The Address of the Honorary Promoter Ordinary Professor Dr Edward Otto the Beginning of the 20Th Century Was a Period of Fluori

Total Page:16

File Type:pdf, Size:1020Kb

The Address of the Honorary Promoter Ordinary Professor Dr Edward Otto the Beginning of the 20Th Century Was a Period of Fluori DEMONSTRATIO MATHEMATICA Vol. VII No 3 1974 THE ADDRESSES DELIVERED AT TECHNICAL UNIVERSITY OF WARSAW ON THE 19th JANUARY 1974 DURING THE CEREMONY OF CONFERRING THE DIGNITY OF DOCTOR HONORIS CAUSA UPON EMERITUS ORDINARY PROFESSOR DR STEFAN STRASZEWICZ- The address of the honorary promoter ordinary Professor dr Edward Otto The beginning of the 20th century was a period of fluori- shing development of new branches of mathematics: set theory and topology. It is true that the main concepts of those dis- ciplines had been introduced in the 19th century by Cantor and Poincaré, but it is only in the 20th century that they were generally accepted and gained influence upon the pro- gress of mathematics. Professor Straszewicz became acquainted with the new ideas in mathematics while studying in Zürich under the famous ma- thematician Zermelo. on his return to Warsaw in 1918, Pro- fessor Streszewicz published his first paper in'the periodical Fundamenta Mathematicae, founded and edited by a group of Warsaw mathematicians. It was a period of lively activity of the Warsaw centre, dominated by Zygmunt Janiszewski, who had worked out a long-term program aiming at an intensification of mathematical research in Poland. The plan was fully implemented, and as early as the thir- ties, owing to the contribution of the so called Warsaw school and to the great achievements of a group of mathematicians inspired by the outstanding mathematical individuality of Ste- fan Banach, working then in Lwów, Polish mathematics became one of the five greatest mathematical powers of the world. Professor Straszewicz, owing to his investigations in topology, found himself, together with our prominent mathema- - 279 - 2 ticians Stefan Mazurkiewicz, Kazimierz Kuratowski, Bronislaw Knaster, and - later - Karol Borsuk, in the first ranks of our topologists, who played a decisive role in developing the concepts oh that discipline. The value of scientific achievement is usually measured by the durability of its significance for science. This value changes with time. What was most essential in the past may play a more limited role today, giving precedence to other, more up-to-date problems. However, the works of Professor Straszewicz contain many results which have lost nothing of their validity and topical interest. Such is, for example, the paper in which he generalizes and further develops some of Professor Zygmunt Janiszewski's results in plane topology; they still have considerable importance in the theory of par- tial differential quations. The same can be said about another paper - of fundamental importance for hyperbolic geometry. Professor Straszewicz*s scientific output has been highly valued by mathematicians, as is shown by his being offered in 1969 a honorary membership of the Rüish Mathematical Society. Another part of Professor Straszewicz's activities con- cerns education and cultural matters. In the inter-war period he was a member of a Commission qualifying secondary school teachers and in this capacity he was able to do a great deal towards raising the standard of school teaching in our country He was also the author of numerous excellent school textbooks of mathematics, which were used by millions of Polish children throughout many years. His textbooks stimulated the children's thought processes, teaching how to think clearly and how to formulate ideas in a correct and lucid manner. Por nearly 40 years Professor Straszewicz supervised the preparation of school syllabuses of mathematics, devised some of them him- self and collaborated in working out others. He has always been a fervent advocate of progressive measures, an initiator and co-author of modernized programmes for our schools. He has often represented Poland at international conferences on mo- - 280 - 3 dernizing the teaching of mathematics in primary and secondary schools. In the years 1932-39 he was the Polish delegate to the International Commission for Mathematical Education, in the years 1950-1972 he was chairman of the Polish National Subcommission and in the years 1962-66 - vice-president of the International Commission for Mathematical Education, Presenting Professor Straszewicz's various activities and achievements, we must give due weight to his work in our own Technical University. The mathematicians of our University remember the Professor as an excellent teacher and lecturer, who has aducated three generations of university teachers and has been a model of the perfect teacher and educator. The stu- dents - present-day professors and assistant professors - re- member him as a lecturer excelling in clarity of expression and beautiful languaga. Older members of our teaching staff remember him as the first post-war rector, taking up his du- ties among the ruins of our school. The rector's duties in those days extended far and wide - from rescuing the remnants of our library from utter destruction to setting up a canteen for the staff, whose, members were streaming back to Warsaw in growing numbers, hoping for a quick re-opening of the school. It should also be mentioned that Professor Straszewicz was the initiator of a shortened course of study for engineers, which aimed at providing our recovering industry as quickly as possible with a large number of technically-trained spe- c ialists. The authorities have shown their high appreciation of Professor Straszewicz's work by awarding him seven state de- corations, among them the Order of the Banner of Labour of the 2nd and later of the 1st class, The Medal of National Educations and the highest Teachers' Order of Merit of the Polish People's Republic. Let us turn again to the years immediately following the cessation of military operations in our country. The Hitlerite - 281 - 4 occupation had left behind it not only enormous material da- mage "but also distressing losses among our scholars and scien- tists. About 50% of our research mathematicians had 3ost their lives. In 194-9 the idea was born of setting up an institution whose main aim was to be the spotting out of young people particularly gifted for mathematics and encouraging them to undertake mathematical studies. The Polish Mathematical So- ciety entrusted the task to Professor Straszewicz. "The insti- tution was called the Mathematical Olympiad. Professor Stra- szewicz worked out a set of regulations for it which have stood the test of 24 years and have become a model for seve- ral other specialized olympiads for young people. As Chairman of the Central Committee of the Mathematical Olympiad, Profes- sor 3tra.'J2vi\vicz conducted it for 20 years. About 250OO secon- dary school pupils have passed through the meshes of the Olympiad. A few hundred young talents have been hunted out. Although the time has been short, the fruits of the Olympiad are imposing. Among the former participants of the Olympiad we now count 10 professors, about 40 associate and assistant professors and about 90 doctors doing research in mathematics. It will not be an exaggeration if I say that in the work of rehabilitation of Polish mathematics after the devastations of the last war this is an achievement on a historical scale. Professor Straszewicz s share in it has been outstanding. The Mathematical Olympiad has contributed in an essential way to improving the quality of mathematical instruction in our schools. It has also proved to be a stable concern. When, af·- ter twenty years of chairmanship, Professor Straszewicz re- signed from that post, the job of continuing his work was taken over by the professors and assitant professors who had been former winners of the Olympiad. Professor Straszewicz*s achievement is thus not only great but also lasting. It is particularly worthy of notice that a large part of the results mentioned above have been achieved by Professor Straszewicz in the period after his retirement; This increases - 282 - 5 still more the respect that Professor Straszewicz enjoys in our University. The address of the Doctor honoris causa Stefan Strasze- wicz You Magnificence, Professor Otto, Ladies and Gentlemen. The Warsaw Technical University has conferred upon me a great honour, for which I wish to express my deep gratitude. I am greatly obliged to Professor Otto for having present- ed my activities and my modest achievements in such a favour- able light. The diploma which I have "been granted today is a document of extreme value and importance to me. It is the second doc- tor's diploma in my life. I obtained the first sixty years ago> shortly before the outbreak of the First World War, in the year 19Ή. Within these sixty years, particularly in the second half of this period, the domain of n^ activity - mathematics - has undergone far-reaching transformations.I should like to point out - very briefly - their characteristic features and their significance. The days of njy universitys studies were marked by a grow- ing interest among mathematicians for the newly-developing disciplines of set-theory, topology and mathematical logic. Not long after these disciplines entered upon a period of rapid progress and their development was soon accompanied by radical changes in the most classical branch of mathematics, namely algebra, giving rise to present-day abstract, or gene- ral, algebra as a theory of algebraic structures. Nowadays mathematicians express their thoughts by means of the conceptual apparatus of set theory and abstract alge- bra. The axiomatic method dominates in the exposition of mathematical results. - 283 - 6 In mathematics the object of investigations is now re- garded as a structure. The structure is composed of a set of objects - the elements of the structure - and certain rela- tions between the elements. The properties of those relations are formulated as a set of axioms. The construction of a the- ory consists in drawing conclusions from the axioms by ap- plying the laws of logic. Por the theory of a structure it is immaterial what actual objects constitute its elements and what actual sense is attached to the relations occurring in it; it is only its formal properties expressed in the axioms that are relevant.
Recommended publications
  • Samuel Eilenberg Assistant Professorships
    Faculty of Mathematics, Informatics and Mechanics Dean, Professor Paweł Strzelecki Samuel Eilenberg Assistant Professorships Four academic positions in the group of researchers and lecturers are vailable at the Faculty of Mathematics, Informatics and Mechanics Pursuant to the Law on Higher Education and Science, the Univeristy of Warsaw invites the applications for four positions of Samuel Eilenberg Assistant Professorships. Samuel Eilenberg (1913-1998) obtained his PhD degree in Mathematics at the University of Warsaw in 1936 under the supervision of Kazimierz Kuratowski and Karol Borsuk. He spent most of his career in the USA as a professor at Columbia Univeristy. He exerted a critical influence on contemporary mathematics and theoretical computer science; he was a co- founder of modern topology, category theory, homological algebra, and automata theory. His scientific development epitomizes openness to new ideas and readiness to face demanding intellectual challenges. Terms of employment: starting date October 1, 2020; full time job, competitive salary, fixed term employment contract for 2 or 4 years (to be decided with successful applicants). The candidates will concentrate on intensive research and will have reduced teaching duties (120 teaching hours per academic year). Requirements. Successful candidates for Samuel Eilenberg Professorships should have: 1. a PhD degree in mathematics, computer science or related fields obtained in the past 5 years; 2. significant papers in mathematics or computer science, published in refereed, globally recognized journals or confer- ences; 3. teaching experience and willingness to undertake organizational activities related to teaching; 4. significant international experience (internships or post-doctoral fellowships, projects etc.). Candidates obtain extra points for: • research fellowships outside Poland within the last two years; • high pace of scientific development that is confirmed by high quality papers; a clear concept of maintaining this development is required.
    [Show full text]
  • THE-POLISH-TRACE-Ebook.Pdf
    8 THE POLISH TRACE COMPOSED FROM COMMONLY AVAILABLE SOURCES BY LECH POLKOWSKI FOR IJCRS2017 FOREWORD It is a desire of many participants of conferences to learn as much as possible about the history and culture of he visited country and place and organizers try to satisfy this desire by providing excursions into attractive places and sites. IJCRS2017 also tries to take participants to historic sites of Warmia and Mazury and to show elements of local culture. As an innovation, we propose a booklet showing some achievements of Polish scientists and cryptographers, no doubt many of them are known universally, but some probably not. What bounds all personages described here is that they all suffered due to world wars, th efirst and the second. These wars ruined their homes, made them refugees and exiles, destroyed their archives and libraries, they lost many colleagues, friends and students but were lucky enough to save lives and in some cases to begin the career overseas. We begin with the person of Jan Czochralski, world famous metallurgist, discoverer of the technique of producing metal monocrystals `the Czochralski methode’ and inventor of duraluminum and the `bahnalloy’ who started his career and obtained its heights in Germany, later returned to Poland, became a professor at the Warsaw Polytechnical, played an important role in cultural life of Warsaw, lived in Warsaw through the second world war and the Warsaw Uprising of August-September 1944 and after the war was accused of cooperating ith occupying German forces and though judged innocent was literally erased from the public life and any information about him obliterated.
    [Show full text]
  • L. Maligranda REVIEW of the BOOK by MARIUSZ URBANEK
    Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems.
    [Show full text]
  • NOTE the Theorem on Planar Graphs
    HISTORIA MATHEMATICA 12(19X5). 356-368 NOTE The Theorem on Planar Graphs JOHN W. KENNEDY AND LOUIS V. QUINTAS Mathematics Department, Pace University, Pace Plaza, New York, New York, 10038 AND MACEJ M. SYSKO Institute of Computer Science, University of Wroc+aw, ul. Prz,esyckiego 20, 511.51 Wroclow, Poland In the late 1920s several mathematicians were on the verge of discovering a theorem for characterizing planar graphs. The proof of such a theorem was published in 1930 by Kazi- mierz Kuratowski, and soon thereafter the theorem was referred to as the Kuratowski Theorem. It has since become the most frequently cited result in graph theory. Recently, the name of Pontryagin has been coupled with that of Kuratowski when identifying this result. The events related to this development are examined with the object of determining to whom and in what proportion the credit should be given for the discovery of this theorem. 0 1985 AcademicPress. Inc Pendant les 1920s avancts quelques mathkmaticiens &aient B la veille de dCcouvrir un theor&me pour caracttriser les graphes planaires. La preuve d’un tel th6or&me a et6 publiCe en 1930 par Kazimierz Kuratowski, et t6t apres cela, on a appele ce thCor&me le ThCortime de Kuratowski. Depuis ce temps, c’est le rtsultat le plus citC de la thCorie des graphes. Rtcemment le nom de Pontryagin a &e coup16 avec celui de Kuratowski en parlant de ce r&&at. Nous examinons les CvCnements relatifs g ce dCveloppement pour determiner 2 qui et dans quelle proportion on devrait attribuer le mtrite de la dCcouverte de ce th6oreme.
    [Show full text]
  • COMPLEXITY of CURVES 1. Introduction in This Note We Study
    COMPLEXITY OF CURVES UDAYAN B. DARJI AND ALBERTO MARCONE Abstract. We show that each of the classes of hereditarily locally connected, 1 ¯nitely Suslinian, and Suslinian continua is ¦1-complete, while the class of 0 regular continua is ¦4-complete. 1. Introduction In this note we study some natural classes of continua from the viewpoint of descriptive set theory: motivations, style and spirit are the same of papers such as [Dar00], [CDM02], and [Kru03]. Pol and Pol use similar techniques to study problems in continuum theory in [PP00]. By a continuum we always mean a compact and connected metric space. A subcontinuum of a continuum X is a subset of X which is also a continuum. A continuum is nondegenerate if it contains more than one point. A curve is a one- dimensional continuum. Let us start with the de¯nitions of some classes of continua: all these can be found in [Nad92], which is our main reference for continuum theory. De¯nition 1.1. A continuum X is hereditarily locally connected if every subcon- tinuum of X is locally connected, i.e. a Peano continuum. A continuum X is hereditarily decomposable if every nondegenerate subcontin- uum of X is decomposable, i.e. is the union of two proper subcontinua. A continuum X is regular if every point of X has a neighborhood basis consisting of sets with ¯nite boundary. A continuum X is rational if every point of X has a neighborhood basis consisting of sets with countable boundary. The following classes of continua were de¯ned by Lelek in [Lel71].
    [Show full text]
  • Adolf Lindenbaum: Notes on His Life, with Bibliography and Selected References
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Log. Univers. 8 (2014), 285–320 c 2014 The Author(s). This article is published with open access at Springerlink.com 1661-8297/14/030285-36, published online December 3, 2014 DOI 10.1007/s11787-014-0108-2 Logica Universalis Adolf Lindenbaum: Notes on his Life, with Bibliography and Selected References Jan Zygmunt and Robert Purdy Abstract. Notes on the life of Adolf Lindenbaum, a complete bibliography of his published works, and selected references to his unpublished results. Mathematics Subject Classification. 01A60, 01A70, 01A73, 03-03. Keywords. Adolf Lindenbaum, biography, bibliography, unpublished works. This paper is dedicated to Adolf Lindenbaum (1904–1941)—Polish- Jewish mathematician and logician; a member of the Warsaw school of mathe- matics under Waclaw Sierpi´nski and Stefan Mazurkiewicz and school of math- ematical logic under JanLukasiewicz and Stanislaw Le´sniewski;1 and Alfred Tarski’s closest collaborator of the inter-war period. Our paper is divided into three main parts. The first part is biograph- ical and narrative in character. It gathers together what little is known of Lindenbaum’s short life. The second part is a bibliography of Lindenbaum’s published output, including his public lectures. Our aim there is to be complete and definitive. The third part is a list of selected references in the literature attesting to his unpublished results2 and delineating their extent. Just to confuse things, we name the second and third parts of our paper, respectively, “Bibliography Part One” and “Bibliography Part Two”. Why, we no longer remember.
    [Show full text]
  • L. Maligranda REVIEW of the BOOK by ROMAN
    Математичнi Студiї. Т.46, №2 Matematychni Studii. V.46, No.2 УДК 51 L. Maligranda REVIEW OF THE BOOK BY ROMAN DUDA, “PEARLS FROM A LOST CITY. THE LVOV SCHOOL OF MATHEMATICS” L. Maligranda. Review of the book by Roman Duda, “Pearls from a lost city. The Lvov school of mathematics”, Mat. Stud. 46 (2016), 203–216. This review is an extended version of my two short reviews of Duda's book that were published in MathSciNet and Mathematical Intelligencer. Here it is written about the Lvov School of Mathematics in greater detail, which I could not do in the short reviews. There are facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach's book and also books by Mazur, Schauder and Tarski. My two short reviews of Duda’s book were published in MathSciNet [16] and Mathematical Intelligencer [17]. Here I write about the Lvov School of Mathematics in greater detail, which was not possible in the short reviews. I will present the facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach’s book and also books by Mazur, Schauder and Tarski. So let us start with a discussion about Duda’s book. In 1795 Poland was partioned among Austria, Russia and Prussia (Germany was not yet unified) and at the end of 1918 Poland became an independent country.
    [Show full text]
  • L. Maligranda REVIEW of the BOOK BY
    Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems.
    [Show full text]
  • Geometry and Teaching
    Andrew McFarland Joanna McFarland James T. Smith Editors Alfred Tarski Early Work in Poland – Geometry and Teaching This book is dedicated to Helen Marie Smith, in gratitude for her advice and support, and to Maria Anna McFarland, as she enters a world of new experiences. Andrew McFarland • Joanna McFarland James T. Smith Editors Alfred Tarski Early Work in Poland—Geometry and Teaching with a Bibliographic Supplement Foreword by Ivor Grattan-Guinness Editors Andrew McFarland Joanna McFarland Páock, Poland Páock, Poland James T. Smith Department of Mathematics San Francisco State University San Francisco, CA, USA ISBN 978-1-4939-1473-9 ISBN 978-1-4939-1474-6 (eB ook) DOI 10.1007/978-1-4939-1474-6 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014945118 Mathematics Subject Classification (2010): 01A60, 01A70, 01A75, 03A10, 03B05, 03E75, 06A99, 28-03, 28A75, 43A07, 51M04, 51M25, 97B50, 97D40, 97G99, 97M30 © Springer Science+Business Media New York 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Leaders of Polish Mathematics Between the Two World Wars
    COMMENTATIONES MATHEMATICAE Vol. 53, No. 2 (2013), 5-12 Roman Duda Leaders of Polish mathematics between the two world wars To Julian Musielak, one of the leaders of post-war Poznań mathematics Abstract. In the period 1918-1939 mathematics in Poland was led by a few people aiming at clearly defined but somewhat different goals. They were: S. Zaremba in Cracow, W. Sierpiński and S. Mazurkiewicz in Warsaw, and H. Steinhaus and S. Banach in Lvov. All were chairmen and editors of mathematical journals, and each promoted several students to continue their efforts. They were highly successful both locally and internationally. When Poland regained its independence in 1918, Polish mathematics exploded like a supernova: against a dark background there flared up, in the next two deca- des, the Polish Mathematical School. Although the School has not embraced all mathematics in the country, it soon attracted common attention for the whole. Ho- wever, after two decades of a vivid development the School ended suddenly also like a supernova and together with it there silenced, for the time being, the rest of Polish mathematics. The end came in 1939 when the state collapsed under German and Soviet blows from the West and from the East, and the two occupants cooperated to cut short Polish independent life. After 1945 the state and mathematics came to life again but it was a different state and a different mathematics. The aim of this paper is to recall great leaders of the short-lived interwar Polish mathematics. By a leader we mean here a man enjoying an international reputation (author of influential papers or monographs) and possessing a high position in the country (chairman of a department of mathematics in one of the universities), a man who had a number of students and promoted several of them to Ph.D.
    [Show full text]
  • Polish Mathematicians and Mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire)
    Science in Poland Stanisław Domoradzki ORCID 0000-0002-6511-0812 Faculty of Mathematics and Natural Sciences, University of Rzeszów (Rzeszów, Poland) [email protected] Małgorzata Stawiska ORCID 0000-0001-5704-7270 Mathematical Reviews (Ann Arbor, USA) [email protected] Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire) Abstract In this article we present diverse experiences of Polish math- ematicians (in a broad sense) who during World War I fought for freedom of their homeland or conducted their research and teaching in difficult wartime circumstances. We discuss not only individual fates, but also organizational efforts of many kinds (teaching at the academic level outside traditional institutions, Polish scientific societies, publishing activities) in order to illus- trate the formation of modern Polish mathematical community. PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Domoradzki, Stanisław; Stawiska, Małgorzata 2018: Polish mathematicians and mathematics in World War I. Part I: Galicia (Austro-Hungarian Empire. Studia Historiae Scientiarum 17, pp. 23–49. Available online: https://doi.org/10.4467/2543702XSHS.18.003.9323. ARCHIVE RECEIVED: 2.02.2018 LICENSE POLICY ACCEPTED: 22.10.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Stanisław Domoradzki, Małgorzata Stawiska Polish mathematicians and mathematics in World War I ... In Part I we focus on mathematicians affiliated with the ex- isting Polish institutions of higher education: Universities in Lwów in Kraków and the Polytechnical School in Lwów, within the Austro-Hungarian empire.
    [Show full text]
  • The Emergence of “Two Warsaws”: Transformation of the University In
    The emergence of “two Warsaws”: Transformation of the University in Warsaw and the analysis of the role of young, talented and spirited mathematicians in this process Stanisław Domoradzki (University of Rzeszów, Poland), Margaret Stawiska (USA) In 1915, when the front of the First World War was moving eastwards, Warsaw, which had been governed by Russians for over a century, found itself under a German rule. In the summer of 1915 the Russians evacuated the Imperial University to Rostov-on-Don and in the fall of 1915 general Hans von Beseler opened a Polish-language University of Warsaw and gave it a statute. Many Poles from other occupied territories as well as those studying abroad arrived then to Warsaw, among others Kazimierz Kuratowski (1896–1980), from Glasgow. At the beginning Stefan Mazurkiewicz (1888–1945) played the leading role in the university mathematics, joined in 1918 by Zygmunt Janiszewski (1888–1920) after complet- ing service in the Legions. The career of both scholars was related to scholarly activities of Wacław Sierpi ński (1882–1969) in Lwów. Janiszewski worked there since 1912, nostrified a doctorate from Sorbonne and got veniam legendi (1913), Mazurkiewicz obtained a doctorate (1913). During the war Sierpi ński was interned in Russia as an Austro-Hungarian subject. In 1918 he was nominated for a chair in mathematics at the University of Warsaw. The commu- nity congregating around these mathematicians managed to create somewhat later a solid mathematical school focused on set theory and its applications. It corresponded to a vision of a mathematical school presented by Janiszewski. Warsaw had an efficiently functioning mathematical community for several decades.
    [Show full text]