Internetworking : Multicast and ATM Network Prerequisites for Distance Learning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Remote Lecturing System Using Multicast Addressing
MTEACH: A REMOTE LECTURING SYSTEM USING MULTICAST ADDRESSING A Thesis Submitted to the Faculty of Purdue University by Vladimir Kljaji In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering August 1997 - ii - For my family, friends and May. Thank you for your support, help and your love. - iii - ACKNOWLEDGMENTS I would like to express my gratitude to Professor Edward Delp for being my major advisor, for his guidance throughout the course of this work and especially for his time. This work could not have been done without his support. I would also like to thank Pro- fessor Edward Coyle and Professor Michael Zoltowski for their time and for being on my advisory committee. - iv - TABLE OF CONTENTS Page LIST OF TABLES .......................................................................................................viii LIST OF FIGURES........................................................................................................ix LIST OF ABBREVIATIONS.........................................................................................xi ABSTRACT.................................................................................................................xiii 1. INTRODUCTION...................................................................................................1 1.1 Review of Teleconferencing and Remote Lecturing Systems ...............................1 1.2 Motivation ...........................................................................................................2 -
SIP Architecture
383_NTRL_VoIP_08.qxd 7/31/06 4:34 PM Page 345 Chapter 8 SIP Architecture Solutions in this chapter: ■ Understanding SIP ■ SIP Functions and Features ■ SIP Architecture ■ Instant Messaging and SIMPLE Summary Solutions Fast Track Frequently Asked Questions 345 383_NTRL_VoIP_08.qxd 7/31/06 4:34 PM Page 346 346 Chapter 8 • SIP Architecture Introduction As the Internet became more popular in the 1990s, network programs that allowed communication with other Internet users also became more common. Over the years, a need was seen for a standard protocol that could allow participants in a chat, videoconference, interactive gaming, or other media to initiate user sessions with one another. In other words, a standard set of rules and services was needed that defined how computers would connect to one another so that they could share media and communicate.The Session Initiation Protocol (SIP) was developed to set up, maintain, and tear down these sessions between computers. By working in conjunction with a variety of other protocols and special- ized servers, SIP provides a number of important functions that are necessary in allowing communications between participants. SIP provides methods of sharing the location and availability of users and explains the capabilities of the software or device being used. SIP then makes it possible to set up and manage the session between the parties. Without these tasks being performed, communication over a large network like the Internet would be impossible. It would be like a message in a bottle being thrown in the ocean; you would have no way of knowing how to reach someone directly or whether the person even could receive the message. -
1117 M. Stahl Obsoletes Rfcs: 1062, 1020, 997, 990, 960, 943, M
Network Working Group S. Romano Request for Comments: 1117 M. Stahl Obsoletes RFCs: 1062, 1020, 997, 990, 960, 943, M. Recker 923, 900, 870, 820, 790, 776, 770, 762, SRI-NIC 758, 755, 750, 739, 604, 503, 433, 349 August 1989 Obsoletes IENs: 127, 117, 93 INTERNET NUMBERS Status of this Memo This memo is an official status report on the network numbers and the autonomous system numbers used in the Internet community. Distribution of this memo is unlimited. Introduction This Network Working Group Request for Comments documents the currently assigned network numbers and gateway autonomous systems. This RFC will be updated periodically, and in any case current information can be obtained from Hostmaster at the DDN Network Information Center (NIC). Hostmaster DDN Network Information Center SRI International 333 Ravenswood Avenue Menlo Park, California 94025 Phone: 1-800-235-3155 Network mail: [email protected] Most of the protocols used in the Internet are documented in the RFC series of notes. Some of the items listed are undocumented. Further information on protocols can be found in the memo "Official Internet Protocols" [40]. The more prominent and more generally used are documented in the "DDN Protocol Handbook" [17] prepared by the NIC. Other collections of older or obsolete protocols are contained in the "Internet Protocol Transition Workbook" [18], or in the "ARPANET Protocol Transition Handbook" [19]. For further information on ordering the complete 1985 DDN Protocol Handbook, contact the Hostmaster. Also, the Internet Activities Board (IAB) publishes the "IAB Official Protocol Standards" [52], which describes the state of standardization of protocols used in the Internet. -
Annual Report
2015 Annual Report ANNUAL 2015 REPORT CONTENTS i Letter from the President 4 ii NYSERNet Names New President 6 iii NYSERNet Members Institutions 8 iv Membership Update 9 v Data Center 10 vi VMWare Quilt Project 11 vii Working Groups 12 viii Education Services 13 ix iGlass 14 x Network 16 xi Internet Services 17 xii Board Members 18 xiii Our Staff 19 xiv Human Face of Research 20 LETTER FROM THE PRESIDENT Dear Colleagues, I am pleased to present to you NYSERNet’s 2015 Annual Report. Through more than three decades, NYSERNet’s members have addressed the education and research community’s networking and other technology needs together, with trust in each other guiding us through every transition. This spring inaugurates more change, as City. The terrible attack of Sept. 11, 2001, we welcome a new president and I will step complicated achievement of that goal, made down from that position to focus on the it more essential, and taught a sobering research community’s work and needs. lesson concerning the importance of communication and the need to harden the By itself, working with NYSERNet’s infrastructure that supports it. We invested extraordinary Board and staff to support in a wounded New York City, deploying fiber and building what today has become a global exchange point at “ These two ventures formed pieces 32 Avenue of the Americas. In the process, we forged partnerships in a puzzle that, when assembled, that have proved deep and durable. benefited all of New York and beyond.” Despite inherent risks, and a perception that New York City the collective missions of our members institutions might principally benefit, for the past 18 years has been a privilege NYSERNet’s Board unanimously supported beyond my imagining. -
Network Working Group S. Kirkpatrick Request for Comments: 1166 M
Network Working Group S. Kirkpatrick Request for Comments: 1166 M. Stahl Obsoletes RFCs: 1117, 1020, 997, 990, 960, 943, M. Recker 943, 923, 900, 870, 820, 790, 776, 770, 762, July 1990 758, 755, 750, 739, 604, 503, 433, 349 Obsoletes IENs: 127, 117, 93 INTERNET NUMBERS Status of this Memo This memo is a status report on the network numbers and autonomous system numbers used in the Internet community. Distribution of this memo is unlimited. Table of Contents Introduction.................................................... 1 Network Numbers................................................. 4 Class A Networks................................................ 7 Class B Networks................................................ 8 Class C Networks................................................ 47 Other Reserved Internet Addresses............................... 100 Network Totals.................................................. 101 Autonomous System Numbers....................................... 102 Documents....................................................... 111 Contacts........................................................ 115 Security Considerations......................................... 182 Authors' Addresses.............................................. 182 Introduction This Network Working Group Request for Comments documents the currently assigned network numbers and gateway autonomous systems. This RFC will be updated periodically, and in any case current information can be obtained from Hostmaster at the DDN Network Information -
May 2013 Report APPENDIX D
APPENDIX D 2013 ESINet Steering Committee Report to the 130th General Assembly Technical Standards Subcommittee INFRASTRUCTURE EVALUATION An examination of the readiness of the state’s current technology infrastructure to support a statewide emergency services internet protocol network for Next Generation 9-1-1 Services. 0 | P a g e Table of Contents PURPOSE ....................................................................................................................................................... 2 EXISTING TECHNOLOGY INFRASTRUCTURE .................................................................................................. 2 OHIO OFFICE OF INFORMATION TECHNOLOGY ............................................................................................ 3 OIT Telecommunications .............................................................................................................................. 3 Procurement ................................................................................................................................................. 3 DAS Network Contract Management Services ............................................................................................. 4 Contracts by Service ...................................................................................................................................... 4 Reach…. ......................................................................................................................................................... 5 Capacity -
Replication Strategies for Streaming Media
“replication-strategies” — 2007/4/24 — 10:56 — page 1 — #1 Research Report No. 2007:03 Replication Strategies for Streaming Media David Erman Department of Telecommunication Systems, School of Engineering, Blekinge Institute of Technology, S–371 79 Karlskrona, Sweden “replication-strategies” — 2007/4/24 — 10:56 — page 2 — #2 °c 2007 by David Erman. All rights reserved. Blekinge Institute of Technology Research Report No. 2007:03 ISSN 1103-1581 Published 2007. Printed by Kaserntryckeriet AB. Karlskrona 2007, Sweden. This publication was typeset using LATEX. “replication-strategies” — 2007/4/24 — 10:56 — page i — #3 Abstract Large-scale, real-time multimedia distribution over the Internet has been the subject of research for a substantial amount of time. A large number of mechanisms, policies, methods and schemes have been proposed for media coding, scheduling and distribution. Internet Protocol (IP) multicast was expected to be the primary transport mechanism for this, though it was never deployed to the expected extent. Recent developments in overlay networks has reactualized the research on multicast, with the consequence that many of the previous mechanisms and schemes are being re-evaluated. This report provides a brief overview of several important techniques for media broad- casting and stream merging, as well as a discussion of traditional IP multicast and overlay multicast. Additionally, we present a proposal for a new distribution system, based on the broadcast and stream merging algorithms in the BitTorrent distribution and repli- cation system. “replication-strategies” — 2007/4/24 — 10:56 — page ii — #4 ii “replication-strategies” — 2007/4/24 — 10:56 — page iii — #5 CONTENTS Contents 1 Introduction 1 1.1 Motivation . -
Description of Omnipop for Proposals
Description of OmniPoP for Proposals Summary The OmniPoP is a collaborative effort between 12 of the member universities of the Big Ten Academic Alliance. Together, these institutions have pooled their efforts to create a high performance shared infrastructure based in the Chicago area. This infrastructure was designed to complement and augment the shared fiber infrastructure that the Big Ten Academic Alliance members had previously purchased. The OmniPoP operates a high capacity switching infrastructure that supports 10 gigabit and 100 gigabit connections to its member institutions and equivalent high capacity links to national research and education networks such as Internet2, ESnet, and Starlight. This allows OmniPoP connections to be leveraged to provide services to large data flows in support of multi-institutional cooperative research efforts. Efforts supported today include interconnections between the Large Hadron Collider (LHC) Tier 2 efforts at the member institutions and the Midwest Openflow Crossroads Initiative (MOXI) project which links several midwest regional networks to the GENI backbone. OmniPoP Infrastructure and Peerings The Omnipop infrastructure consists of a redundant pair of 100 gigabit capable switches. These switches operate from geographically diverse co-location facilities within the Chicago metropolitan areas. These facilities also serve as Points of Presence (PoPs) for other major networks such as Internet2, ESnet (Department of Energy’s Energy Sciences Network), and Starlight (the international peering exchange), enabling seamless cross connections to the major national and international research and education networks that support much of the academic research community. An additional benefit to these facilities is that they offer the opportunity for Big Ten Academic Alliance members to co-locate additional network related equipment in support of their own projects independent of the OmniPoP core infrastructure. -
The Quilt Circle 2015
The quilt Circle National Regional Networks Consortium ...Advanced regional networking in support of research and education 2015 Edition A Letter from the President This year’s edition of The Quilt Circle is bursting with projects and programs enabled by the regional research and education networks that comprise our Quilt membership. Naturally, The Quilt is proud of the positive impact our member networks and organizations have on the communities they serve. Our annual publication gives us the opportunity to showcase the work of our members and highlight the collective impact each have on the institutions they serve and support across the nation. Given the depth and breadth of our members’ work, it can be challenging to select a single image that effectively captures and communicates its impact. This year’s cover, the image of DNA strands, is truly a fitting one to represent the work of our regional research and education network community. For those of you already familiar with the work of the regional research and education (R&E) network in your area and for those who are just learning about them for the first time in The Quilt Circle, you will quickly learn that our R&E networking DNA is indeed unique. It is in our R&E networking DNA to ensure our community of connected institutions are able to access advanced networking capabilities, tools and services when and how they need it, with the best possible performance so that the network is not an impediment to scientific progress. It is in our DNA for our networking organizations to be driven by the interests of our user communities to enable these institutions to fulfill their promise and mission. -
The Dos and Don'ts of Videoconferencing in Higher
The Dos and Don’ts of Videoconferencing in Higher Education HUSAT Research Institute Loughborough University of Technology Lindsey Butters Anne Clarke Tim Hewson Sue Pomfrett Contents Acknowledgements .................................................................................................................1 Introduction .............................................................................................................................3 How to use this report ..............................................................................................................3 Chapter 1 Videoconferencing in Higher Education — How to get it right ...................................5 Structure of this chapter ...............................................................................................5 Part 1 — Subject sections ............................................................................................6 Uses of videoconferencing, videoconferencing systems, the environment, funding, management Part 2 — Where are you now? ......................................................................................17 Guidance to individual users or service providers Chapter 2 Videoconferencing Services — What is Available .....................................................30 Structure of this chapter ...............................................................................................30 Overview of currently available services .......................................................................30 Broadcasting -
Mbone Provides Audio and Video Across the Internet
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1994-04 MBone Provides Audio and Video Across the Internet Macedonia, Michael R. http://hdl.handle.net/10945/40136 MBone Provides Audio and Video Across the Internet Michael R. Macedonia and Donald P. Brutzman Naval Postgraduate School he joy of science is in the discovery. In March 1993, our group at the Naval Postgraduate School heard that the Jason Project, an underwater explo ration and educational program supported by Woods Hole Oceanographic IIInstitution in Massachusetts, was showing live video over the Internet from an under water robot in waters off Baja, Mexico. We worked furiously to figure out how to re ceive that video signal, laboring diligently to gather the right equipment, contact the appropriate network managers, and obtain hardware permissions from local bu reaucrats. After several days of effort, we learned that a satellite antenna uplink ca ble on the Jason support ship had become flooded with seawater a few hours before we became operational. Despite this disappointment, we remained enthusiastic because, during our ef forts, we discovered how to use the Internet's most unique network, MBone. Short for Multicast Backbone, 1 MBone is a virtual network that has been in existence since early 1992. It was named by Steve Casner1 of the University of Southern California Information Sciences Institute and originated from an effort to multicast audio and video from meetings of the Internet Engineering Task Force. -
Curriculum Vitae of Dr. Raj Jain
Curriculum Vitae Dr. Raj Jain Barbara H. and Jerome R. Cox, Jr., Professor Computer Science and Engineering Washington University in St. Louis Email: [email protected] Raj Jain is Barbara H. and Jerome R. Cox Jr Professor of Computer Science and Engineering at Washington University in St. Louis. Previously, he was the CTO and one of the Cofounders of Nayna Networks, Inc. - a next-generation telecommunications systems company in San Jose, CA. He was a Senior Consulting Engineer at Digital Equipment Corporation in Littleton, Mass and then a professor of Computer and Information Sciences at Ohio State University in Columbus, Ohio. Dr. Jain is a Life Fellow of IEEE, a Fellow of ACM, a Fellow of AAAS and a Fellow of Academy of Science, St. Louis. He is a winner of 2018 James B. Eads Award from Academy of Science, Saint Louis, 2017 ACM SIGCOMM Lifetime Achievement Award, 2015 A. A. Michelson Award from Computer Measurement Group, 2014 Distinguished Alumnus Award from Indian Institute of Science, Bangalore Alumni Association, 2006 ACM SIGCOMM Test of Time award, and Center for Development of Advanced Computing – Advanced Computing and Communications Society (CDAC-ACCS) Foundation Award 2009, and WiMAX Forum Individual Contribution Award 2008. He is the author of “The Art of Computer Systems Performance Analysis,” which won the 1991 “Best-Advanced How-to Book, Systems” award from the Computer Press Association. His fourth book entitled “High-Performance TCP/IP: Concepts, Issues, and Solutions” was published by Prentice Hall in November 2003. He is a co-editor of "Quality of Service Architectures for Wireless Networks: Performance Metrics and Management," published in April 2010.