CURRICULUM VITAE Oreste Piro Perusín I. DATOS PERSONALES II

Total Page:16

File Type:pdf, Size:1020Kb

CURRICULUM VITAE Oreste Piro Perusín I. DATOS PERSONALES II CURRICULUM VITAE Oreste Piro Perusín I. DATOS PERSONALES Fecha de nacimiento: 11 de enero de 1954 Lugar: Tres Arroyos, Provincia de Buenos Aires, República Argentina Nacionalidad: Argentina y Española Documentos de Identidad: DNI 11043731, CI 11512514 (Argentina) DNI 43164153F (España) II. SITUACIÓN PROFESIONAL ACTUAL Organismo: Universitat de les Illes Balears (UIB) Facultad, Escuela o Instituto: Facultad de Ciencias Departamento: Departamento de Física Dirección postal: Carretera Valldemossa Km 7,5 07122 Palma de Mallorca, España Teléfono: (34-971) 17 32 30 Fax: (34-971) 17 34 26 Correo Electrónico: [email protected], [email protected] Especialización (Cód UNESCO): 2204,2205,2212 Categoría profesional: Prof. Titular de Universidad. Situación administrativa: Personal de plantilla. Dedicación: Tiempo completo. Puesto honorario: Adjunt Faculty del Laboratory of Mathematical Physics, Rockefeller University, New York, USA, desde el año 2007. Otros cargos ejercidos: Vicedirector del Instituto Mediterráneo de Estudios Avanzados (IMEDEA) desde julio de 2004 hasta julio de 2008 III. LÍNEAS DE INVESTIGACIÓN Sistemas dinámicos, Formación de patrones, Mecánica de Fluidos, Turbulencia, Caos, Biofísica, Biofluidos, Biofotónica. Cinco (5) Sexenios de investigación y seis (6) quinquenios de docencia reconocidos. IV. FORMACION ACADÉMICA 1971 Bachiller Nacional, Colegio Nacional de Tres Arroyos. 1972 Técnico Electromecánico, ENET Nº 1, Tres Arroyos. 1978 Licenciado en Física, Universidad Nacional de La Plata. 1984 Doctor en Física, Universidad Nacional de La Plata. Tesis: Caos en Sistemas Dinámicos Director: Prof. Huner Fanchiotti. IDIOMAS: Castellano, Ingles, Francés, Italiano. V. BECAS OBTENIDAS 1973 Beca de Estudio de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Duración tres años. 1977 Beca para completar estudios de la Fundación Bolsa de Comercio de Buenos Aires. Duración un año. 1979 Beca de la Comisión Nacional de Energía Atómica para iniciación en la investigación. Duración un año. 1980 Beca de iniciación del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Duración un año. 1982 Beca de perfeccionamiento de CONICET. Duración dos años. 1986 Beca Externa del CONICET. VI. TRABAJOS EN LA INVESTIGACIÓN. 1979 Comisión Nacional de Energía Atómica, Argentina. Beca de Investigación 1980-1985 CONICET, Argentina. Becario de Iniciación y Perfeccionamiento. 1985-1991 Universidad Nacional de La Plata, Departamento de Física y Departamento de Matemáticas. Profesor Adjunto. 1985-1988 CONICET, Argentina. Investigador Adjunto. 1986-1988 University of Chicago. Visiting Scholar. 1988-1989 Brookhaven National Laboratory. Asistant Scientist. 1989-1991 Queen Mary and Westfield College, University of London. Senior Researcher. 1992 Centre Nationale de la Recherche Scientifique (CNRS), INLN- Université de Nice. Chercheur Associé. VII. EXPERIENCIA DOCENTE 1975 Ayudante Rentado, Curso de Ingreso, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 1975 Ayudante Alumno Ad-Honorem en la Cátedra de Física I, Departamento de Física, Universidad Nacional de La Plata. 1976 Ayudante Alumno Ad-Honorem en la Cátedra de Mecánica II, Departamento de Física, Universidad Nacional de La Plata. 1977 Ayudante Alumno Ad-Honorem en la Cátedra de Métodos de la Física Matemática, Departamento de Física, Universidad Nacional de La Plata. 1977 Ayudante Alumno Rentado en la Cátedra de Física I, Departamento de Física, Universidad Nacional de La Plata. 1978-1980 Ayudante Alumno Rentado en la Cátedra de Física II, Departamento de Física, Universidad Nacional de La Plata. 1978-1982 Ayudante Alumno Rentado en la Cátedra de Mecánica II, Departamento de Física, Universidad Nacional de La Plata. 1978-1981 Ayudante Alumno Rentado en la Cátedra de Mecánica I, Departamento de Física, Universidad Nacional de La Plata. 1979 Profesor Auxiliar de Física I, Universidad Católica Argentina. 1979 Profesor Auxiliar de Física II, Universidad Católica Argentina. 1982-1983 Ayudante Diplomado con funciónes de Jefe de Trabajos Prácticos en la Cátedra de Electromagnetismo II, Departamento de Física, Universidad Nacional de La Plata. 1980 Profesor del Curso de Ingreso en la Facultad de Ciencias Exactas de la Universidad Nacional de La Plata. 1981 Profesor del Curso de Ingreso en la Universidad Tecnológica Nacional. 1983 Profesor del Curso de Ingreso en la Facultad de Ciencias Exactas de la Universidad Nacional de La Plata. 1983 Ayudante Diplomado con funciónes de Jefe de Trabajos Prácticos en la Cátedra de Métodos de la Física Matemática, Departamento de Física, Universidad Nacional de La Plata. 1984 Ayudante Diplomado del Curso de Ingreso en la Facultad de Ciencias Exactas de la Universidad Nacional de La Plata. 1984 Ayudante Diplomado con funciónes de Jefe de Trabajos Prácticos en la Cátedra de Matemáticas Especiales II, Departamento de Física, Universidad Nacional de La Plata. 1984 Jefe de Trabajos Prácticos en la Cátedra de Métodos de la Física Matemática. Departamento de Física, Universidad Nacional de La Plata. 1985 Jefe de Trabajos Prácticos en la Cátedra de Análisis Matemático II Departamento de Matemáticas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 1985 Profesor Adjunto de la Cátedra de Matemáticas Especiales del Departamento de Matemáticas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 1985 Curso de Post-Grado sobre el tema Sistemas Dinámicos y Caos, dictado en la Universidad Nacional de Tucumán. 1986-1992 Profesor Adjunto del Departamento de Física, Universidad Nacional de La Plata. Asignaturas: Electromagnetismo, Metodos de la Física Matematica. Mecánica I y II 1992-presente Profesor Titular de Universidad, Universitat de les Illes Balears. Asignaturas: Métodos Matemáticos de la Física, Física No Lineal, Física General, Electrónica, Teoría Clásica de Campos, Sistemas Dinámicos y Formación de Patrones, Fenómenos No Lineales en Biología. Mecánica y Ondas, Fundamentos físicos de la ingeniería. VIII. INVESTIGACIÓN EN LA INDUSTRIA 1979-1980 Miembro del Departamento de Investigación y Desarrollo de la empresa Vidriería Argentina S. A. a cargo del soporte de investigación y desarrollo del proceso de fabricación de vidrio plano por estirado para el conjunto del Grupo Pilkington Internacional. IX. PARTICIPACIÓN EN PROYECTOS DE INVESTIGACIÓN • Participación en el proyecto Ruido en comunicaciones ópticas coherentes. Entidad financiadora: CICYT. Duracion: 1990-1993, Investigador Principal: Maximino San Miguel. Ref: TIC 90-080. • Codirección del proyecto Teoría de campos y sistemas complejos. Entidad financiadora: Fundación Antorchas, Republica Argentina. Duración: 1991-1992, Investigador principal: Fidel Schaposnik. • Dirección del proyecto Spatio-temporal chaos and complex patterns in moderately high dimensional and extended dynamical systems. Entidad financiadora: CEE - Programa Human Capital and Mobility. Duración: 1993-1994. Investigador Principal: Oreste Piro. Ref: ERBCHBICT920200 • Dinámica espacio-temporal de sistemas fuera del equilibrio. Proyecto concertado UIB-CSIC. Entidad financiadora: DGICYT. Investigador Principal UIB: Oreste Piro Investigador Principal CSIC: Raúl Toral Garcés. Ref: PB92-0046-c02-02 • Participación en el proyecto Física estadística, fenómenos no lineales, y sus aplicaciones Entidad financiadora: DGICYT. Duración: 1995-1999. Investigador Principal: Maximino San Miguel. Ref: PB94-1167 • Participación en el proyecto Fluctuaciones caos y leyes de escala en la dinámica de sistemas no lineales. Entidad financiadora: DGICYT. Duración: 1995-1997. Investigador Principal: Raúl Toral Garcés. Ref: PB94-1172 • Responsable por España y Miembro del comité científico del Programa Transport in the Atmosphere and Oceans, Entidad financiadora: ESF (European Science Foundation). Duración: 1995-1997. • Subcontrato con el proyecto Intensification of batch chemical processes using integrated chemical reactor heat exchangers. Entidad financiadora: CEE (Programa JOULE II) Duración: 1995-1997. Investigador Principal: Oreste Piro. • Variabilidad oceánica de alta frecuencia y sus implicaciones en el transporte de propiedades físicas y biológicas. Proyecto MAR98-0840 del Programa Nacional de Ciencia y Tecnología Marinas (CICYT) (1998-2001). Investigador principal: E. Hernández. • Cooperación no lineal en sistemas complejos extendidos (CONOCE). Proyecto BFM2000-1108, Ministerio de Ciencia y Tecnología. Duración: 2001-2003 Presupuesto: 122.308,4. Investigador principal: Maxi San Miguel. • Interacciones Complejas en el ecosistema pelágico del Océano (ICEPOS). Proyecto REN2002-04165-C03-02, CICYT, Duración: 01/11/2002 - 30/09/2005. Presupuesto: 257.485 €. Investigador principal: Carlos M. Duarte. Participación en la campaña ICEPOS 2005, Antártida, Enero-Febrero 2005. • "Dynamics Days", Subvención de la Universitat de les Illes Balears para la organizaos de la conferencia Dynamics Days 2003. Presupuesto 3000 €. Año 2003 Investigador Principal: Oreste Piro. • "Dynamics Days", Subvención del Gobierno Balear para la organización de la conferencia Dynamics Days 2003. Presupuesto: 12000 €. Año 2003. Investigador Principal: Oreste Piro. • Subvención del Programa PRODYN de la European Science Foundation para la realización de la conferencia "Dynamics Days 2003". Presupuesto: 5000 €. Año 2003. Investigador Principal: Oreste Piro • Subvención del Max Planck Insitute for Fluid Mechanics, Gottingen, para la realización de la conferencia "Dynamics Days 2003". Presupuesto: 5000 €. Año 2003. Investigador Principal:
Recommended publications
  • Memòria Del Curs Acadèmic 2003-2004
    MEMÒRIA DEL CURS ACADÈMIC 2003-2004 Universitat de les Illes Balears Edició: Universitat de les Illes Balears. Servei de Publicacions i Intercanvi Científic. Cas Jai. Campus de la UIB. Cra. de Valldemossa, km 7.5. E-07122 Palma (Illes Balears). SUMARI 0. Introducció ........................................................................................................... 1. Òrgans generals universitaris............................................................................. 1.1. Claustre......................................................................................................................................... 1.1.1. Composició..................................................................................................................... 1.1.2. Activitats........................................................................................................................ 1.2. Consell de Govern ....................................................................................................................... 1.2.1. Composició..................................................................................................................... 1.2.2. Activitats........................................................................................................................ 1.3. Consell de Direcció ...................................................................................................................... 1.3.1. Composició....................................................................................................................
    [Show full text]
  • Noise-Induced Order out of Chaos by Bailout Embedding
    Fluctuation and Noise Letters Vol. 0, No. 0 (2002) 000–000 c World Scientific Publishing Company NOISE-INDUCED ORDER OUT OF CHAOS BY BAILOUT EMBEDDING JULYAN H. E. CARTWRIGHT Laboratorio de Estudios Cristalograficos,´ CSIC, E-18071 Granada, Spain. MARCELO O. MAGNASCO Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste, Italy. ORESTE PIRO and IDAN TUVAL Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain. Received (received date) Revised (revised date) Accepted (accepted date) We review the concept of bailout embedding; a general process for obtaining order from chaotic dy- namics by embedding the system within another larger one. Such an embedding can target islands of order and hence control chaos. Moreover, a small amount of noise enhances this process. Keywords: Bailout embedding, emergence in noisy environments, noise-induced patterns, noisy self- organization 1. Introduction “But how does it happen,” I said with admiration, “that you were able to solve the mystery of the library looking at it from the outside, and you were unable to solve it when you were inside?” “Thus God knows the world, because He conceived it in His mind, as if from the outside, before it was created, and we do not know its rule, because we live inside it, having found it already made.” Dialogue between Adso and William, in Umberto Eco’s The Name of the Rose, Third Day: Vespers. Many times we have a given system, we want to study it or modify its behaviour, but we cannot get inside. We are thus obliged to do so from the outside.
    [Show full text]
  • Table of Contents (Print, Part 2)
    PERIODICALS PHYSICAL REVIEW E Postmaster send address changes to: For editorial and subscription correspondence, APS Subscription Services please see inside front cover Suite 1NO1 „ISSN: 1539-3755… 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 76, NUMBER 4 CONTENTS OCTOBER 2007 PART 2: NONLINEAR AND PLASMA PHYSICS, FLUID DYNAMICS, AND RELATED TOPICS RAPID COMMUNICATIONS Interdisciplinary physics Component sizes in networks with arbitrary degree distributions (4 pages) ............................. 045101͑R͒ M. E. J. Newman How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems (4 pages) ............................................................................ 045102͑R͒ Wei Li, Xiaoming Zhang, and Gang Hu Modular networks emerge from multiconstraint optimization (4 pages) ................................ 045103͑R͒ Raj Kumar Pan and Sitabhra Sinha Chaos and pattern formation Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling (4 pages) ................................................................................... 045201͑R͒ Michael Peil, Laurent Larger, and Ingo Fischer Negative filament tension of scroll rings in an excitable system (4 pages) .............................. 045202͑R͒ Tamás Bánsági, Jr. and Oliver Steinbock Fluid dynamics Dynamics of thin liquid films falling on vertical cylindrical surfaces subjected to ultrasound forcing (4 pages) ..................................................................................
    [Show full text]
  • C Copyright 2014 Sudharsan Madhavan
    c Copyright 2014 Sudharsan Madhavan Lagrangian coherent structures and the dynamics of inertial particles Sudharsan Madhavan A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2014 Reading Committee: James J. Riley, Chair Steven L. Brunton J. Nathan Kutz Christopher S. Bretherton Program Authorized to Offer Degree: UW Applied Mathematics University of Washington Abstract Lagrangian coherent structures and the dynamics of inertial particles Sudharsan Madhavan Chair of the Supervisory Committee: James J. Riley Professor, Mechanical Engineering Adjunct Professor, Applied Mathematics Dynamics of inertial particles in two-dimensional planar flow have been investigated by evaluating finite-time Lyapunov exponents (FTLE). The first part of our work deals with inertial particle dynamics. The Maxey-Riley equations have been employed to track par- ticles. Patterns formed by inertial particles are reported along with their dependance on Strokes number and density of particles relative to the carrier-fluid density. Our results dis- tinguish patterns formed by particles denser than the fluid (aerosols) from those formed by particles lighter than the fluid (bubbles). Preferential concentration of these particles at specific regions of the flow have been observed. The attenuating, low-pass filter effect of Stokes drag on bubbles are reported for the first time. The results from this part of the work motivated further investigations into the underlying organizing structures of the flow, namely the Lagrangian coherent structures (LCS). LCS is traditionally evaluated us- ing FTLE. In the next part of the work, our objective was to interpret the dynamics of inertial par- ticles by evaluating finite-time Lyapunov exponents on their trajectories.
    [Show full text]
  • Dynamics of Finite-Size Particles in Chaotic Fluid Flows
    Dynamics of Finite-Size Particles in Chaotic Fluid Flows Julyan H.E. Cartwright, Ulrike Feudel, György Károlyi, Alessandro de Moura, Oreste Piro, and Tamás Tél Abstract We review recent advances on the dynamics of finite-size particles advected by chaotic fluid flows, focusing on the phenomena caused by the inertia of finite-size particles which have no counterpart in traditionally studied passive tracers. Particle inertia enlarges the phase space and makes the advection dynamics much richer than the passive tracer dynamics, because particles’ trajectories can diverge from the trajectories of fluid parcels. We cover both confined and open flow regimes, and we also discuss the dynamics of interacting particles, which can undergo fragmentation and coagulation. 1 Introduction and Overview A correct formulation of the problem of the motion of finite-size particles in fluid flows has presented difficult challenges for generations of fluid dynamicists. Although in principle this problem is “just” another application of the Navier– Stokes equation, with moving boundary conditions, a direct solution of the fluid dynamical equations is not only very difficult, but also not very illuminating. So from the nineteenth century onwards efforts were made to find the appropriate approximations which allow one to write the equations of motion of small rigid particles in a given flow in the form of ordinary differential equations, regarding the flow’s velocity field as given. Some very subtle issues are involved in making the right kinds of approximations and assumptions in a self-consistent way, and a number of incorrect results appeared in the early literature. The issue was finally resolved when Maxey and Riley [1] wrote down the equations of motion for a small spherical rigid particle advected by a (smooth) flow and Auton et al.
    [Show full text]
  • Bubbling and On-Off Intermittency in Bailout Embeddings
    PHYSICAL REVIEW E 68, 016217 ͑2003͒ Bubbling and on-off intermittency in bailout embeddings Julyan H. E. Cartwright,1,* Marcelo O. Magnasco,2,† Oreste Piro,3,‡ and Idan Tuval3,§ 1Laboratorio de Estudios Cristalogra´ficos, CSIC, E-18071 Granada, Spain 2Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste, Italy 3Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain ͑Received 14 February 2003; published 21 July 2003͒ We establish and investigate the conceptual connection between the dynamics of the bailout embedding of a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded phase space can be recognized as Hamiltonian bubbling. DOI: 10.1103/PhysRevE.68.016217 PACS number͑s͒: 05.45.Gg I. INTRODUCTION ture of the dynamics away from the invariant manifold. In the foregoing, we have supposed that both the re- Symmetry is a fundamental concept in science, both at the stricted and the unrestricted dynamics are dissipative. But we level of physical laws and when applied to specific applica- might envision a case in which the global dissipative dynam- tions.
    [Show full text]
  • And Inertia-Induced Inhomogeneity in the Distribution of Small Particles in fluid flows Julyan H
    CHAOS VOLUME 12, NUMBER 2 JUNE 2002 Noise- and inertia-induced inhomogeneity in the distribution of small particles in fluid flows Julyan H. E. Cartwrighta) Laboratorio de Estudios Cristalogra´ficos, CSIC, E-18071 Granada, Spain Marcelo O. Magnascob) Mathematical Physics Laboratory, Rockefeller University, P.O. Box 212, 1230 York Avenue, New York, New York 10021 Oreste Piroc) Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain ͑Received 2 November 2001; accepted 25 March 2002; published 20 May 2002͒ The dynamics of small spherical neutrally buoyant particulate impurities immersed in a two-dimensional fluid flow are known to lead to particle accumulation in the regions of the flow in which vorticity dominates over strain, provided that the Stokes number of the particles is sufficiently small. If the flow is viewed as a Hamiltonian dynamical system, it can be seen that the accumulations occur in the nonchaotic parts of the phase space: the Kolmogorov–Arnold–Moser tori. This has suggested a generalization of these dynamics to Hamiltonian maps, dubbed a bailout embedding. In this paper we use a bailout embedding of the standard map to mimic the dynamics of neutrally buoyant impurities subject not only to drag but also to fluctuating forces modeled as white noise. We find that the generation of inhomogeneities associated with the separation of particle from fluid trajectories is enhanced by the presence of noise, so that they appear in much broader ranges of the Stokes number than those allowing spontaneous separation. © 2002 American Institute of Physics. ͓DOI: 10.1063/1.1480441͔ Impurities suspended in a fluid flow are frequently ob- I.
    [Show full text]
  • Arxiv:1911.08207V1 [Nlin.CD] 19 Nov 2019
    Power-law trapping in the volume-preserving Arnold-Beltrami-Childress map Swetamber Das1 and Arnd B¨acker2, 1 1Max-Planck-Institut f¨urPhysik komplexer Systeme, N¨othnitzerStraße 38, 01187 Dresden, Germany 2Technische Universit¨atDresden, Institut f¨urTheoretische Physik and Center for Dynamics, 01062 Dresden, Germany (Dated: November 20, 2019) Understanding stickiness and power-law behavior of Poincar´erecurrence statistics is an open problem for higher-dimensional systems, in contrast to the well-understood case of systems with two degrees-of-freedom. We study such intermittent behavior of chaotic orbits in three-dimensional volume-preserving systems using the example of the Arnold-Beltrami-Childress map. The map has a mixed phase space with a cylindrical regular region surrounded by a chaotic sea for the considered parameters. We observe a characteristic overall power-law decay of the cumulative Poincar´erecur- rence statistics with significant oscillations superimposed. This slow decay is caused by orbits which spend long times close to the surface of the regular region. Representing such long-trapped orbits in frequency space shows clear signatures of partial barriers and reveals that coupled resonances play an essential role. Using a small number of the most relevant resonances allows for classifying long-trapped orbits. From this the Poincar´erecurrence statistics can be divided into different ex- ponentially decaying contributions which very accurately explains the overall power-law behavior including the oscillations. I. INTRODUCTION Thus already purely for topological reasons additional types of transport are possible, leading for example to Hamiltonian systems generically have a mixed phase the famous Arnold diffusion [47{49]. space in which regular and chaotic motion coexist.
    [Show full text]
  • Arxiv:Nlin/0311056V1 [Nlin.CD] 26 Nov 2003 Oi Rnnyeblc Nhproi Hoi Scattering, Chaotic Hyperbolic in Hyper Either Nonhyperbolic
    [Phys. Rev. E 68, 056307 (2003)] Reactive dynamics of inertial particles in nonhyperbolic chaotic flows Adilson E. Motter,1, ∗ Ying-Cheng Lai,2 and Celso Grebogi3 1Max Planck Institute for the Physics of Complex Systems, N¨othnitzer Strasse 38, 01187 Dresden, Germany 2Departments of Mathematics, Electrical Engineering, and Physics, Arizona State University, Tempe, Arizona 85287, USA 3Instituto de F´ısica, Universidade de S˜ao Paulo, Caixa Postal 66318, 05315-970 S˜ao Paulo, Brazil (Dated: October 31, 2018) Anomalous kinetics of infective (e.g., autocatalytic) reactions in open, nonhyperbolic chaotic flows are im- portant for many applications in biological, chemical, and environmental sciences. We present a scaling theory for the singular enhancement of the production caused by the universal, underlying fractal patterns. The key dynamical invariant quantities are the effective fractal dimension and effective escape rate, which are primarily determined by the hyperbolic components of the underlying dynamical invariant sets. The theory is general as it includes all previously studied hyperbolic reactive dynamics as a special case. We introduce a class of dissipative embedding maps for numerical verification. PACS numbers: 47.70.Fw, 47.53.+n, 47.52.+j, 05.45.-a Many chemical and biological processes in fluids are char- the periodic orbits are unstable and there are no Kolmogorov- acterized by a filamental distribution of active particles along Arnold-Moser (KAM) tori in the phase space, while the non- fractal invariant sets of the advection chaotic dynamics. These hyperbolic counterpart is frequently characterized as having fractal structures act as dynamical catalysts for the reaction, both chaotic and marginally stable periodic orbits.
    [Show full text]
  • Arxiv:Nlin.CD/0111005 V1 2 Nov 2001 Ple Namical Tems: on Asymptotically While Islands Lands W to the Apply Class
    Bailout Embeddings, Targeting of KAM Orbits, and the Control of Hamiltonian Chaos 1, 2, 3, Julyan H. E. Cartwright, ∗ Marcelo O. Magnasco, y and Oreste Piro z 1Laboratorio de Estudios Cristalograficos,´ CSIC, E-18071 Granada, Spain 2Mathematical Physics Lab, Rockefeller University, Box 212, 1230 York Avenue, NY 10021 3Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain (Dated: version of December 11, 2001) We present a novel technique, which we term bailout embedding, that can be used to target orbits having par- ticular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for Hamiltonian systems so as to target KAM orbits. We show how the bailout dynamics is able to lock onto extremely small KAM islands in an ergodic sea. PACS numbers: 05.45.Gg Control of chaos in nonlinear dynamical systems has been a parameter taking the system away from integrability is in- achieved by applying small perturbations that effectively creased, these tori break and give rise to chaotic regions in a change the dynamics of the system around the region — typ- precise sequence; for any particular value of this parameter ically a periodic orbit — that one wishes to stabilize [1]. in a neighborhood of the integrable case, there are surviving This method has been successful in dissipative systems, but tori. The problem with finding them is that, the dynamics its extensions to control and targeting in Hamiltonian sys- being volume-preserving, merely evolving trajectories either tems [2, 3, 4, 5, 6, 7, 8, 9, 10] have met various difficulties forwards or backwards does not give us convergence onto tori not present in the dissipative case: the absence of attracting [13], and since for large values of the nonlinearity, they cover sets, for instance, makes it hard to stabilize anything.
    [Show full text]
  • The Fluid Mechanics of Poohsticks
    The fluid mechanics of poohsticks rsta.royalsocietypublishing.org Julyan H. E. Cartwright1;2, Oreste Piro3 1Instituto Andaluz de Ciencias de la Tierra, Research CSIC–Universidad de Granada, E-18100 Armilla, Granada, Spain 2Instituto Carlos I de Física Teórica y Computacional, Article submitted to journal Universidad de Granada, E-18071 Granada, Spain 3Departament de Física, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain Subject Areas: fluid mechanics; dynamical systems 2019 is the bicentenary of George Gabriel Stokes, who Keywords: in 1851 described the drag — Stokes drag — on a body moving immersed in a fluid, and 2020 is the centenary Maxey–Riley equation, of Christopher Robin Milne, for whom the game of Basset–Boussinesq–Oseen equation, poohsticks was invented; his father A. A. Milne’s “The poohsticks House at Pooh Corner”, in which it was first described in print, appeared in 1928. So this is an apt moment to Author for correspondence: review the state of the art of the fluid mechanics of a solid body in a complex fluid flow, and one floating at Julyan Cartwright the interface between two fluids in motion. Poohsticks e-mail: [email protected] pertains to the latter category, when the two fluids are Oreste Piro water and air. e-mail: [email protected] arXiv:2104.03056v1 [physics.flu-dyn] 7 Apr 2021 © The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited. 1. Poohsticks 2 The game or pastime of poohsticks is best described in the original source, A.
    [Show full text]
  • CURRICULUM VITÆ Julyan Cartwright
    CURRICULUM VITÆ Julyan Cartwright http://www.iact.csic.es/personal/julyan_cartwright Versión de marzo de 2019 1 CURRICULUM VITAE APELLIDO: Cartwright NOMBRES: Julyan Harold Edward FECHA DE NACIMIENTO: 4 Agosto 1967 NACIONALIDAD: Británica NIE: X1656430Q (España) SEXO: Varón TEL.: 609 355224 FORMACION ACADEMICA LICENCIATURA: (Homologada en España) Licenciado en Física Teorica University of Newcastle upon Tyne, Gran Bretaña Título de tesina: The Spherical Pendulum Revisited: Chaos in a Forced Oscillator DIRECTOR DE TESINA: Dr. David J. Tritton FECHA: Junio 1988 DOCTORADO: (Homologado en España) Doctor en Matematica Aplicada University of London, Gran Bretaña Título de tesis: Chaos in Dissipative Systems: Bifurcations and Basins DIRECTOR DE TESIS: Dr. David K. Arrowsmith FECHA: Octubre 1992 SITUACION PROFESIONAL: Científico Titular del CSIC (cuatro sexenios; cinco quinquenios) y Miembro del Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada. INSTITUTO: Instituto Andaluz de Ciencias de la Tierra (CSIC–UGR) DIRECCION POSTAL: E-18100 Armilla, Granada. CORREO ELECTRONICO: [email protected] WWW http://www.iact.csis.es/personal/julyan_cartwright DEDICACION: A tiempo completo ACTIVIDADES ANTERIORES DE CARACTER CIENTIFICO FECHAS PUESTO INSTITUCION Mar 00 Científico Titular; antes Consejo Superior de Investigaciones — presente ‘Ramón y Cajal’ Fellow Científicas (CSIC), España. Nov 15 Miembro Instituto Carlos I de Física Teórica y — presente Computacional, Universidad de Granada. May 14 Visiting Scholar Pembroke College, — May 15 Cambridge University, UK. Nov 99 Visiting Scholar Lawrence Livermore Natl Laboratory, — Sep 01 University of California, USA. Nov 98 Profesor Visitante Universidad de Granada y — Feb 00 Universidad de las Islas Baleares, España Ene 98 Profesor Visitante Bioengineering Institute & Dept of Physics, — Oct 98 Miguel Hernández University, España.
    [Show full text]