICES............................................................................................................................................... 61 2 The Biology of Lupinus L. (Lupin or Lupine) Office of the Gene Technology Regulator PREAMBLE This document describes the biology of Lupinus L., with particular reference to the Australian environment, cultivation and use. Information included relates to the taxonomy and origins of cultivated Lupinus species, general descriptions of their morphology, reproductive biology, biochemistry, and biotic and abiotic interactions. This document also addresses the potential for gene transfer to closely related species. The purpose of this document
Recommended publications
  • Pollinator–Friendly Parks
    POLLINATOR–FRIENDLY PARKS How to Enhance Parks, Gardens, and Other Greenspaces for Native Pollinator Insects Matthew Shepherd, Mace Vaughan, and Scott Hoffman Black The Xerces Society for Invertebrate Conservation, Portland, OR The Xerces Society for Invertebrate Conservation is an international, nonprofit, member–supported organiza- tion dedicated to preserving wildlife and its habitat through the conservation of invertebrates. The Society promotes protection of invertebrates and their habitat through science–based advocacy, conservation, and education projects. Its work focuses on three principal areas—endangered species, watershed health, and pollinator conservation. Copyright © 2008 (2nd Edition) The Xerces Society for Invertebrate Conservation. 4828 SE Hawthorne Boulevard, Portland, OR 97215 Tel (503) 232-6639 Fax (503) 233-6794 www.xerces.org Acknowledgements Thank you to Bruce Barbarasch (Tualatin Hills Park & Recreation District, OR) and Lisa Hamerlynck (City of Lake Oswego, OR) for reviewing early drafts. Their guidance and suggestions greatly improved these guide- lines. Thank you to Eric Mader and Jessa Guisse for help with the plant lists, and to Caitlyn Howell and Logan Lauvray for editing assistance. Funding for our pollinator conservation program has been provided by the Bradshaw-Knight Foundation, the Bullitt Foundation, the Columbia Foundation, the CS Fund, the Disney Wildlife Conservation Fund, the Dudley Foundation, the Gaia Fund, NRCS Agricultural Wildlife Conservation Center, NRCS California, NRCS West National Technical Support Center, the Panta Rhea Foundation, the Richard and Rhoda Goldman Founda- tion, the Turner Foundation, the Wildwood Foundation, and Xerces Society members Photographs We are grateful to Jeff Adams, Scott Bauer/USDA–ARS, John Davis/GORGEous Nature, Chris Evans/ www.forestryimages.com, Bruce Newhouse, Jeff Owens/Metalmark Images, and Edward S.
    [Show full text]
  • Final Report Template
    Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Cusick's Lupine (Lupinus Lepidus Var
    Cusick's lupine (Lupinus lepidus var. cusickii) ENDANGERED Flowers (left), habit (center), and habitat (right) of Cusick’s lupine. Photos by Robert Meinke (left and right) and Rebecca Currin (center). If downloading images from this website, please credit the photographer. Family Fabaceae Taxonomic notes Synonyms: Lupinus cusickii, L. aridus var. cusickii, L. lepidus ssp. cusickii The genus Lupinus poses many taxonomic challenges due to the extremely variable nature of the species and intergradations between recognized taxa, a situation that in many instances is likely the result of or complicated by free interbreeding that has obscured species boundaries. Lupine populations designated by the epithet cusickii have been treated in a myriad of ways: as a species, as a variety of L. aridus, and as a subspecies, variety, or synonym of L. lepidus. Plant description Cusick’s lupine is an erect, caespitose perennial 2-11 cm tall. Stems are sparingly branched at the base, with upper stem internodes 1-3 cm long. Upper stem nodes often bear a lateral branch terminating in an inflorescence. Leaves are mainly basal, the petioles 2-6 cm long, the 5-9 oblanceolate leaflets abundantly hairy on both surfaces, 0.7-1.9 cm long by 0.3-0.7 cm wide. Peduncles are 1-6 cm long, subequal to or shorter than the racemes. Racemes are 1-6 cm long, and held at about the height of the vegetative crown when mature. Flowers are crowded and whorled, borne on slender pedicels 0.4-0.5 cm long at anthesis. The calyx is hairy and not saccate or spurred.
    [Show full text]
  • Vascular Plants at Fort Ross State Historic Park
    19005 Coast Highway One, Jenner, CA 95450 ■ 707.847.3437 ■ [email protected] ■ www.fortross.org Title: Vascular Plants at Fort Ross State Historic Park Author(s): Dorothy Scherer Published by: California Native Plant Society i Source: Fort Ross Conservancy Library URL: www.fortross.org Fort Ross Conservancy (FRC) asks that you acknowledge FRC as the source of the content; if you use material from FRC online, we request that you link directly to the URL provided. If you use the content offline, we ask that you credit the source as follows: “Courtesy of Fort Ross Conservancy, www.fortross.org.” Fort Ross Conservancy, a 501(c)(3) and California State Park cooperating association, connects people to the history and beauty of Fort Ross and Salt Point State Parks. © Fort Ross Conservancy, 19005 Coast Highway One, Jenner, CA 95450, 707-847-3437 .~ ) VASCULAR PLANTS of FORT ROSS STATE HISTORIC PARK SONOMA COUNTY A PLANT COMMUNITIES PROJECT DOROTHY KING YOUNG CHAPTER CALIFORNIA NATIVE PLANT SOCIETY DOROTHY SCHERER, CHAIRPERSON DECEMBER 30, 1999 ) Vascular Plants of Fort Ross State Historic Park August 18, 2000 Family Botanical Name Common Name Plant Habitat Listed/ Community Comments Ferns & Fern Allies: Azollaceae/Mosquito Fern Azo/la filiculoides Mosquito Fern wp Blechnaceae/Deer Fern Blechnum spicant Deer Fern RV mp,sp Woodwardia fimbriata Giant Chain Fern RV wp Oennstaedtiaceae/Bracken Fern Pleridium aquilinum var. pubescens Bracken, Brake CG,CC,CF mh T Oryopteridaceae/Wood Fern Athyrium filix-femina var. cyclosorum Western lady Fern RV sp,wp Dryopteris arguta Coastal Wood Fern OS op,st Dryopteris expansa Spreading Wood Fern RV sp,wp Polystichum munitum Western Sword Fern CF mh,mp Equisetaceae/Horsetail Equisetum arvense Common Horsetail RV ds,mp Equisetum hyemale ssp.affine Common Scouring Rush RV mp,sg Equisetum laevigatum Smooth Scouring Rush mp,sg Equisetum telmateia ssp.
    [Show full text]
  • Narrow-Leaf Lupin, EM 8834-E
    Dryland Cropping Systems EM 8834-E • June 2003 $1.00 Narrow-leaf Lupin K. Kettel, B. Tuck, W.A. Payne, C. Chen, S. Machado, and R. Karow History As a crop species, lupin was important to many ancient civilizations and has been cultivated, mostly as a green manure, for at least 3,000 years. Its native range extends through the western parts of North and South America as well as around the Mediterranean, extending into eastern Africa. Of the more than 300 Lupinus species, only five are cultivated (L. albus, L. angustifolius, L. luteus, L. mutabilis, and L. cosentenii). In the 1920s, German plant breeders produced the first low-alkaloid lupin varieties. Like other legumes, lupin fixes atmospheric nitrogen and produces a high-protein seed that is used as a feed and food source throughout the world. In the past, lupin production in Oregon was limited to white lupin varieties (L. albus). White lupin has been grown in the Columbia Gorge region since the late 1980s. Research at the Oregon State University (OSU) Moro Research Station showed excellent yield potential. Although white lupin is well adapted to most growing conditions in Oregon, it has suffered from undetermined disease problems. In 1998, OSU researchers resumed lupin research in response to grower interest. After conferring with Australian researchers, Dr. William Payne became convinced that imported narrow-leaf lupin varieties (L. angustifolius) from Australia would provide resistance to the types of diseases that had troubled white lupin in the past. Because current Oregon lupin research has focused on narrow-leaf varieties, this publication will discuss the agronomic practices of growing the narrow-leaf varieties developed in Australia.
    [Show full text]
  • Radiocarbon Dates Reveal That Lupinus Arcticus Plants Were Grown
    788 Forum Letters J. Scott and Alex Wild for photographs for Fig. 1. Sandye and its myrmecophyte host. Proceedings of the Royal Society of London B Adams, Frank Aylward, Alissa Hanshew and Garret Suen Biological Sciences 265: 569–575. provided comments on a draft of the commentary. This work Heil M, McKey D. 2003. Protective ant–plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecological and was supported by the Carlsberg Foundation (to M.P.) and by Evolutionary Systematics 34: 425–453. the NSF (to C.C.; CAREER-747002, MCB-0702025, and von Linnaeus C. 1758. Systema naturae, per regna tria naturae, secundum MCB-0731822). classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Published by Typis Ioannis Thomae, v.1, Oxford University. Michael Poulsen and Cameron R. Currie* Little AE, Currie CR. 2008. Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89: 1216–22. University of Wisconsin-Madison, Matsuura K. 2006. Termite-egg mimicry by a sclerotium-forming fungus. Department of Bacteriology, 4325 Microbial Sciences Proceedings of the Royal Society of London B Biological Sciences 273: Building, 1550 Linden Dr., Madison, WI 53706, 1203–1209. USA (*Author for correspondence: Möller A. 1893. Die Pilzgärten einiger südamerikanischer Ameisen. Jena, + Germany: Gustav Fischer. tel 1 608 890 0237; email [email protected]) Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R. 2008. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319: References 192–195. Rico-Gray V, Oliveira PS.
    [Show full text]
  • Growth, Yield and Yield Component Attributes of Narrow-Leafed Lupin
    Tropical Grasslands-Forrajes Tropicales (2019) Vol. 7(1):48–55 48 DOI: 10.17138/TGFT(7)48-55 Research Paper Growth, yield and yield component attributes of narrow-leafed lupin (Lupinus angustifolius L.) varieties in the highlands of Ethiopia Crecimiento, rendimiento y componentes del rendimiento de variedades de lupino dulce de hoja angosta (Lupinus angustifolius L.) en las tierras altas de Etiopía FRIEHIWOT ALEMU1, BIMREW ASMARE2 AND LIKAWENT YEHEYIS3 1Woldiya University, Department of Animal Science, Woldiya, Amhara, Ethiopia. www.wldu.edu.et 2Bahir Dar University, Department of Animal Production and Technology, Bahir Dar, Amhara, Ethiopia. www.bdu.edu/caes 3Amhara Agricultural Research Institute, Bahir Dar, Amhara, Ethiopia. www.arari.gov.et Abstract An experiment was conducted to characterize the growth and yield performance of narrow-leafed sweet blue lupin varieties (Lupinus angustifolius L.) in northwestern Ethiopia. The experiment was laid out in a randomized complete block design with 4 replications and included 7 varieties (Bora, Probor, Sanabor, Vitabor, Haags blaue, Borlu and Boregine). Data on days to flowering and to maturity, flower color, plant height, numbers of leaflets, branches and pods per plant, pod length, number of seeds per pod, forage dry matter (DM) yield, grain yield and 1,000-seed weight were recorded. The results showed that plant height, number of branches per plant, forage DM yield, number of seeds per pod, grain yield and 1,000-seed weight varied significantly (P<0.01) among varieties. The highest forage DM yield at 50% flowering (2.67 t/ha), numbers of pods per plant (16.9) and of seeds per pod (4.15), grain yield (1,900 kg/ha) and 1,000- seed weight (121 g) were obtained from the Boregine variety.
    [Show full text]
  • Ballistic® Elite Insecticide
    POISON KEEP OUT OF REACH OF CHILDREN READ SAFETY DIRECTIONS BEFORE OPENING OR USING Ballistic® Elite Insecticide ACTIVE CONSTITUENT: 27.5 g/L DELTAMETHRIN SOLVENT: 811 g/L HYDROCARBON LIQUID GROUP 3A INSECTICIDE For the control of Heliothis (Helicoverpa spp.) and other specified pests on cotton and various other crops as specified in the Directions for Use table Formulation type Emulsifiable Concentrate EC adama.com CONTENTS: 20 L, 110 L, 200 L, 1000 L, 20,000 L DIRECTIONS FOR USE CROP PEST STATE RATE WHP CRITICAL COMMENTS Berry Vegetables: Native Budworm All States 50 mL/100 L 1 day Apply as thorough spray. Use sufficient water to Cape Goose (Heliothis, ensure adequate penetration and coverage. Repeat Berries, Helicoverpa spp.) sprays at 7 - 14 day intervals, depending upon pest Rosella incidence. Cereals Native Budworm, 500 mL/ha 7 days Apply at first sign of infestation, before larvae are Corn Earworm 5 mm, for best results. (Heliothis) Southern and Apply when larvae numbers exceed threshold. Common Armyworm Webworm 200 mL/ha Pre-seeding: BALLISTIC® ELITE may be tank mixed (Hednota pedionoma) with knockdown herbicides and applied prior to seeding. Apply once larvae have emerged, i.e. from last week in May onwards. Closely graze pasture prior to application. To ensure good penetration, use high water volume, i.e. 100 L/ha. DO NOT apply on dense pasture. Post crop emergence: Inspect crop regularly from seeding onwards, and spray at first sign of damage. Check with local Department of Agriculture adviser for further details. Cutworms NSW only Check emerging and establishing crops in the (Agrotis spp.) late afternoon or evening for caterpillars crawling on the soil surface and feeding on the seedlings.
    [Show full text]
  • View the PDF File of the Tachinid Times, Issue 8
    The Tachinid Times ISSUE 8 February 1995 Jim O'Hara, editor Agriculture & Agri-Food Canada, Biological Resources Division Centre for Land & Biological Resources Research C.E.F., Ottawa, Ontario, Canada, K1A 0C6 This issue marks the eighth year of The Tachinid Basic methodology: A team of (currently 9) Costa Rican Times. It is the largest issue so far, with the largest paraecologists range throughout all habitats night and mailing list as well (90). I hope you find this issue of day searching opportunistically and directedly for Lepid- interest. To keep this newsletter going, remember to optera larvae. These habitats are "wild", though they contribute some news from time to time. As usual, the represent the earliest stages of succession to virtually next issue will be distributed next February. undisturbed forest. When a caterpillar is found it is placed in a plastic bag with its presumed food (normally The Caterpillars and their Parasitoids of a Tropical this is the plant on which it was found). If it feeds, it is Dry Forest (by D.H. Janzen) then given a unique voucher number (e.g., 94-SRNP- Project name: The caterpillars and their parasitoids of 7857; this would be the 7857th caterpillar recorded in a tropical dry forest, Guanacaste Conservation Area, 1994; SRNP stands for Santa Rosa National Park, which northwestern Costa Rica. is today the Santa Rosa Sector of the GCA). That vou- Project goal: To determine the host-plant specificity of cher number is written on the plastic bag. The collection the entire set of macro caterpillars (and miners where information is recorded in field notebooks by the feasible) for the tropical dry forest in the Guanacaste collectors, and this information is later computer- Conservation Area in northwestern Costa Rica (0-300 m captured into a Filemaker Pro 2.0 flatfile database (de- elevation, six month dry season, total annual rainfall tails available on request).
    [Show full text]
  • Bok Tower Gardens Rare Plant Conservation Program
    Mission: to understand and preserve the rare plants of Florida Microhabitat studies inform management needs for two endangered central Florida scrub species, Dicerandra immaculata var. immaculata and Lupinus aridorum Lakela’s mint Scrub lupine Ridge species are particularly unique & found nowhere else in the world Archbold biological station Lakela’s Mint and Scrub Lupine are each: • located on specific ridge systems • restricted to scrub habitat • very narrow geographic distribution within ridge/habitat • Short-lived perennials • Habitats historically maintained by frequent burns • primarily threatened by loss of and degraded habitat due to fire suppression • Remaining natural populations declining • Nearly all remaining populations on private land • Federally and state listed as endangered • Population introductions likely necessary to prevent extinction Goals for microhabitat research: • characterize specific habitat requirements required for survival and recruitment • data to inform land managers • inform population introductions Lakela’s Mint (Dicerandra immaculata) • 5 wild (historical) meta- populations (1 large population fragmented by development) – 1 has been augmented – 2 sites have large areas where individuals were extirpated due to habitat degradation • 3 introduced populations Lakela’s Mint D. immaculata var. immaculata Evaluating microhabitat parameters Data collection in September 2012 from seven populations: three introduced, one augmented and three natural 20 healthy plants and 20 random locations (without plants) were chosen 20 extirpated locations at two wild sites Data collection occurred in within 1 meter diameter areas and 1 m2 quadrats around each plant or random/extirpated location Investigation differences between: 1. Wild plants versus random locations 2. Wild plants versus extirpated areas 3. Wild versus introduced plants Habitat characteristics 1.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • (Fabaceae) at Wild and Introduced Locations in Florida Scrub
    Plant Ecol DOI 10.1007/s11258-014-0310-6 Microhabitat of critically endangered Lupinus aridorum (Fabaceae) at wild and introduced locations in Florida scrub Matthew L. Richardson • Juliet Rynear • Cheryl L. Peterson Received: 23 September 2013 / Accepted: 30 January 2014 Ó Springer Science+Business Media Dordrecht (outside the USA) 2014 Abstract Elucidating microhabitat preferences of a Our research determined that L. aridorum is diploid and rare species are critical for its conservation. Lupinus grew, on average, in areas closer to trees and shrubs, aridorum McFarlin ex Beckner (Fabaceae) is a critically with lower soil moisture, and with a greater mixture of endangered plant known only from a few locations in detritus than random locations. Some microhabitat imperiled Florida scrub habitat and nothing is known characteristics at locations where L. aridorum were about its preferred microhabitat. Our goals were three- introduced were similar to microhabitat supporting wild fold. First, determine whether L. aridorum has multiple L. aridorum, but multiple soil characteristics differed as cytotypes because this can influence its spatial distribu- did the plant community, which contained more non- tion. Second, measure how microhabitat characteristics native plant species near introduced plants. Therefore, at locations supporting wild L. aridorum vary from the realized niche is narrower than the fundamental random locations, which will provide information about niche. Overall, information about the microhabitat of microhabitat characteristics that influence the spatial L. aridorum canbeusedtodesignappropriatemanage- distribution of individuals. Third, measure whether ment programs to conserve and restore populations of microhabitat characteristics differ between locations this plant species and species that occupy a similar niche supporting wild or introduced plants, which will provide in imperiled Florida scrub.
    [Show full text]