The Effect of Osmotic Shock on Release of Bacterial Proteins and on Active Transport
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Como As Enzimas Agem?
O que são enzimas? Catalizadores biológicos - Aceleram reações químicas específicas sem a formação de produtos colaterais PRODUTO SUBSTRATO COMPLEXO SITIO ATIVO ENZIMA SUBSTRATO Características das enzimas 1 - Grande maioria das enzimas são proteínas (algumas moléculas de RNA tem atividade catalítica) 2 - Funcionam em soluções aquosas diluídas, em condições muito suaves de temperatura e pH (mM, pH neutro, 25 a 37oC) Pepsina estômago – pH 2 Enzimas de organismos hipertermófilos (crescem em ambientes quentes) atuam a 95oC 3 - Apresentam alto grau de especificidade por seus reagentes (substratos) Molécula que se liga ao sítio ativo Região da enzima e que vai sofrer onde ocorre a a ação da reação = sítio ativo enzima = substrato 4 - Peso molecular: varia de 12.000 à 1 milhão daltons (Da), são portanto muito grandes quando comparadas ao substrato. 5 - A atividade catalítica das Enzimas depende da integridade de sua conformação protéica nativa – local de atividade catalítica (sitio ativo) Sítio ativo e toda a molécula proporciona um ambiente adequado para ocorrer a reação química desejada sobre o substrato A atividade de algumas enzimas podem depender de outros componentes não proteicos Enzima ativa = Holoenzimas Parte protéica das enzimas + cofator Apoenzima ou apoproteína •Íon inorgânico •Molécula complexa (coenzima) Covalentemente ligados à apoenzima GRUPO PROSTÉTICO COFATORES Elemento com ação complementar ao sitio ativo as enzimas que auxiliam na formação de um ambiente ideal para ocorrer a reação química ou participam diretamente dela -
University Microfilms
INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. Wher, a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
Optimizing Cellular Metabolism to Improve Chronic Skin Wound Healing
Optimizing Cellular Metabolism to Improve Chronic Skin Wound Healing James J. Slade Honors Thesis Luis Felipe Ramirez Biomedical Engineering Rutgers University, New Brunswick Under the direction of Dr. Francois Berthiaume and Dr. Gabriel Yarmush Abstract—Despite significant advances, chronic skin wounds Wound healing is a complex process with four identifiable remain a large problem both in terms of morbidity and cost. It stages: hemostasis, inflammation, proliferation, and remodel- is estimated that in the United States, this problem afflicts 6.5 ing [6]. Hemostasis involves the formation of a blood clot that million people a year and costs more than 30 billion dollars for di- abetic foot ulcers alone [4,11]. Currently approved treatments are stops the loss of blood at the site of injury [6]. Growth factors often ineffective. This thesis seeks to leverage the large amount of released by activated platelets during the hemostasis stage information that has accumulated about metabolism in the hu- recruit immune cells such as neutrophils and macrophages [6]. man body, and to mine that information with computational mod- The infiltration of the injured tissue with these immune cells eling. It seeks to uncover whether metabolites commonly available leads to the inflammatory phase [6]. The role played by inflam- in the human body can be used to bolster the metabolism of wounded cells such as keratinocytes (the cells that form the mation is classified as both positive and negative [5]. On the epidermis), and therefore improve the natural process of wound one hand the inflammatory response clears the wound site of healing. This would offer treatment options with fewer side effects pathogens and dead cells, on the other hand the inflammatory than what is currently offered to improve wound healing. -
Radhakrishnan, Iii 4
NATURE OF THE GENETIC BLOCKS IN THE ISOLEUCINE-VALINE MUTANTS OF SALMONELLA R. P. WAGNER AND ARLOA BERGQUIST The Genetics Laboratory of the Department of Zoology, The Uniuersity of Texas, Austin, Texas Received April 26, 1960 HE metabolic pathways leading to the biosynthesis of isoleucine and valine are now sufficiently well understood, as a result of the work of a number of investigators ( STRASSMAN,THOMAS and WEINHOUSE1955; STRASSMAN,THOMAS, LOCKEand WEINHOUSE1956; STRASSMAN,SHATTON, CORSEY and WEINHOUSE 1958; UMBARGER1958a,b; ADELBERG1955; WAGNER,RADHAKRISHNAN and SNELL1958; RADHAKRISHNAN,WAGNER and SNELL1960; and RADHAKRISHNAN and SNELL1960) to make it possible to investigate the nature of the genetic blocks in mutant organisms requiring isoleucine and valine. This communication describes the results of the investigation of a series of mutants of Salmonella typhimurium originally isolated in the laboratory of DR. M. DEMEREC,The Carnegie Institute of Washington, Cold Spring Harbor, New York. It is limited to the purely biochemical aspects of these mutants, but is ,preceded by a com- munication from GLANVILLEand DEMEREC1960, which describes the linkage studies made with these mutants, and correlates the genetic with the biochemical 3ata. The biosynthesis of isoleucine and valine is believed to occur as shown in Figure 1. In the work to be described here only the steps proceeding from the 3-keto acids, a-acetolactic acid and a-aceto-P-hydroxybutyricacid, have been :onsidered in detail. The following abbreviations are used in Figure I and in mbsequent parts of this communication: AHB = a-aceto-a-hydroxybutyric acid; CHa C Ha CHa CHa I 1 I I c*o CHa-C-OH CHfC-OH CHI-C-H 1 I TPNH 1 I c.0 ~ *Valine I COOH COOH I COOH I COOH (PYRUVIC ACID) (ALI I (HKVI I (DHV) I I I I I I I I + Pyruvic Acid Step1 StepII Stepm Step H 4 I I I I cn3 CH, I CH3 I I I I I CHZ C=O I CH~CH~C-OH Threonine-GO I ~CH3CH2-~-OH-C=0I+! I I I I COOH COOH COOH COOH COOH (U-kmtobutyric acid1 (AH01 (HKII (DUI) (KI) FIGURE1 .-The biosynthetic pathway leading to isoleucine and valine. -
Regulation of the Biosynthesis of the Branched-Chain Amino Acids
Regulation of the Biosynthesis of the Branched-Chain Amino Acids H. E. UMBARGER Department of Biological Science Purdue University Lafayette, Indiana I. Historical Introduction 57 II. Regulation of Metabolic Flow by End-Product Inhibition . 58 A. Inhibition of Threonine Deaminase 59 B. Inhibition of Acetohydroxy Acid Synthetase 64 C. Inhibition of α-Isopropylmalate Synthetase 67 III. Control of Enzyme Level in the Pathways to the Branched-Chain Amino Acids 68 A. Repression of the Leucine Biosynthetic Enzymes 68 B. Repression of the Isoleucine and Valine Biosynthetic Enzymes . 70 IV. The Inhibition of Growth of Eschenchia coli Strain K12 by Valine 73 Note Added in Proof 74 References 75 I. Historical Introduction For a long time the branched-chain amino acids have been considered under a common heading in biochemistry textbooks. The basis for this grouping was solely their structural relationship since, before the advent of isotopie tracer techniques and mutant methodology, so little was known of their catabolism and nothing was known of their biosynthesis. Indeed, on the basis of their catabolism, they might have been considered separately for studies with the diabetic dog revealed that leucine was a "ketogenic" amino acid, valine was "glycogenic" whereas isoleucine was both. One of the earliest rational reasons for suspecting that they might be metabolically related was an antagonism observed by Gladstone (21) in 1939. He noted that the addition of any one of the three branched- chain amino acids to an otherwise sufficient medium prevented the growth of the anthrax bacillus. The three amino acids added together, however, were stimulatory. Gladstone suggested that each of the amino acids might have interfered with either the utilization or the formation of the other two. -
The Whitefly Bacterial Endosymbiont Is a Minimal Amino Acid Factory with Unusual Energetics
1bioRxiv preprint doi: https://doi.org/10.1101/043349; this version posted March 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Nature lessons: the whitefly bacterial endosymbiont is a minimal amino acid factory 2 with unusual energetics 3 4 Jorge Calle-Espinosa1, Miguel Ponce-de-Leon1, Diego Santos-Garcia2,3, Francisco J. Silva2,4, 5 Francisco Montero1* & Juli Peretó2,5* 6 *Corresponding authors: Francisco Montero [email protected] - Juli Peretó 7 [email protected] 8 1 Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, 9 Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28045, Spain. 10 2 Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C/José 11 Beltrán 2, Paterna 46980, Spain. 12 3 Present address: Department of Entomology, The Hebrew University of Jerusalem, Israel. 13 4 Departament de Genètica, Universitat de València. 14 5 Departament de Bioquímica i Biologia Molecular, Universitat de València. 15 16 Abstract 17 18 Bacterial lineages that establish obligate symbiotic associations with insect hosts are 19 known to possess highly reduced genomes with streamlined metabolic functions that are 20 commonly focused on amino acid and vitamin synthesis. We constructed a genome-scale 21 metabolic model of the whitefly bacterial endosymbiont Candidatus Portiera aleyrodidarum 22 to study the energy production capabilities using stoichiometric analysis. Strikingly, the 23 results suggest that the energetic metabolism of the bacterial endosymbiont relies on the use 24 of pathways related to the synthesis of amino acids and carotenoids. -
O O2 Enzymes Available from Sigma Enzymes Available from Sigma
COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc. -
Regulation of Leucine Catabolism by Caloric Sources. Role of Glucose and Lipid in Nitrogen Sparing During Nitrogen Deprivation
Regulation of leucine catabolism by caloric sources. Role of glucose and lipid in nitrogen sparing during nitrogen deprivation. J A Vazquez, … , H S Paul, S A Adibi J Clin Invest. 1988;82(5):1606-1613. https://doi.org/10.1172/JCI113772. Research Article Previously we showed that hypocaloric amounts of glucose reduce leucine catabolism while an isocaloric amount of fat does not (1985. J. Clin. Invest. 76:737.). This study was designed to investigate whether the same difference exists when the entire caloric need is provided either as glucose or lipid. Rats were maintained for 3 d on total parenteral nutrition (350 cal/kg per d), after which the infusion of amino acids was discontinued and rats received the same amount of calories entirely as glucose or lipid for three more days. A third group of rats was infused with saline for 3 d. In comparison to glucose, lipid infusion resulted in higher urinary nitrogen excretion (55 +/- 3 vs. 37 +/- 2 mg N/24 h, P less than 0.05), muscle concentrations of tyrosine (95 +/- 8 vs. 42 +/- 8 microM, P less than 0.01), and leucine (168 +/- 19 vs. 84 +/- 16 microM, P less than 0.01), activity of BCKA dehydrogenase in muscle (2.2 +/- 0.2 vs. 1.4 +/- 0.04 nmol/mg protein per 30 min, P less than 0.05), and whole body rate of leucine oxidation (3.3 +/- 0.5 vs. 1.4 +/- 0.2 mumol/100 g per h, P less than 0.05). However, all these parameters were significantly lower in lipid-infused than starved rats. -
Method for Producing L-Leucine Verfahren Zur Herstellung Von L-Leucin Procédé De Préparation De L-Leucine
Europäisches Patentamt *EP000913466B1* (19) European Patent Office Office européen des brevets (11) EP 0 913 466 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 1/20, C12P 13/06 of the grant of the patent: // (C12N1/20, C12R1:19) 07.04.2004 Bulletin 2004/15 (21) Application number: 98120261.7 (22) Date of filing: 26.10.1998 (54) Method for producing L-leucine Verfahren zur Herstellung von L-Leucin Procédé de préparation de L-leucine (84) Designated Contracting States: • Arkadievich, Livshits Vitaly (VNIIGenetika) DE FR NL SE 113545, Moscow (RU) • Ivanovich, Kozlov Yury (VNIIGenetika) (30) Priority: 29.10.1997 RU 97117875 113545, Moscow (RU) • Georgievich, Debabov Vladimir (VNIIGenetika) (43) Date of publication of application: 113545, Moscow (RU) 06.05.1999 Bulletin 1999/18 (74) Representative: Strehl Schübel-Hopf & Partner (73) Proprietor: Ajinomoto Co., Inc. Maximilianstrasse 54 Tokyo (JP) 80538 München (DE) (72) Inventors: (56) References cited: • Markovich, Gusyatiner Mikhail (VNIIGenetika) EP-A- 0 530 803 EP-A- 0 698 668 113545, Moscow (RU) US-A- 3 970 519 • Grigorievna, Lunts Maria (VNIIGenetika) 113545, Moscow (RU) • CALHOUN D H: "Threonine deaminase from • Valerievna, Ivanovskaya Lirina (VNIIGenetika) Escherichia coli: feedback- hypersensitive 113545, Moscow (RU) enzyme from a genetic regulatory mutant." • Georgievna, Rostova Yulia (VNIIGenetika) JOURNAL OF BACTERIOLOGY, (1976 APR) 126 113545, Moscow (RU) (1) 56-63. , XP002122210 • Aleksandrovna, Bachina Tatiana (VNIIGenetika) 113545, Moscow (RU) Remarks: • Zavenovich, Akhverdyan Valery (VNIIGenetika) The file contains technical information submitted 113545, Moscow (RU) after the application was filed and not included in this • Moiseevich, Khurges Evgeny (VNIIGenetika) specification 113545, Moscow (RU) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. -
The Whitefly Bacterial Endosymbiont Is a Minimal Amino Acid Factory
1bioRxiv preprint doi: https://doi.org/10.1101/043349; this version posted March 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Nature lessons: the whitefly bacterial endosymbiont is a minimal amino acid factory 2 with unusual energetics 3 4 Jorge Calle-Espinosa1, Miguel Ponce-de-Leon1, Diego Santos-Garcia2,3, Francisco J. Silva2,4, 5 Francisco Montero1* & Juli Peretó2,5* 6 *Corresponding authors: Francisco Montero [email protected] - Juli Peretó 7 [email protected] 8 1 Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, 9 Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28045, Spain. 10 2 Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C/José 11 Beltrán 2, Paterna 46980, Spain. 12 3 Present address: Department of Entomology, The Hebrew University of Jerusalem, Israel. 13 4 Departament de Genètica, Universitat de València. 14 5 Departament de Bioquímica i Biologia Molecular, Universitat de València. 15 16 Abstract 17 18 Bacterial lineages that establish obligate symbiotic associations with insect hosts are 19 known to possess highly reduced genomes with streamlined metabolic functions that are 20 commonly focused on amino acid and vitamin synthesis. We constructed a genome-scale 21 metabolic model of the whitefly bacterial endosymbiont Candidatus Portiera aleyrodidarum 22 to study the energy production capabilities using stoichiometric analysis. Strikingly, the 23 results suggest that the energetic metabolism of the bacterial endosymbiont relies on the use 24 of pathways related to the synthesis of amino acids and carotenoids. -
(12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides. -
All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA