ANDRZEJ MOSTOWSKI and FOUNDATIONAL STUDIES This Page Intentionally Left Blank Andrzej Mostowski and Foundational Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Samuel Eilenberg Assistant Professorships
Faculty of Mathematics, Informatics and Mechanics Dean, Professor Paweł Strzelecki Samuel Eilenberg Assistant Professorships Four academic positions in the group of researchers and lecturers are vailable at the Faculty of Mathematics, Informatics and Mechanics Pursuant to the Law on Higher Education and Science, the Univeristy of Warsaw invites the applications for four positions of Samuel Eilenberg Assistant Professorships. Samuel Eilenberg (1913-1998) obtained his PhD degree in Mathematics at the University of Warsaw in 1936 under the supervision of Kazimierz Kuratowski and Karol Borsuk. He spent most of his career in the USA as a professor at Columbia Univeristy. He exerted a critical influence on contemporary mathematics and theoretical computer science; he was a co- founder of modern topology, category theory, homological algebra, and automata theory. His scientific development epitomizes openness to new ideas and readiness to face demanding intellectual challenges. Terms of employment: starting date October 1, 2020; full time job, competitive salary, fixed term employment contract for 2 or 4 years (to be decided with successful applicants). The candidates will concentrate on intensive research and will have reduced teaching duties (120 teaching hours per academic year). Requirements. Successful candidates for Samuel Eilenberg Professorships should have: 1. a PhD degree in mathematics, computer science or related fields obtained in the past 5 years; 2. significant papers in mathematics or computer science, published in refereed, globally recognized journals or confer- ences; 3. teaching experience and willingness to undertake organizational activities related to teaching; 4. significant international experience (internships or post-doctoral fellowships, projects etc.). Candidates obtain extra points for: • research fellowships outside Poland within the last two years; • high pace of scientific development that is confirmed by high quality papers; a clear concept of maintaining this development is required. -
Adolf Lindenbaum: Notes on His Life, with Bibliography and Selected References
CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Log. Univers. 8 (2014), 285–320 c 2014 The Author(s). This article is published with open access at Springerlink.com 1661-8297/14/030285-36, published online December 3, 2014 DOI 10.1007/s11787-014-0108-2 Logica Universalis Adolf Lindenbaum: Notes on his Life, with Bibliography and Selected References Jan Zygmunt and Robert Purdy Abstract. Notes on the life of Adolf Lindenbaum, a complete bibliography of his published works, and selected references to his unpublished results. Mathematics Subject Classification. 01A60, 01A70, 01A73, 03-03. Keywords. Adolf Lindenbaum, biography, bibliography, unpublished works. This paper is dedicated to Adolf Lindenbaum (1904–1941)—Polish- Jewish mathematician and logician; a member of the Warsaw school of mathe- matics under Waclaw Sierpi´nski and Stefan Mazurkiewicz and school of math- ematical logic under JanLukasiewicz and Stanislaw Le´sniewski;1 and Alfred Tarski’s closest collaborator of the inter-war period. Our paper is divided into three main parts. The first part is biograph- ical and narrative in character. It gathers together what little is known of Lindenbaum’s short life. The second part is a bibliography of Lindenbaum’s published output, including his public lectures. Our aim there is to be complete and definitive. The third part is a list of selected references in the literature attesting to his unpublished results2 and delineating their extent. Just to confuse things, we name the second and third parts of our paper, respectively, “Bibliography Part One” and “Bibliography Part Two”. Why, we no longer remember. -
Leaders of Polish Mathematics Between the Two World Wars
COMMENTATIONES MATHEMATICAE Vol. 53, No. 2 (2013), 5-12 Roman Duda Leaders of Polish mathematics between the two world wars To Julian Musielak, one of the leaders of post-war Poznań mathematics Abstract. In the period 1918-1939 mathematics in Poland was led by a few people aiming at clearly defined but somewhat different goals. They were: S. Zaremba in Cracow, W. Sierpiński and S. Mazurkiewicz in Warsaw, and H. Steinhaus and S. Banach in Lvov. All were chairmen and editors of mathematical journals, and each promoted several students to continue their efforts. They were highly successful both locally and internationally. When Poland regained its independence in 1918, Polish mathematics exploded like a supernova: against a dark background there flared up, in the next two deca- des, the Polish Mathematical School. Although the School has not embraced all mathematics in the country, it soon attracted common attention for the whole. Ho- wever, after two decades of a vivid development the School ended suddenly also like a supernova and together with it there silenced, for the time being, the rest of Polish mathematics. The end came in 1939 when the state collapsed under German and Soviet blows from the West and from the East, and the two occupants cooperated to cut short Polish independent life. After 1945 the state and mathematics came to life again but it was a different state and a different mathematics. The aim of this paper is to recall great leaders of the short-lived interwar Polish mathematics. By a leader we mean here a man enjoying an international reputation (author of influential papers or monographs) and possessing a high position in the country (chairman of a department of mathematics in one of the universities), a man who had a number of students and promoted several of them to Ph.D. -
Kazimierz Kuratowski (Warsaw)
Kazimierz Kuratowski (Warsaw) THE PAST AND THE PRESENT OF THE POLISH SCHOOL OF MATHEMATICS I am concentrating in this article on two main subjects. Firstly: I am trying to answer the question what brought about such an “explosion” of mathematics in a country in whose scientific tradition there was hardly any mathematics and which happened at the time when after an over-one-century-long foreign rule the nation was trying hard to reconstruct its now independent country, ravaged by the First World War. Secondly: was this explosion a short-lived enthusiasm or, on the contrary, the Polish school of .mathematics struck roots so deeply that it was sub sequently able to survive the cataclysm of the Second World War and rebuild in the new circumastances — in People’s Poland — the internationally re cognized edifice of Polish mathematics? There will be in this article no mathematical theorems, no definitions or geometrical constructions. I shall be trying to use the language which can be understood without mathematical qualifications. It is therefore my hope that this text will be intelligible not only to mathematicians.1 1. PRECURSORS OF THE POLISH SCHOOL OF MATHEMATICS It was the years 1918—1920 when the Polish School of Mathematics was emerging. Before describing this period and the subsequent years one should, I think, review, be it only summarily, the contemporary state of Polish mathematics. I am going to mention those of its representatives the majority of whom had in fact been active in the 19th century but who also worked in the 20th century and so could influence the formation of the School of Mathematics being thus its precursors as it were. -
Contribution of Warsaw Logicians to Computational Logic
axioms Article Contribution of Warsaw Logicians to Computational Logic Damian Niwi ´nski Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland; [email protected]; Tel.: +48-22-554-4460 Academic Editor: Urszula Wybraniec-Skardowska Received: 22 April 2016; Accepted: 31 May 2016; Published: 3 June 2016 Abstract: The newly emerging branch of research of Computer Science received encouragement from the successors of the Warsaw mathematical school: Kuratowski, Mazur, Mostowski, Grzegorczyk, and Rasiowa. Rasiowa realized very early that the spectrum of computer programs should be incorporated into the realm of mathematical logic in order to make a rigorous treatment of program correctness. This gave rise to the concept of algorithmic logic developed since the 1970s by Rasiowa, Salwicki, Mirkowska, and their followers. Together with Pratt’s dynamic logic, algorithmic logic evolved into a mainstream branch of research: logic of programs. In the late 1980s, Warsaw logicians Tiuryn and Urzyczyn categorized various logics of programs, depending on the class of programs involved. Quite unexpectedly, they discovered that some persistent open questions about the expressive power of logics are equivalent to famous open problems in complexity theory. This, along with parallel discoveries by Harel, Immerman and Vardi, contributed to the creation of an important area of theoretical computer science: descriptive complexity. By that time, the modal m-calculus was recognized as a sort of a universal logic of programs. The mid 1990s saw a landmark result by Walukiewicz, who showed completeness of a natural axiomatization for the m-calculus proposed by Kozen. The difficult proof of this result, based on automata theory, opened a path to further investigations. -
1 on the Life and Work of Andrzej Mostowski? STANISŁAW
On the life and work of Andrzej Mostowski ? STANISŁAW KRAJEWSKI and MARIAN SREBRNY (Warsaw, Poland) Andrzej Stanisław Mostowski was born on November 1, 1913, in Lwów. His father, Stanisław Mostowski, was a medical doctor and worked as an assistant at the Physical Chemistry Department of the University of Lwów; he was conscripted in 1914 as a military doctor and soon after died of typhus. The family had to be provided for by the mother, Zofia née Kramsztyk (1881-1963), who worked for many years in a bank. Andrzej (by his mother called Staszek after the father) had one sister Krystyna (after the war she settled abroad – first in France, then in Montreal). In the summer of 1914 Mostowski’s mother went with her children to Zakopane to spend holidays there; in the face of the outbreak of war and the death of the father they ? This text is translated from its Polish original published in “Wiadomo ści matematyczne”, Annales Societatis Mathematicae Polonae XXII.1 (1979), pp. 53-64, updated slightly where necessary. It is meant to present solely the events of Andrzej Mostowski’s biography. We do not discuss the content of his scientific output as such (other articles are devoted to it), but only provide some information on when he was involved in what and when his major works were created. The information included in this article have been taken from three following sources. Firstly, from the existing publications on the life and scientific output of Andrzej Mostowski. They are listed at the end of this text. The article by S. -
Professor Zdzisław Pawlak (1926-2006): Founder of the Polish School of Artificial Intelligence
Chapter 1 Professor Zdzisław Pawlak (1926-2006): Founder of the Polish School of Artificial Intelligence Andrzej Skowron, Mihir Kr. Chakraborty, Jerzy Grzymała-Busse, Victor Marek, Sankar K. Pal, James F. Peters, Dominik Sle¸zak,´ Roman Słowinski,´ Shusaku Tsumoto, Alicja Wakulicz-Deja, and Guoyin Wang He was not just a great scientist – he was also a great human being. – Lotfi A. Zadeh, April 2006 Fig. 1.1: Zdzisław Pawlak. Corresponding author: Andrzej Skowron, Institute of Mathematics, Warsaw University Banacha 2, 02-097 Warsaw, Poland, e-mail: [email protected] 1 2 Andrzej Skowron et al 1.1 Introduction This chapter is dedicated to the memory of Professor Zdzisław Pawlak, founder of the Polish school of Artificial Intelligence and one of the pioneers in Computer Engineering and Computer Science with worldwide influence. To capture the spirit of Professor Pawlak’s creative genius, this chapter contains testimonies of many collaborators, colleagues and friends pointing to Professor’s scientific achievements and his personal qualities. In short, we present Professor Pawlak as a truly great scientist, teacher and human being. 1.2 Biography [51] Zdzisław Ignacy Pawlak was born on 10 November 1926 in Łod´ z,´ where he also fin- ished primary school in 1939. During the German occupation of Poland, like many Poles, he was a slave-laborer and was forced to work for Siemens company. After WW II, in 1946, he passed his high school exams as an extern and, in 1947, started his studies at the Electrical Engineering Faculty of the Łod´ z´ University of Technol- ogy. In 1949, he transferred to the Electrical Faculty (the Faculty of Telecommuni- cation between 1951–1966, the Faculty of Electronics and Information Technology at present) at the Technical University of Warsaw (now the Warsaw University of Technology). -
Alfred Tarski
Alfred Tarski Born January 14, 1901, Warsaw, Poland; died October 2 7, 1983, Berkeley, Calif.; one of the four greatest logicians of all time. Education: PhD, University of Warsaw, 1924. Professional Experience: instructor, logic, Pedagogical Institute, Fical, Warsaw, 1922-1925; docent (and later adjunct professor), the University of Warsaw, 1925-1939; research associate, Harvard University, 1939-1941; member, Institute for Advanced Study, 1942; Guggenheim Fellow, 1941-1942 and 1955-1956; University of California at Berkeley: lecturer, 1942-1946, professor, 1946-1968, emeritus professor of mathematics, 1968-1983. Honors and Awards: Alfred Jurzykowski Foundation Award, 1966; member, National Academy of Sciences; member, Royal Netherlands Academy of Science; honorary member, Netherlands Mathematical Society; UC Berkeley Citation, 1981. Emeritus professor of mathematics Alfred Tarski, widely regarded as one of the four greatest logicians of all time (along with Aristotle, Gottlob, Frege, and Kurt Gödel), passed away on October 27, 1983, at the age of 82. A great teacher and influential scientific leader as well as a profound thinker, Tarski arrived in Berkeley in 1942 at the age of 41 and built up what is often cited as the outstanding center for research in logic and the foundations of mathematics in the world. His mathematical treatment of the semantics of languages and the concept of truth has had revolutionary consequences, which can be drawn from the possibility of giving a general treatment of the concept of truth in formal mathematical languages in a rigorous mathematical way. Among such consequences is his celebrated theorem that the set of true sentences of any sufficiently expressive formal language cannot be defined in that language itself (although it can be defined in a richer language). -
Curriculum Vitae Craig R
Curriculum Vitae Craig R. Guilbault Dept. of Mathematical Sciences Telephone: (414)229-4568(offi ce) University of Wisconsin-Milwaukee e-mail: [email protected] Milwaukee, WI 53201 uwm.edu/math/people/guilbault-craig/ Education Ph.D. University of Tennessee, Knoxville, 1988 • Thesis: Some Results in the Study of Noncompact 4-manifolds Thesis Advisor: Robert J. Daverman B.S. Northland College, Ashland, Wisconsin, 1982 • Magna Cum Laude with Honors in Mathematics Professional Experience 2003-present Professor, University of Wisconsin-Milwaukee • 1995-2003 Associate Professor, University of Wisconsin-Milwaukee • 1989-95 Assistant Professor, University of Wisconsin-Milwaukee • 1988-89 Assistant Professor, Ithaca College • Editorial Work Editorial board for the journal Topology Proceedings (2015-present) • Co-editor of special issue of the journal Topology and its Applications dedicated to • AMS special session in Geometric Topology and Geometric Group Theory held in Milwaukee, Wisconsin, October 24-25, 1997 Co-editor of the informal Proceedings of the Workshop Geometric Topology, 1991-2012 • (primary editor in 1991, 1995, 1999, 2004 and 2009) Other Professional Service Organizer of the annual Workshop in Geometric Topology, 1991-present (co-principal • organizer in 1991, 1995, 1999, 2004, 2009, 2014, and 2019; co-organizer other years). Co-organizer of Special Session in Geometric Topology and Geometric Group Theory, • AMS Sectional Meeting, Milwaukee, Wisconsin, October 24-25, 1997. Co-organizer of Special Session in Geometric Topology and Geometric -
Bfm:978-3-319-65430-0/1.Pdf
Studies in Universal Logic Series Editor Jean-Yves Béziau (Federal University of Rio de Janeiro and Brazilian Research Council, Rio de Janeiro, Brazil) Editorial Board Members Hajnal Andréka (Hungarian Academy of Sciences, Budapest, Hungary) Mark Burgin (University of California, Los Angeles, USA) Razvan˘ Diaconescu (Romanian Academy, Bucharest, Romania) Andreas Herzig (Centre National de la Recherche Scientifique, Toulouse, France) Arnold Koslow (City University of New York, USA) Jui-Lin Lee (National Formosa University, Huwei Township, Taiwan) Larissa Maksimova (Russian Academy of Sciences, Novosibirsk, Russia) Grzegorz Malinowski (University of Łód´z, Poland) Francesco Paoli (University of Cagliari, Italy) Darko Sarenac (Colorado State University, Fort Collins, USA) Peter Schröder-Heister (University Tübingen, Germany) Vladimir Vasyukov (Russian Academy of Sciences, Moscow, Russia) This series is devoted to the universal approach to logic and the development of a general theory of logics. It covers topics such as global set-ups for fundamental theorems of logic and frameworks for the study of logics, in particular logical matrices, Kripke structures, combination of logics, categorical logic, abstract proof theory, consequence operators, and algebraic logic. It includes also books with historical and philosophical discussions about the nature and scope of logic. Three types of books will appear in the series: graduate textbooks, research monographs, and volumes with contributed papers. More information about this series at http://www.springer.com/series/7391 -
The Address of the Honorary Promoter Ordinary Professor Dr Edward Otto the Beginning of the 20Th Century Was a Period of Fluori
DEMONSTRATIO MATHEMATICA Vol. VII No 3 1974 THE ADDRESSES DELIVERED AT TECHNICAL UNIVERSITY OF WARSAW ON THE 19th JANUARY 1974 DURING THE CEREMONY OF CONFERRING THE DIGNITY OF DOCTOR HONORIS CAUSA UPON EMERITUS ORDINARY PROFESSOR DR STEFAN STRASZEWICZ- The address of the honorary promoter ordinary Professor dr Edward Otto The beginning of the 20th century was a period of fluori- shing development of new branches of mathematics: set theory and topology. It is true that the main concepts of those dis- ciplines had been introduced in the 19th century by Cantor and Poincaré, but it is only in the 20th century that they were generally accepted and gained influence upon the pro- gress of mathematics. Professor Straszewicz became acquainted with the new ideas in mathematics while studying in Zürich under the famous ma- thematician Zermelo. on his return to Warsaw in 1918, Pro- fessor Streszewicz published his first paper in'the periodical Fundamenta Mathematicae, founded and edited by a group of Warsaw mathematicians. It was a period of lively activity of the Warsaw centre, dominated by Zygmunt Janiszewski, who had worked out a long-term program aiming at an intensification of mathematical research in Poland. The plan was fully implemented, and as early as the thir- ties, owing to the contribution of the so called Warsaw school and to the great achievements of a group of mathematicians inspired by the outstanding mathematical individuality of Ste- fan Banach, working then in Lwów, Polish mathematics became one of the five greatest mathematical powers of the world. Professor Straszewicz, owing to his investigations in topology, found himself, together with our prominent mathema- - 279 - 2 ticians Stefan Mazurkiewicz, Kazimierz Kuratowski, Bronislaw Knaster, and - later - Karol Borsuk, in the first ranks of our topologists, who played a decisive role in developing the concepts oh that discipline. -
Introduction. the School: Its Genesis, Development and Significance
Introduction. The School: Its Genesis, Development and Significance Urszula Wybraniec-Skardowska Abstract. The Introduction outlines, in a concise way, the history of the Lvov- Warsaw School – a most unique Polish school of worldwide renown, which pi- oneered trends combining philosophy, logic, mathematics and language. The author accepts that the beginnings of the School fall on the year 1895, when its founder Kazimierz Twardowski, a disciple of Franz Brentano, came to Lvov on his mission to organize a scientific circle. Soon, among the characteristic fea- tures of the School was its serious approach towards philosophical studies and teaching of philosophy, dealing with philosophy and propagation of it as an intellectual and moral mission, passion for clarity and precision, as well as ex- change of thoughts, and cooperation with representatives of other disciplines. The genesis is followed by a chronological presentation of the development of the School in the successive years. The author mentions all the key represen- tatives of the School (among others, Ajdukiewicz, Leśniewski, Łukasiewicz, Tarski), accompanying the names with short descriptions of their achieve- ments. The development of the School after Poland’s regaining independence in 1918 meant part of the members moving from Lvov to Warsaw, thus pro- viding the other segment to the name – Warsaw School of Logic. The author dwells longer on the activity of the School during the Interwar period – the time of its greatest prosperity, which ended along with the outbreak of World War 2. Attempts made after the War to recreate the spirit of the School are also outlined and the names of continuators are listed accordingly.