Topological Quillen Localization and Homotopy Pro-Nilpotent Structured Ring Spectra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fibrewise Stable Rational Homotopy
Submitted exclusively to the London Mathematical Society doi:10.1112/0000/000000 Fibrewise Stable Rational Homotopy Yves F´elix, Aniceto Murillo and Daniel Tanr´e Abstract In this paper, for a given space B we establish a correspondence between differential graded ∗ modules over C (B; Q) and fibrewise rational stable spaces over B. This correspondence opens the door for topological translations of algebraic constructions made with modules over a commutative differential graded algebra. More precisely, given fibrations E → B and ′ E → B, the set of stable rational homotopy classes of maps over B is isomorphic to ∗ ∗ ′ ∗ ExtC∗(B;Q)`C (E ; Q),C (E; Q)´. In particular, a nilpotent, finite type CW-complex X is a q rational Poincar´ecomplex if there exist non trivial stable maps over XQ from (X × S )Q to q+N (X ∨ S )Q for exactly one N. 1. Introduction Sullivan’s approach to rational homotopy theory is based on an adjoint pair of functors between the category of simplicial sets and the category CDGA of commutative differential graded algebras over Q (henceforth called cdga’s ). This correspondence induces an equivalence between the homotopy category of rational (nilpotent and with finite Betti numbers) simplicial sets and a homotopy category of cdga’s. The fact that any algebraic construction or property in CDGA has a topological translation is the most important feature of rational homotopy theory. Until now, however, there was no known procedure for realizing differential graded modules (henceforth called dgm’s) over cdga’s topologically, even though a number of important topological invariants have been interpreted in terms of dgm’s over the years. -
Part III 3-Manifolds Lecture Notes C Sarah Rasmussen, 2019
Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Intro to Knots and Embeddings 13 Lecture 3: Link Diagrams and Alexander Polynomial Skein Relations 17 Lecture 4: Handle Decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Handle-bodies and Heegard splittings 24 Lecture 6: Handle-bodies and Heegaard Diagrams 28 Lecture 7: Fundamental group presentations from handles and Heegaard Diagrams 36 Lecture 8: Alexander Polynomials from Fundamental Groups 39 Lecture 9: Fox Calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston Classification for Mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn Surgery 64 Lecture 15: 3-manifolds from Dehn Surgery 68 Lecture 16: Seifert fibered spaces 69 Lecture 17: Hyperbolic 3-manifolds and Mostow Rigidity 70 Lecture 18: Dehn's Lemma and Essential/Incompressible Surfaces 71 Lecture 19: Sphere Decompositions and Knot Connected Sum 74 Lecture 20: JSJ Decomposition, Geometrization, Splice Maps, and Satellites 78 Lecture 21: Turaev torsion and Alexander polynomial of unions 81 Lecture 22: Foliations 84 Lecture 23: The Thurston Norm 88 Lecture 24: Taut foliations on Seifert fibered spaces 89 References 92 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y . -
HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition. -
Remarks on Combinatorial and Accessible Model Categories
Theory and Applications of Categories, Vol. 37, No. 9, 2021, pp. 266{275. REMARKS ON COMBINATORIAL AND ACCESSIBLE MODEL CATEGORIES JIRˇ´I ROSICKY´ Abstract. Using full images of accessible functors, we prove some results about com- binatorial and accessible model categories. In particular, we give an example of a weak factorization system on a locally presentable category which is not accessible. 1. Introduction Twenty years ago, M. Hovey asked for examples of model categories which are not cofi- brantly generated. This is the same as asking for examples of weak factorization systems which are not cofibrantly generated. One of the first examples was given in [1]: it is a weak factorization system (L; R) on the locally presentable category of posets where L consists of embeddings. The reason is that posets injective to embeddings are precisely complete lattices which do not form an accessible category. Hence L is not cofibrantly generated. Since then, the importance of accessible model categories and accessible weak factorization systems has emerged, and, the same question appears again, i.e., to give an example of a weak factorization system (L; R) on a locally presentable category which is not accessible. Now, L-injective objects do not necessarily form an accessible category but only a full image of an accessible functor. Such full images are accessible only under quite restrictive assumptions (see [5]). But, for an accessible weak factorization system, L-injective objects form the full image of a forgetful functor from algebraically L-injective objects (see Corollary 3.3). Moreover, such full images are closed under reduced prod- ucts modulo κ-complete filters for some regular cardinal κ (see Theorem 2.5). -
CURRICULUM VITAE Jonathan Andrew Scott
CURRICULUM VITAE Jonathan Andrew Scott [email protected] Address: 6-53 Maclaren Street, Ottawa ON K2P 0K3 Canada Current Affiliation: Department of Mathematics and Statistics, University of Ottawa Telephone (office): (613) 562-5800 ext. 2082 Telephone (home): (613) 236-4812 Education 2000 Ph.D. in Mathematics, University of Toronto. Supervisor: Steve Halperin. 1994 M.Sc. in Mathematics, University of Toronto. 1993 B.Sc. (Honours) in Mathematical Physics, Queen’s University at Kingston. Research Interests Operads, category theory, E∞ algebras, cohomology operations, loop space homology, Bockstein spectral sequence. Publications 1. K. Hess, P.-E. Parent, and J. Scott, A chain coalgebra model for the James map, Homology, Homotopy Appl. 9 (2007) 209–231, arXiv:math.AT/0609444. 2. K. Hess, P.-E. Parent, J. Scott, and A. Tonks, A canonical enriched Adams-Hilton model for simplicial sets, Adv. Math. 207 (2006) 847–875, arXiv:math.AT/0408216. 3. J. Scott, Hopf algebras up to homotopy and the Bockstein spectral sequence, Algebr. Geom. Topol. 5 (2005) 119–128, arXiv:math.AT/0412207. 4. J. Scott, A torsion-free Milnor-Moore theorem, J. London Math. Soc. (2) 67 (2003) 805–816, arXiv:math.AT/0103223. 5. J. Scott, Algebraic structure in the loop space homology Bockstein spectral sequence, Trans. Amer. Math. Soc. 354 (2002) 3075–3084, arXiv: math.AT/9912106. 6. J. Scott, A factorization of the homology of a differential graded Lie algebra, J. Pure Appl. Alg. 167 (2002) 329–340. Submitted Manuscripts 1. K. Hess and J. Scott, Homotopy morphisms and Koszul resolutions of operads 2. K. Hess, P.-E. Parent, and J. -
An Embedding Theorem for Proper N-Types
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 48 (1992) 215-233 215 North-Holland An embedding theorem for proper n-types Luis Javier Hernandez Deparfamento de Matem&icar, Unicersidad de Zaragoza, 50009 Zaragoza, Spain Timothy Porter School of Mathematics, Uniuersity College of North Wales, Bangor, Gwynedd LL57 I UT, UK Received 2 August 1991 Abwact Hermindez, L.J. and T. Porter, An embedding theorem for proper n-types, Topology and its Applications 48 (1993) 215-233. This paper is centred around an embedding theorem for the proper n-homotopy category at infinity of a-compact simplicial complexes into the n-homotopy category of prospaces. There is a corresponding global version. This enables one to prove proper analogues of various classical results of Whitehead on n-types, .I,,-complexes, etc. Keywords: n-type, proper n-type, Edwards-Hastings embedding AMS (MOS) Subj. Class: SSPlS, 55 P99 Introduction In his address to the 1950 Proceedings of the International Congress of Mathematicians, Whitehead described the program on which he has been working for some years [31]. He mentioned in particular the realization problem: that of deciding if a given set of homomorphisms defined on homotopy groups of complexes, K and K’, have a geometric realization, K + K’. His attempt to study this problem involved examining algebraic structures, containing more information than the homotopy groups, so that homomorphisms that preserved the extra structure would be realizable. In particular he divided up the problem of finding such models into simpler steps involving n-types as introduced earlier by Fox [13, 141 and gave algebraic models for 2-types in a paper with MacLane [24]. -
The Stability Problem in Shape, and a Whitehead Theorem
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 214, 1975 THE STABILITYPROBLEM IN SHAPE,AND A WHITEHEAD THEOREMIN PRO-HOMOTOPY BY DAVID A. EDWARDSAND ROSS GEOGHEGAN(l) ABSTRACT. Theorem 3.1 is a Whitehead theorem in pro-homotopy for finite-dimensional pro-complexes. This is used to obtain necessary and sufficient algebraic conditions for a finite-dimensional tower of complexes to be pro-homot- opy equivalent to a complex (§4) and for a finite-dimensional compact metric space to be pointed shape equivalent to an absolute neighborhood retract (§ 5). 1. Introduction. The theory of shape was introduced by Borsuk [2] for compact metric spaces (compacta) and was extended in a natural way by Fox [13] to all metric spaces. Shape theory agrees with homotopy theory on metric absolute neighborhood retracts (ANR's) and there is ample evidence that as a way of doing algebraic topology on "bad" spaces, shape theory is "better" than homot- opy theory. There is, of course, both shape theory and pointed shape theory. Borsuk [5] has shown that the distinction is important. What we call the stability prob- lem (unpointed or pointed version) is loosely expressed by the question: when is a "bad" space shape equivalent to a "good" space? Specifically, for compacta, this takes two forms: Problem A. Give necessary and sufficient conditions for a compactum Z to have the Fox shape of an ANR. Problem B. Give necessary and sufficient conditions for a compactum Z to have the Borsuk shape of a compact polyhedron. We lay the ground rules as follows. The conditions in Problems A and B should be intrinsic. -
A Local to Global Argument on Low Dimensional Manifolds
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 373, Number 2, February 2020, Pages 1307–1342 https://doi.org/10.1090/tran/7970 Article electronically published on November 1, 2019 A LOCAL TO GLOBAL ARGUMENT ON LOW DIMENSIONAL MANIFOLDS SAM NARIMAN Abstract. ForanorientedmanifoldM whose dimension is less than 4, we use the contractibility of certain complexes associated to its submanifolds to cut M into simpler pieces in order to do local to global arguments. In par- ticular, in these dimensions, we give a different proof of a deep theorem of Thurston in foliation theory that says the natural map between classifying spaces BHomeoδ(M) → BHomeo(M) induces a homology isomorphism where Homeoδ(M) denotes the group of homeomorphisms of M made discrete. Our proof shows that in low dimensions, Thurston’s theorem can be proved without using foliation theory. Finally, we show that this technique gives a new per- spective on the homotopy type of homeomorphism groups in low dimensions. In particular, we give a different proof of Hacher’s theorem that the homeomor- phism groups of Haken 3-manifolds with boundary are homotopically discrete without using his disjunction techniques. 1. Introduction Often, in h-principle type theorems (e.g. Smale-Hirsch theory), it is easy to check that the statement holds for the open disks (local data) and then one wishes to glue them together to prove that the statement holds for closed compact manifolds (global statement). But there are cases where one has a local statement for a closed disk relative to the boundary. To use such local data to great effect, instead of covering the manifold by open disks, we use certain “resolutions” associated to submanifolds (see Section 2) to cut the manifold into closed disks. -
Rational Homotopy Theory: a Brief Introduction
Contemporary Mathematics Rational Homotopy Theory: A Brief Introduction Kathryn Hess Abstract. These notes contain a brief introduction to rational homotopy theory: its model category foundations, the Sullivan model and interactions with the theory of local commutative rings. Introduction This overview of rational homotopy theory consists of an extended version of lecture notes from a minicourse based primarily on the encyclopedic text [18] of F´elix, Halperin and Thomas. With only three hours to devote to such a broad and rich subject, it was difficult to choose among the numerous possible topics to present. Based on the subjects covered in the first week of this summer school, I decided that the goal of this course should be to establish carefully the founda- tions of rational homotopy theory, then to treat more superficially one of its most important tools, the Sullivan model. Finally, I provided a brief summary of the ex- tremely fruitful interactions between rational homotopy theory and local algebra, in the spirit of the summer school theme “Interactions between Homotopy Theory and Algebra.” I hoped to motivate the students to delve more deeply into the subject themselves, while providing them with a solid enough background to do so with relative ease. As these lecture notes do not constitute a history of rational homotopy theory, I have chosen to refer the reader to [18], instead of to the original papers, for the proofs of almost all of the results cited, at least in Sections 1 and 2. The reader interested in proper attributions will find them in [18] or [24]. The author would like to thank Luchezar Avramov and Srikanth Iyengar, as well as the anonymous referee, for their helpful comments on an earlier version of this article. -
1 Whitehead's Theorem
1 Whitehead's theorem. Statement: If f : X ! Y is a map of CW complexes inducing isomorphisms on all homotopy groups, then f is a homotopy equivalence. Moreover, if f is the inclusion of a subcomplex X in Y , then there is a deformation retract of Y onto X. For future reference, we make the following definition: Definition: f : X ! Y is a Weak Homotopy Equivalence (WHE) if it induces isomor- phisms on all homotopy groups πn. Notice that a homotopy equivalence is a weak homotopy equivalence. Using the definition of Weak Homotopic Equivalence, we paraphrase the statement of Whitehead's theorem as: If f : X ! Y is a weak homotopy equivalences on CW complexes then f is a homotopy equivalence. In order to prove Whitehead's theorem, we will first recall the homotopy extension prop- erty and state and prove the Compression lemma. Homotopy Extension Property (HEP): Given a pair (X; A) and maps F0 : X ! Y , a homotopy ft : A ! Y such that f0 = F0jA, we say that (X; A) has (HEP) if there is a homotopy Ft : X ! Y extending ft and F0. In other words, (X; A) has homotopy extension property if any map X × f0g [ A × I ! Y extends to a map X × I ! Y . 1 Question: Does the pair ([0; 1]; f g ) have the homotopic extension property? n n2N (Answer: No.) Compression Lemma: If (X; A) is a CW pair and (Y; B) is a pair with B 6= ; so that for each n for which XnA has n-cells, πn(Y; B; b0) = 0 for all b0 2 B, then any map 0 0 f :(X; A) ! (Y; B) is homotopic to f : X ! B fixing A. -
A Monoidal Dold-Kan Correspondence for Comodules
A MONOIDAL DOLD-KAN CORRESPONDENCE FOR COMODULES MAXIMILIEN PEROUX´ Abstract. We present the notion of fibrantly generated model categories. Cofibrantly generated model categories are generalizations of CW-approximations which provide an inductive cofibrant replacement. We provide examples of inductive fibrant replacements constructed as Postnikov towers. These provide new types of arguments to compute homotopy limits in model categories. We provide examples for simplicial and differential graded comodules. Our main application is to show that simplicial comodules and connective differential graded comodules are Quillen equivalent and their derived cotensor products correspond. 1. Introduction Let R be a commutative ring. The Dold-Kan correspondence established in [Dol58, Kan58] is an equiv- ≥0 alence between the category sModR of simplicial R-modules and the category ChR of non-negative chain ≥0 complexes over R. The normalization functor N : sModR → ChR is symmetric monoidal with respect to the graded tensor product of chains, the levelwise tensor product of simplicial modules and the Eilenberg-Zilber ≥0 map. The inverse equivalence Γ : ChR → sModR also has a (non-symmetric) monoidal structure coming from the Alexander-Whitney map. The categories are not isomorphic as symmetric monoidal categories. ≥0 Nevertheless, the homotopy categories of sModR and ChR have isomorphic symmetric monoidal structures when endowed with their respective derived tensor product. Formally, it was shown in [SS03] that there is a weak symmetric monoidal Quillen equivalence between the symmetric monoidal model categories of sModR ≥0 and ChR . The equivalence lifts to the associated categories of algebras and modules. In [P´er20a, 4.1], ≥0 we proved that the underlying ∞-categories of sModR and ChR (in the sense of [Lur17, 1.3.4.15, 4.1.7.4]) are equivalent as symmetric monoidal ∞-categories. -
Normal and Conormal Maps in Homotopy Theory 3
NORMAL AND CONORMAL MAPS IN HOMOTOPY THEORY EMMANUEL D. FARJOUN AND KATHRYN HESS Abstract. Let M be a monoidal category endowed with a distinguished class of weak equivalences and with appropriately compatible classifying bundles for monoids and comonoids. We define and study homotopy-invariant notions of normality for maps of monoids and of conormality for maps of comonoids in M. These notions generalize both principal bundles and crossed modules and are preserved by nice enough monoidal functors, such as the normaliized chain complex functor. We provide several explicit classes of examples of homotopy-normal and of homotopy-conormal maps, when M is the category of simplicial sets or the category of chain complexes over a commutative ring. Introduction In a recent article [3], it was observed that a crossed module of groups could be viewed as a up-to-homotopy version of the inclusion of a normal subgroup. Mo- tivated by this observation, the authors of [3] formulated a definition of h-normal (homotopy normal) maps of simplicial groups, noting in particular that the con- jugation map from a simplicial group into its simplicial automorphism group is h-normal. The purpose of this paper is to provide a general, homotopical framework for the results in [3]. In particular, given a monoidal category M that is also a ho- motopical category [2], under reasonable compatability conditions between the two structures, we define and study notions of h-normality for maps of monoids and of h-conormality for maps of comonoids (Definition 2.4), observing that the two notions are dual in a strong sense.