BBN Digest Published for BBN Employees
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
9/8/19 Date: 9/10/19 Article Title: Brief History of the Internet Autho
● Name: John Church ● Abstract Due Date: 9/8/19 ● Date: 9/10/19 ● Article Title: Brief History of the Internet ● Author: Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, Stephen Wolf. ● Journal: Internet Society “Brief History of the Internet” provides the reader with a cursory overview of the organizations, motivations, and pivotal moments behind the creation of the internet and its existence up to the date of publication, in 1997. The paper begins by recounting the parties and organization that began the creation of the first networks, and their motivations. The article notes the formation of key organizations and the parties involved in the creation of key technologies over the years following the Internet's inception. The article does not delve into the details of new improvements or the stories behind certain pivotal moments, but instead focuses on giving a brief overview of the parties, technologies, and events largely by name alone. One interesting aspect of the internet's inception that I did not realize until reading the article, was the largely decentralized nature from the beginning. For example, the article mentions that routers were designed to be “black box gateways” that did not hold on to any information. This was likely in line with DARPA’s goals (preventing sensitive military information fro sitting in places it shouldn’t.) as well as technical limitations of the time (the cost of memory in routers.) I wonder, though, that if the US government knew what the internet would become, if they would have insisted on more centralized control measures and less decentralization. -
Core Magazine February 2002
FEBRUARY 2002 CORE 3.1 A PUBLICATION OF THE COMPUTER HISTORY MUSEUM WWW.COMPUTERHISTORY.ORG PAGE 1 February 2002 OUR ACTIONS TODAY COREA publication of the Computer History3.1 Museum IN THIS MISSION ISSUE TO PRESERVE AND PRESENT FOR POSTERITY THE ARTIFACTS AND STORIES OF THE INFORMATION AGE INSIDE FRONT COVER VISION OUR ACTIONS TODAY The achievements of tomorrow must be was an outstanding success, and I simply doesn’t exist anywhere else in TO EXPLORE THE COMPUTING REVOLUTION AND ITS John C Toole rooted in the actions we take today. hope you caught the impact of these the world. With your sustained help, our IMPACT ON THE HUMAN EXPERIENCE Many exciting and important events announcements that have heightened actions have been able to speak much 2 THE SRI VAN AND COMPUTER have happened since our last CORE awareness of our enterprise in the louder than words, and it is my goal to INTERNETWORKING publication, and they have been community. I’m very grateful to Harry see that we are able to follow through Don Nielson carefully chosen to strategically shape McDonald (director of NASA Ames), Len on our dreams! EXECUTIVE STAFF where we will be in five years. Shustek (chairman of our Board of 7 John C Toole David Miller Trustees), Donna Dubinsky (Museum This issue of CORE is loaded with THE SRI VAN AND EARLY PACKET SPEECH EXECUTIVE DIRECTOR & CEO VICE PRESIDENT OF DEVELOPMENT 2 Don Nielson First, let me officially introduce our Trustee and CEO of Handspring), and technical content and information about Karen Mathews Mike Williams new name and logo to everyone who Bill Campbell (chairman of Intuit) who our organization—from a wonderful EXECUTIVE VICE PRESIDENT HEAD CURATOR 8 has not seen them before. -
Features of the Internet History the Norwegian Contribution to the Development PAAL SPILLING and YNGVAR LUNDH
Features of the Internet history The Norwegian contribution to the development PAAL SPILLING AND YNGVAR LUNDH This article provides a short historical and personal view on the development of packet-switching, computer communications and Internet technology, from its inception around 1969 until the full- fledged Internet became operational in 1983. In the early 1990s, the internet backbone at that time, the National Science Foundation network – NSFNET, was opened up for commercial purposes. At that time there were already several operators providing commercial services outside the internet. This presentation is based on the authors’ participation during parts of the development and on literature Paal Spilling is studies. This provides a setting in which the Norwegian participation and contribution may be better professor at the understood. Department of informatics, Univ. of Oslo and University 1 Introduction Defense (DOD). It is uncertain when DoD really Graduate Center The concept of computer networking started in the standardized on the entire protocol suite built around at Kjeller early 1960s at the Massachusetts Institute of Technol- TCP/IP, since for several years they also followed the ogy (MIT) with the vision of an “On-line community ISO standards track. of people”. Computers should facilitate communica- tions between people and be a support for human The development of the Internet, as we know it today, decision processes. In 1961 an MIT PhD thesis by went through three phases. The first one was the Leonard Kleinrock introduced some of the earliest research and development phase, sponsored and theoretical results on queuing networks. Around the supervised by ARPA. Research groups that actively same time a series of Rand Corporation papers, contributed to the development process and many mainly authored by Paul Baran, sketched a hypotheti- who explored its potential for resource sharing were cal system for communication while under attack that permitted to connect to and use the network. -
The Quilt Circle 2015
The quilt Circle National Regional Networks Consortium ...Advanced regional networking in support of research and education 2015 Edition A Letter from the President This year’s edition of The Quilt Circle is bursting with projects and programs enabled by the regional research and education networks that comprise our Quilt membership. Naturally, The Quilt is proud of the positive impact our member networks and organizations have on the communities they serve. Our annual publication gives us the opportunity to showcase the work of our members and highlight the collective impact each have on the institutions they serve and support across the nation. Given the depth and breadth of our members’ work, it can be challenging to select a single image that effectively captures and communicates its impact. This year’s cover, the image of DNA strands, is truly a fitting one to represent the work of our regional research and education network community. For those of you already familiar with the work of the regional research and education (R&E) network in your area and for those who are just learning about them for the first time in The Quilt Circle, you will quickly learn that our R&E networking DNA is indeed unique. It is in our R&E networking DNA to ensure our community of connected institutions are able to access advanced networking capabilities, tools and services when and how they need it, with the best possible performance so that the network is not an impediment to scientific progress. It is in our DNA for our networking organizations to be driven by the interests of our user communities to enable these institutions to fulfill their promise and mission. -
Abbate Ch1-2
6 Introductum Wide Web are prominent examples of informally created applications that became popular, not as the result of some central agency's mar Heat and ,-,UIH..4< keting plan, but through the spontaneous decisions of thousands of a.ndMeanings of Hacket(Switching independent users. In reconstructing the history of the Internet, I have been struck time and again by. the unexpected twists and turns its development has taken. Often a well-laid plan was abandoned after a short time and replaced by a new approach from an unexpected quarter..Rapid advances, such as the introduction of personal computers and the invention of local-area networks, continually threatened to make existing network technologies obsolete. In addition, responsibility for operating the Internet changed hands several times over the course Of all the ARPANET's technical innovations, perhaps the most cele of its first thirty years or so. How, in the face of all this change and brated was packet switching. Packet switching was an experimental, uncertainty, did the system survive and even flourish? I believe that even controversial method for transmitting data across a network. Its the key to the Internet's success was a commitment to flexibility and proponents claimed that it would increase the efficiency, reliability, and diversity, both in technical design and in organizational culture. No speed of data communications, butit was also quite complex to imple one could predict the specific changes that would revolutionize the ment, and some communications experts argued that the technique computing and communications industries at the end of the twentieth would never work. -
Local Infrastructures for School Networking: Current Models and Prospects
DOCUMENT RESUME ED 349 957 IR 015 693 AUTHOR Newman, Denis; And Others _TITLE Local Infrastructures for School Networking: Current Models and Prospects. Technical Report No. 22. INSTITUTION Center for Technology in Education, New York, NY. SPONS AGENCY Department of Education, Washington, DC.; National Science Foundation, Washington, D.C. PUB DATE May 92 CONTRACT 1-135562167-Al; MDR-9154006 NOTE 30p. PUB TYPE Information Analyses (070) Viewpoints (Opinion/Position Papers, Essays, etc.) (120) EDRS PRICE MF01/PCO" Plus Postage. DESCRIPTORS Communications; Comparative Analysis; *Computer Networks; Educational Change; Educational Technology; Elementary Secondary Education; *Futures (of Society); Information Networks; *Local Area Networks; Microcomputers; *Models; *Telecommunications IDENTIFIERS *Wide Area Networks ABSTRACT This paper identifies a paradigm shift that must take place in school networking. The ultimate goal is to retool the schools with a local technical infrastructure that gives teachersand students immediate access to communication systems andinformation resources, thereby supporting the implementation of advancesin pedagogy and educational technology. The current notionof telecomputing cannot address the information requirements locally within the school and, ultimately, will fragment and inhibit any move toward universal access to information resources. A technologyis needed that combines local and wide area networking(LAN and WAN), making access to remote resources part of the everyday work with school computers. This report contains the following sections: (1) The Problem: Combining Local and Wide Area Communication--facts about the current state of school networks and the dissociation of school LANs and WANs;(2) A Brief History of Network Technology;(3) A Convergence of School LAN's and WAN's--integrating and simplifying a school internetwork;(4) Current Models of School LAN-WAN Connectivity--a comparison of six models; and (5) Prospects for the Future. -
Implications for the Future of Broadband Networks
The Building of the Internet: Implications for the Future of Broadband Networks by Jeffrey A. Hart Department of Political Science Indiana University Bloomington, IN 47405 Internet: [email protected] Robert R. Reed Department of Political Science Indiana University Bloomington, IN 47405 Internet: [email protected] and Francois Bar Berkeley Roundtable on the International Economy University of California Berkeley, CA 94720 Internet: [email protected] August 28, 1992 This paper appeared in _Telecommunications Policy_, November 1992 (Vol. 16, No. 8), and has been nominated for the Donald McGannon Communication Research Center's 1993 Communications Policy Research Award. ABSTRACT The rapid growth of traffic on the Internet, a loosely organized system of interconnected computer networks, suggests a bright fu- ture for switched broadband telecommunications. It also suggests that the path to that future is more likely to involve a broaden- ing of access to broadband networks to users in offices, fac- tories, schools, and homes rather than the transmission of enter- tainment video (high definition or otherwise) via the telephone and cable networks. This article develops the argument by exam- ining the history of the growth of the Internet from its origins in the ARPANET. It describes and explains the transition from ARPANET to the NSFNET in the United States, and discusses the politics behind the National Research and Education Network (NREN) and the gigabit testbeds which will bring broadband capa- bilities to the NSFNET and parts of the Internet. Finally, it examines the forces which are creating pressure for expanding ac- cess to the Internet to schools and libraries, thereby greatly increasing the number of users of the network. -
The Great Telecom Meltdown
4 The Internet Boom and the Limits to Growth Nothing says “meltdown” quite like “Internet.” For although the boom and crash cycle had many things feeding it, the Internet was at its heart. The Internet created demand for telecommunications; along the way, it helped create an expectation of demand that did not materialize. The Internet’s commercializa- tion and rapid growth led to a supply of “dotcom” vendors; that led to an expec- tation of customers that did not materialize. But the Internet itself was not at fault. The Internet, after all, was not one thing at all; as its name implies, it was a concatenation [1] of networks, under separate ownership, connected by an understanding that each was more valuable because it was able to connect to the others. That value was not reduced by the mere fact that many people overesti- mated it. The ARPAnet Was a Seminal Research Network The origins of the Internet are usually traced to the ARPAnet, an experimental network created by the Advanced Research Projects Agency, a unit of the U.S. Department of Defense, in conjunction with academic and commercial contrac- tors. The ARPAnet began as a small research project in the 1960s. It was pio- neering packet-switching technology, the sending of blocks of data between computers. The telephone network was well established and improving rapidly, though by today’s standards it was rather primitive—digital transmission and switching were yet to come. But the telephone network was not well suited to the bursty nature of data. 57 58 The Great Telecom Meltdown A number of individuals and companies played a crucial role in the ARPAnet’s early days [2]. -
Abkürzungs-Liste ABKLEX
Abkürzungs-Liste ABKLEX (Informatik, Telekommunikation) W. Alex 1. Juli 2021 Karlsruhe Copyright W. Alex, Karlsruhe, 1994 – 2018. Die Liste darf unentgeltlich benutzt und weitergegeben werden. The list may be used or copied free of any charge. Original Point of Distribution: http://www.abklex.de/abklex/ An authorized Czechian version is published on: http://www.sochorek.cz/archiv/slovniky/abklex.htm Author’s Email address: [email protected] 2 Kapitel 1 Abkürzungen Gehen wir von 30 Zeichen aus, aus denen Abkürzungen gebildet werden, und nehmen wir eine größte Länge von 5 Zeichen an, so lassen sich 25.137.930 verschiedene Abkür- zungen bilden (Kombinationen mit Wiederholung und Berücksichtigung der Reihenfol- ge). Es folgt eine Auswahl von rund 16000 Abkürzungen aus den Bereichen Informatik und Telekommunikation. Die Abkürzungen werden hier durchgehend groß geschrieben, Akzente, Bindestriche und dergleichen wurden weggelassen. Einige Abkürzungen sind geschützte Namen; diese sind nicht gekennzeichnet. Die Liste beschreibt nur den Ge- brauch, sie legt nicht eine Definition fest. 100GE 100 GBit/s Ethernet 16CIF 16 times Common Intermediate Format (Picture Format) 16QAM 16-state Quadrature Amplitude Modulation 1GFC 1 Gigabaud Fiber Channel (2, 4, 8, 10, 20GFC) 1GL 1st Generation Language (Maschinencode) 1TBS One True Brace Style (C) 1TR6 (ISDN-Protokoll D-Kanal, national) 247 24/7: 24 hours per day, 7 days per week 2D 2-dimensional 2FA Zwei-Faktor-Authentifizierung 2GL 2nd Generation Language (Assembler) 2L8 Too Late (Slang) 2MS Strukturierte -
ARPANET by Peter Grier
ARP ANET ▲ Back Forward Home Reload Images Open Print Stop Go To: http://www.thomaswatson/ The roots of the Internet can be traced to the Defense Department’s Advanced Research Projects Agency. In the Beginning, There Was ARPANET By Peter Grier ne midsummer day in 1968, can’t see what one would want such Ocomputer scientist Severo M. Orn- a thing for.” stein was sitting in his office at the small Seldom in modern history has a tech- Cambridge, Mass., firm Bolt Beranek and nological prophecy been more wrong, Newman, Inc., when his boss walked in as Ornstein himself has since laugh- and handed him a sheaf of papers. It was ingly admitted. Despite his reservations, a request from the Defense Department’s BBN bid for and won the contract to Advanced Research Projects Agency construct ARPANET—a rudimentary, (ARPA) for companies to bid on a project four-computer experiment that has since that would link together computers at exploded into today’s world-girdling, different sites, enabling them to swap multipurpose Internet. data and files. Such a network had never Maybe the Internet would have come really been built before. Mr. Ornstein’s into existence without ARPA funding. boss wanted to know if BBN could do it. The utility of such a network is obvious, Ornstein took the papers home and and numerous scientists, including some studied them overnight. A day or two in other nations, were tinkering with later, he slapped the proposal back down similar technology at the time. on his superior’s desk. But US military funding gave com- “I suppose we could build that, puter networks a great boost and ensured if you wanted to,” he said. -
Reports' Descriptive (141)
DOCUMENT RESUME ED 372 729 IR 016 654 AUTHOR Eschbach, Darel TITLE What Is the Internet, Who Is Running It and How Is It Used? PUB DATE [Feb 94] NOTE 38p. PUB TYPE Reports' Descriptive (141) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS Access to Information; *Administration; *Computer Networks; Computer Uses in Education; Diffusion (Communication); *Electronic Mail; *Information Networks; Information Transfer; Technological Advancement; User Needs (Information) IDENTIFIERS *Internet; *National Information Infrastructure; National Science Foundation ABSTRACT The Internet, for the purposes of this discussion, refers to the network that has the National Science Foundation Network (NSFNET) as its backbone. For this paper, internet is the larger connection of networks that provides a minimum basic connection for electronic mail. The network is made up of many segments structured in a multitiered hierarchy from the NSFNET backbone to the networks at participating institutions. Network operations centers and information centers provide for pnysical communications ci-cuits, equipment servicing, and user support services. No one person or agency is responsible for the Internet/internet, but the system works as a result of a background culture and tradition that has developed over the years. There isa wealth of information available on how to usa the Internet/internet as it exists, and a wealth of speculation about its growth in light of the planned National Information Infrastructure. Three figures, three maps, and five attachments illustrate -
End-To-End Arguments in the Internet: Principles, Practices, and Theory
End-to-End Arguments in the Internet: Principles, Practices, and Theory vorgelegt von Matthias Bärwolff Von der Fakultät IV Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr. Ing.) genehmigte Dissertation Promotionsausschuss: Prof. Dr. Anja Feldmann (Vorsitzende) Prof. Dr. Bernd Lutterbeck (Berichter) Dr. David D. Clark (Berichter) Tag der wissenschaftlichen Aussprache: 22. Oktober 2010 Berlin 2010 D 83 Dissertation submitted to the Department of Electrical Engineering and Computer Science at Technische Universität Berlin in partial fulfillment of the requirements for the degree of Dr. Ing. Advisers: Prof. em. Dr. iur. Bernd Lutterbeck, Technische Universität Berlin Dr. David D. Clark, Massachusetts Institute of Technology I gratefully acknowledge the financial support of the German Academic Exchange Service (Deutscher Akademischer Auslandsdienst, DAAD) who have given me a scholarship for a stay at MIT in early 2009. Diese Doktorarbeit wurde mit finanzieller Unterstützung des Deutschen Akademischen Auslandsdiensts (DAAD) in Form eines dreimonatigen Doktorandenstipendiums im Jahr 2009 angefertigt. © Copyright 2010 by Matthias Bärwolff www.bärwolff.de [email protected] +49 30 20238852 rinciples are often more effective guides for action when they appear as no more than an unreasoned prejudice, Pa general feeling that certain things simply “are not done”; while as soon as they are explicitly stated speculation begins about their correctness and their validity. [ . ] Once the instinctive certainty is lost, perhaps as a result of unsuccessful attempts to put into words principles that had been observed “intuitively”, there is no way of regaining such guidance other than to search for a correct statement of what before was known implicitly.