Thirty Years of Shape Theory∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Samuel Eilenberg Assistant Professorships
Faculty of Mathematics, Informatics and Mechanics Dean, Professor Paweł Strzelecki Samuel Eilenberg Assistant Professorships Four academic positions in the group of researchers and lecturers are vailable at the Faculty of Mathematics, Informatics and Mechanics Pursuant to the Law on Higher Education and Science, the Univeristy of Warsaw invites the applications for four positions of Samuel Eilenberg Assistant Professorships. Samuel Eilenberg (1913-1998) obtained his PhD degree in Mathematics at the University of Warsaw in 1936 under the supervision of Kazimierz Kuratowski and Karol Borsuk. He spent most of his career in the USA as a professor at Columbia Univeristy. He exerted a critical influence on contemporary mathematics and theoretical computer science; he was a co- founder of modern topology, category theory, homological algebra, and automata theory. His scientific development epitomizes openness to new ideas and readiness to face demanding intellectual challenges. Terms of employment: starting date October 1, 2020; full time job, competitive salary, fixed term employment contract for 2 or 4 years (to be decided with successful applicants). The candidates will concentrate on intensive research and will have reduced teaching duties (120 teaching hours per academic year). Requirements. Successful candidates for Samuel Eilenberg Professorships should have: 1. a PhD degree in mathematics, computer science or related fields obtained in the past 5 years; 2. significant papers in mathematics or computer science, published in refereed, globally recognized journals or confer- ences; 3. teaching experience and willingness to undertake organizational activities related to teaching; 4. significant international experience (internships or post-doctoral fellowships, projects etc.). Candidates obtain extra points for: • research fellowships outside Poland within the last two years; • high pace of scientific development that is confirmed by high quality papers; a clear concept of maintaining this development is required. -
Part III 3-Manifolds Lecture Notes C Sarah Rasmussen, 2019
Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Intro to Knots and Embeddings 13 Lecture 3: Link Diagrams and Alexander Polynomial Skein Relations 17 Lecture 4: Handle Decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Handle-bodies and Heegard splittings 24 Lecture 6: Handle-bodies and Heegaard Diagrams 28 Lecture 7: Fundamental group presentations from handles and Heegaard Diagrams 36 Lecture 8: Alexander Polynomials from Fundamental Groups 39 Lecture 9: Fox Calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston Classification for Mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn Surgery 64 Lecture 15: 3-manifolds from Dehn Surgery 68 Lecture 16: Seifert fibered spaces 69 Lecture 17: Hyperbolic 3-manifolds and Mostow Rigidity 70 Lecture 18: Dehn's Lemma and Essential/Incompressible Surfaces 71 Lecture 19: Sphere Decompositions and Knot Connected Sum 74 Lecture 20: JSJ Decomposition, Geometrization, Splice Maps, and Satellites 78 Lecture 21: Turaev torsion and Alexander polynomial of unions 81 Lecture 22: Foliations 84 Lecture 23: The Thurston Norm 88 Lecture 24: Taut foliations on Seifert fibered spaces 89 References 92 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y . -
HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition. -
An Embedding Theorem for Proper N-Types
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 48 (1992) 215-233 215 North-Holland An embedding theorem for proper n-types Luis Javier Hernandez Deparfamento de Matem&icar, Unicersidad de Zaragoza, 50009 Zaragoza, Spain Timothy Porter School of Mathematics, Uniuersity College of North Wales, Bangor, Gwynedd LL57 I UT, UK Received 2 August 1991 Abwact Hermindez, L.J. and T. Porter, An embedding theorem for proper n-types, Topology and its Applications 48 (1993) 215-233. This paper is centred around an embedding theorem for the proper n-homotopy category at infinity of a-compact simplicial complexes into the n-homotopy category of prospaces. There is a corresponding global version. This enables one to prove proper analogues of various classical results of Whitehead on n-types, .I,,-complexes, etc. Keywords: n-type, proper n-type, Edwards-Hastings embedding AMS (MOS) Subj. Class: SSPlS, 55 P99 Introduction In his address to the 1950 Proceedings of the International Congress of Mathematicians, Whitehead described the program on which he has been working for some years [31]. He mentioned in particular the realization problem: that of deciding if a given set of homomorphisms defined on homotopy groups of complexes, K and K’, have a geometric realization, K + K’. His attempt to study this problem involved examining algebraic structures, containing more information than the homotopy groups, so that homomorphisms that preserved the extra structure would be realizable. In particular he divided up the problem of finding such models into simpler steps involving n-types as introduced earlier by Fox [13, 141 and gave algebraic models for 2-types in a paper with MacLane [24]. -
The Stability Problem in Shape, and a Whitehead Theorem
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 214, 1975 THE STABILITYPROBLEM IN SHAPE,AND A WHITEHEAD THEOREMIN PRO-HOMOTOPY BY DAVID A. EDWARDSAND ROSS GEOGHEGAN(l) ABSTRACT. Theorem 3.1 is a Whitehead theorem in pro-homotopy for finite-dimensional pro-complexes. This is used to obtain necessary and sufficient algebraic conditions for a finite-dimensional tower of complexes to be pro-homot- opy equivalent to a complex (§4) and for a finite-dimensional compact metric space to be pointed shape equivalent to an absolute neighborhood retract (§ 5). 1. Introduction. The theory of shape was introduced by Borsuk [2] for compact metric spaces (compacta) and was extended in a natural way by Fox [13] to all metric spaces. Shape theory agrees with homotopy theory on metric absolute neighborhood retracts (ANR's) and there is ample evidence that as a way of doing algebraic topology on "bad" spaces, shape theory is "better" than homot- opy theory. There is, of course, both shape theory and pointed shape theory. Borsuk [5] has shown that the distinction is important. What we call the stability prob- lem (unpointed or pointed version) is loosely expressed by the question: when is a "bad" space shape equivalent to a "good" space? Specifically, for compacta, this takes two forms: Problem A. Give necessary and sufficient conditions for a compactum Z to have the Fox shape of an ANR. Problem B. Give necessary and sufficient conditions for a compactum Z to have the Borsuk shape of a compact polyhedron. We lay the ground rules as follows. The conditions in Problems A and B should be intrinsic. -
Adolf Lindenbaum: Notes on His Life, with Bibliography and Selected References
CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Log. Univers. 8 (2014), 285–320 c 2014 The Author(s). This article is published with open access at Springerlink.com 1661-8297/14/030285-36, published online December 3, 2014 DOI 10.1007/s11787-014-0108-2 Logica Universalis Adolf Lindenbaum: Notes on his Life, with Bibliography and Selected References Jan Zygmunt and Robert Purdy Abstract. Notes on the life of Adolf Lindenbaum, a complete bibliography of his published works, and selected references to his unpublished results. Mathematics Subject Classification. 01A60, 01A70, 01A73, 03-03. Keywords. Adolf Lindenbaum, biography, bibliography, unpublished works. This paper is dedicated to Adolf Lindenbaum (1904–1941)—Polish- Jewish mathematician and logician; a member of the Warsaw school of mathe- matics under Waclaw Sierpi´nski and Stefan Mazurkiewicz and school of math- ematical logic under JanLukasiewicz and Stanislaw Le´sniewski;1 and Alfred Tarski’s closest collaborator of the inter-war period. Our paper is divided into three main parts. The first part is biograph- ical and narrative in character. It gathers together what little is known of Lindenbaum’s short life. The second part is a bibliography of Lindenbaum’s published output, including his public lectures. Our aim there is to be complete and definitive. The third part is a list of selected references in the literature attesting to his unpublished results2 and delineating their extent. Just to confuse things, we name the second and third parts of our paper, respectively, “Bibliography Part One” and “Bibliography Part Two”. Why, we no longer remember. -
A Local to Global Argument on Low Dimensional Manifolds
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 373, Number 2, February 2020, Pages 1307–1342 https://doi.org/10.1090/tran/7970 Article electronically published on November 1, 2019 A LOCAL TO GLOBAL ARGUMENT ON LOW DIMENSIONAL MANIFOLDS SAM NARIMAN Abstract. ForanorientedmanifoldM whose dimension is less than 4, we use the contractibility of certain complexes associated to its submanifolds to cut M into simpler pieces in order to do local to global arguments. In par- ticular, in these dimensions, we give a different proof of a deep theorem of Thurston in foliation theory that says the natural map between classifying spaces BHomeoδ(M) → BHomeo(M) induces a homology isomorphism where Homeoδ(M) denotes the group of homeomorphisms of M made discrete. Our proof shows that in low dimensions, Thurston’s theorem can be proved without using foliation theory. Finally, we show that this technique gives a new per- spective on the homotopy type of homeomorphism groups in low dimensions. In particular, we give a different proof of Hacher’s theorem that the homeomor- phism groups of Haken 3-manifolds with boundary are homotopically discrete without using his disjunction techniques. 1. Introduction Often, in h-principle type theorems (e.g. Smale-Hirsch theory), it is easy to check that the statement holds for the open disks (local data) and then one wishes to glue them together to prove that the statement holds for closed compact manifolds (global statement). But there are cases where one has a local statement for a closed disk relative to the boundary. To use such local data to great effect, instead of covering the manifold by open disks, we use certain “resolutions” associated to submanifolds (see Section 2) to cut the manifold into closed disks. -
Leaders of Polish Mathematics Between the Two World Wars
COMMENTATIONES MATHEMATICAE Vol. 53, No. 2 (2013), 5-12 Roman Duda Leaders of Polish mathematics between the two world wars To Julian Musielak, one of the leaders of post-war Poznań mathematics Abstract. In the period 1918-1939 mathematics in Poland was led by a few people aiming at clearly defined but somewhat different goals. They were: S. Zaremba in Cracow, W. Sierpiński and S. Mazurkiewicz in Warsaw, and H. Steinhaus and S. Banach in Lvov. All were chairmen and editors of mathematical journals, and each promoted several students to continue their efforts. They were highly successful both locally and internationally. When Poland regained its independence in 1918, Polish mathematics exploded like a supernova: against a dark background there flared up, in the next two deca- des, the Polish Mathematical School. Although the School has not embraced all mathematics in the country, it soon attracted common attention for the whole. Ho- wever, after two decades of a vivid development the School ended suddenly also like a supernova and together with it there silenced, for the time being, the rest of Polish mathematics. The end came in 1939 when the state collapsed under German and Soviet blows from the West and from the East, and the two occupants cooperated to cut short Polish independent life. After 1945 the state and mathematics came to life again but it was a different state and a different mathematics. The aim of this paper is to recall great leaders of the short-lived interwar Polish mathematics. By a leader we mean here a man enjoying an international reputation (author of influential papers or monographs) and possessing a high position in the country (chairman of a department of mathematics in one of the universities), a man who had a number of students and promoted several of them to Ph.D. -
1 Whitehead's Theorem
1 Whitehead's theorem. Statement: If f : X ! Y is a map of CW complexes inducing isomorphisms on all homotopy groups, then f is a homotopy equivalence. Moreover, if f is the inclusion of a subcomplex X in Y , then there is a deformation retract of Y onto X. For future reference, we make the following definition: Definition: f : X ! Y is a Weak Homotopy Equivalence (WHE) if it induces isomor- phisms on all homotopy groups πn. Notice that a homotopy equivalence is a weak homotopy equivalence. Using the definition of Weak Homotopic Equivalence, we paraphrase the statement of Whitehead's theorem as: If f : X ! Y is a weak homotopy equivalences on CW complexes then f is a homotopy equivalence. In order to prove Whitehead's theorem, we will first recall the homotopy extension prop- erty and state and prove the Compression lemma. Homotopy Extension Property (HEP): Given a pair (X; A) and maps F0 : X ! Y , a homotopy ft : A ! Y such that f0 = F0jA, we say that (X; A) has (HEP) if there is a homotopy Ft : X ! Y extending ft and F0. In other words, (X; A) has homotopy extension property if any map X × f0g [ A × I ! Y extends to a map X × I ! Y . 1 Question: Does the pair ([0; 1]; f g ) have the homotopic extension property? n n2N (Answer: No.) Compression Lemma: If (X; A) is a CW pair and (Y; B) is a pair with B 6= ; so that for each n for which XnA has n-cells, πn(Y; B; b0) = 0 for all b0 2 B, then any map 0 0 f :(X; A) ! (Y; B) is homotopic to f : X ! B fixing A. -
Kazimierz Kuratowski (Warsaw)
Kazimierz Kuratowski (Warsaw) THE PAST AND THE PRESENT OF THE POLISH SCHOOL OF MATHEMATICS I am concentrating in this article on two main subjects. Firstly: I am trying to answer the question what brought about such an “explosion” of mathematics in a country in whose scientific tradition there was hardly any mathematics and which happened at the time when after an over-one-century-long foreign rule the nation was trying hard to reconstruct its now independent country, ravaged by the First World War. Secondly: was this explosion a short-lived enthusiasm or, on the contrary, the Polish school of .mathematics struck roots so deeply that it was sub sequently able to survive the cataclysm of the Second World War and rebuild in the new circumastances — in People’s Poland — the internationally re cognized edifice of Polish mathematics? There will be in this article no mathematical theorems, no definitions or geometrical constructions. I shall be trying to use the language which can be understood without mathematical qualifications. It is therefore my hope that this text will be intelligible not only to mathematicians.1 1. PRECURSORS OF THE POLISH SCHOOL OF MATHEMATICS It was the years 1918—1920 when the Polish School of Mathematics was emerging. Before describing this period and the subsequent years one should, I think, review, be it only summarily, the contemporary state of Polish mathematics. I am going to mention those of its representatives the majority of whom had in fact been active in the 19th century but who also worked in the 20th century and so could influence the formation of the School of Mathematics being thus its precursors as it were. -
Variations on a Theme of Borel
VARIATIONS ON A THEME OF BOREL: AN ESSAY CONCERNING THE ROLE OF THE FUNDAMENTAL GROUP IN RIGIDITY Revision Summer 2019 Shmuel Weinberger University of Chicago Unintentionally Blank 2 Armand Borel William Thurston 3 4 Preface. This essay is a work of historical fiction – the “What if Eleanor Roosevelt could fly?” kind1. The Borel conjecture is a central problem in topology: it asserts the topological rigidity of aspherical manifolds (definitions below!). Borel made his conjecture in a letter to Serre some 65 years ago2, after learning of some work of Mostow on the rigidity of solvmanifolds. We shall re-imagine Borel’s conjecture as being made after Mostow had proved the more famous rigidity theorem that bears his name – the rigidity of hyperbolic manifolds of dimension at least three – as the geometric rigidity of hyperbolic manifolds is stronger than what is true of solvmanifolds, and the geometric picture is clearer. I will consider various related problems in a completely ahistorical order. My motive in all this is to highlight and explain various ideas, especially recurring ideas, that illuminate our (or at least my own) current understanding of this area. Based on the analogy between geometry and topology imagined by Borel, one can make many other conjectures: variations on Borel’s theme. Many, but perhaps not all, of these variants are false and one cannot blame them on Borel. (On several occasions he described feeling lucky that he ducked the bullet and had not conjectured smooth rigidity – a phenomenon indistinguishable to the mathematics of the time from the statement that he did conjecture.) However, even the false variants are false for good reasons and studying these can quite fun (and edifying); all of the problems we consider enrich our understanding of the geometric and analytic properties of manifolds. -
Curriculum Vitae Craig R
Curriculum Vitae Craig R. Guilbault Dept. of Mathematical Sciences Telephone: (414)229-4568(offi ce) University of Wisconsin-Milwaukee e-mail: [email protected] Milwaukee, WI 53201 uwm.edu/math/people/guilbault-craig/ Education Ph.D. University of Tennessee, Knoxville, 1988 • Thesis: Some Results in the Study of Noncompact 4-manifolds Thesis Advisor: Robert J. Daverman B.S. Northland College, Ashland, Wisconsin, 1982 • Magna Cum Laude with Honors in Mathematics Professional Experience 2003-present Professor, University of Wisconsin-Milwaukee • 1995-2003 Associate Professor, University of Wisconsin-Milwaukee • 1989-95 Assistant Professor, University of Wisconsin-Milwaukee • 1988-89 Assistant Professor, Ithaca College • Editorial Work Editorial board for the journal Topology Proceedings (2015-present) • Co-editor of special issue of the journal Topology and its Applications dedicated to • AMS special session in Geometric Topology and Geometric Group Theory held in Milwaukee, Wisconsin, October 24-25, 1997 Co-editor of the informal Proceedings of the Workshop Geometric Topology, 1991-2012 • (primary editor in 1991, 1995, 1999, 2004 and 2009) Other Professional Service Organizer of the annual Workshop in Geometric Topology, 1991-present (co-principal • organizer in 1991, 1995, 1999, 2004, 2009, 2014, and 2019; co-organizer other years). Co-organizer of Special Session in Geometric Topology and Geometric Group Theory, • AMS Sectional Meeting, Milwaukee, Wisconsin, October 24-25, 1997. Co-organizer of Special Session in Geometric Topology and Geometric