Dinâmica De Partículas Inerciais Acopladas a Um Meio Viscoso

Total Page:16

File Type:pdf, Size:1020Kb

Dinâmica De Partículas Inerciais Acopladas a Um Meio Viscoso ANO 2019 No presente trabalho nós abordamos o estudo da dinâmica do Mapa de MAGALHÃESWILLAMES DE FERREIRA Rede Modificado. Este sistema é obtido pelo método bailout embedding aplicado ao Mapa de Rede, que é Hamiltoniano. O método em questão é formulado ao se considerar o movimento de partículas esféricas num meio viscoso, sendo este o responsável pela dissipação do sistema. Matematicamente a característica do método é transformar um sistema UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC conservativo num dissipativo para se perceber a presença de atratores e, CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT consequentemente, o surgimento de alguma estabilidade no sistema. Para PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA – PPGF a caracterização do Mapa de Rede Modificado, utilizamo-nos das seguintes ferramentas da Dinâmica Não Linear e Mecânica Estatística: Espaço de Fases, Diagramas de Lyapunov, Séries Temporais, Espectro de Lyapunov, Coeficiente de Difusão (D) e Expoente de Difusão. Os resultados obtidos foram: a detecção de regularidade, caos, hipercaos e caos transiente. Além disso, nós abordamos acerca do limite conservativo do método bailout VISCOSO A MEIO ACOPLADAS DINÂMICADEPARTÍCULAS INERCIAIS UM embedding, apesar de não caracterizá-lo, sendo que ainda não há uma abordagem sobre este assunto. O que há de inovador neste trabalho é a apresentação de uma nova forma de se estudar a dispersão das trajetórias no espaço de fases de um sistema dissipativo quadrimensional por meio de DISSERTAÇÃO DE MESTRADO D, observando o comportamento das curvas e constatando que tais modificações são devidas ao surgimento de atratores no sistema. DINÂMICA DE PARTÍCULAS INERCIAIS ACOPLADAS A UM MEIO VISCOSO Orientador: César Manchein JOINVILLE, 2019 WILLAMES FERREIRA DE MAGALHÃES JOINVILLE, 2019 WILLAMES FERREIRA DE MAGALHÃES DINÂMICA DE PARTÍCULAS INERCIAIS ACOPLADAS A UM MEIO VISCOSO Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Física do Centro de Ciências Tecnológicas da Universidade do Estado de Santa Catarina, como requisito parcial para obtenção do grau de Mestre em Física. Orientador: Prof. Dr. César Manchein. Joinville-SC 2019 Ficha catalográfica elaborada pelo programa de geração automática da Biblioteca Setorial do CCT/UDESC, com os dados fornecidos pelo(a) autor(a) Magalhães, Willames Ferreira de Dinâmica de partículas inerciais acopladas a um meio viscoso / Willames Ferreira de Magalhães. -- 2019. 96 p. Orientador: César Manchein Dissertação (mestrado) -- Universidade do Estado de Santa Catarina, Centro de Ciências Tecnológicas, Programa de Pós-Graduação em Física, Joinville, 2019. 1. Mapa de Rede. 2. Mapa de Rede Modificado. 3. Bailout Embedding. 4. Diagramas de Lyapunov. 5. Difusão. I. Manchein, César. II. Universidade do Estado de Santa Catarina, Centro de Ciências Tecnológicas, Programa de Pós-Graduação em Física. III. Título. Dedico este trabalho aos meus pais e a memória de meu avô, Leonardo Magalhães. Agradecimentos Agradeço, inicialmente, por tudo e ainda mais à minha mãe, pela pessoa incrível, inspiradora e humana que é. Ao meu pai, pelos conselhos e ensinamentos da vida. Sou grato à minha irmã, pela cumplicidade de sempre e por sua presença constante, mesmo que de longe. Agradeço ao meu cunhado, pela amizade e conversas proveitosas. A gratidão também se estende à minha sobrinha, que nasceu para trazer mais alegria aos membros família. Além disso, agradecerei eternamente aos meus avós paternos (in memoriam) por eu ser um Magalhães. Sou extremamente grato ao meu orientador, Professor César Manchein, um cientista habilidoso e cheio de ideias originais que me permitiu trabalhar ao seu lado, e esta é uma experiência que jamais me esquecerei. Além disso, agradeço por todas as disponibilidades que teve para comigo ao longo destes dois anos. Agradeço a todos os Professores que tive na vida, pois reconheço que foram eles os responsáveis pela minha chegada até aqui. Gostaria de mencionar alguns dos que tiveram uma contribuição significativa na minha formação: Professor Alcindo Teles Galvão, Professor André de Lima Moura, Professor César Manchein, Professor Fabio Marcel Zanetti, Professor Moreno Pereira Bonutti e Professor Paulo Cesar Rech. Gostaria de agradecer ao Professor Marcus Werner Beims, por algumas disponibili- dades que teve para comigo, e disso jamais me esquecerei. Agradeço a todos os que direta ou indiretamente me ajudaram quando precisei, em especial ao Anderson Hoff. Também sou grato ao Professor Edgard Pacheco Moreira Amorim, à técnica Susele Mussoi Rodrigues e ao técnico Sidnei da Costa Otero pela competência profissional e disponibilidade nos processos administrativos. Agradeço a CAPES, pelo financiamento dos meus estudos; a UDESC pelos custeios durante minhas apresentações em congressos e ao CNPq. “Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”. Edward Norton Lorenz Resumo No presente trabalho nós abordamos o estudo da dinâmica do Mapa de Rede Modificado. Este sistema é obtido pelo método bailout embedding aplicado ao Mapa de Rede, que é Hamiltoniano. O método em questão é formulado ao se considerar o movimento de partículas esféricas num meio viscoso, sendo este o responsável pela dissipação do sistema. Matematicamente a característica do método é transformar um sistema conservativo num dissipativo para se perceber a presença de atratores e, consequentemente, o surgimento de alguma estabilidade no sistema. Para a caracterização do Mapa de Rede Modificado, utilizamo-nos das seguintes ferramentas da Dinâmica Não Linear e Mecânica Estatística: Espaço de Fases, Diagramas de Lyapunov, Séries Temporais, Espectro de Lyapunov, Coeficiente de Difusão (D) e Expoente de Difusão. Os resultados obtidos foram: a detecção de regularidade, caos, hipercaos e caos transiente. Além disso, nós abordamos acerca do limite conservativo do método bailout embedding, apesar de não caracterizá-lo, sendo que ainda não há uma abordagem sobre este assunto. O que há de inovador neste trabalho é a apresentação de uma nova forma de se estudar a dispersão das trajetórias no espaço de fases de um sistema dissipativo quadrimensional por meio de D, observando o comportamento das curvas e constatando que tais modificações são devidas ao surgimento de atratores no sistema. Palavras-chave: Mapa de Rede. Mapa de Rede Modificado. Bailout Embedding. Diagra- mas de Lyapunov. Difusão. Abstract In the present work we study the dynamics of the Modified Web Map. This system is obtained by the bailout embedding method applied to the Web Map, which is Hamil- tonian. The method used is formulated by considering the movement of a particle in a viscous medium which is responsible for the dissipation of the system. Mathematically the characteristic of the method is to transform a conservative system into a dissipative one to detect a presence of attractors and, consequently, the emergence of some stability in the system. For the characterization of the Modified Web Map, the following Nonlinear Dynamics and Statistical Mechanics tools are used: Phase Space, Lyapunov Diagrams, Time Series, Lyapunov Spectrum, Diffusion Coefficient (D) and Diffusion Exponent. The results were: the detection of regularity, chaos, hyperchaos and transient chaos. Also, we approached the conservative limit of the bailout embedding method, although it does not characterize it, and there is still no approach on this subject. What is innovative in this work is a presentation of a new way of studying the dispersion of trajectories in the space of a four-dimensional dissipative system by means of D, observing the behavior of the curves and noting that such modifications are due to the appearance of attractors in the system. Keywords: Web Map. Modified Web Map. Bailout Embedding. Lyapunov Diagrams. Diffusion. viii Lista de abreviações e entidades matemáticas EDO: Equação Diferencial Ordinária. EDO’s: Equações Diferenciais Ordinárias. MR: Mapa de Rede (ou Web Map). MRM: Mapa de Rede Modificado. R: Conjunto dos números reais. Z: Conjunto dos números inteiros. Relação Trigonométrica Fundamental: sen 2(x) + cos2(x) = 1. da dt ≡ a˙, sendo a uma variável qualquer. ix Lista de Figuras Figura 1 – Representações esquemáticas e fora de escala (a) do modelo geocêntrico determinado por Ptolomeu, em que a Terra está no centro do Universo e os corpos celestes (Sol, Lua e outros planetas) giram ao seu redor descrevendo órbitas circulares perfeitas, estando fixas as estrelas e (b) a ilustração do deferente (círculo no qual o planeta se move em torno da Terra) e epiciclo (pequeno círculo em torno do deferente). 15 Figura 2 – Representação de um volume de condições iniciais V (t) no espaço de fases limitado por uma superfície S(t). O vetor gˆ é unitário e F~ designa um campo vetorial tangente a um ponto em S(t)............. 22 Figura 3 – Representação de um elemento de volume de condições iniciais no espaço de fases após uma evolução temporal. Na figura dS simboliza um elemento infinitesimal de área, que após passado um tempo infinitesimal dt, adquire um elemento de volume com base dS e altura (ˆg · F~ )dt. 23 Figura 4 – Representação da intersecção da linha de fluxo C que geram os pontos A e B na Seção de Poincaré bidimensional S, dentro de um espaço tridimensional. ............................... 25 Figura 5 – Gráficos associados à dinâmica do Mapa Logístico xn+1 = (1 − xn)rxn, sendo (a) o Diagrama de Bifurcação e (b) o Expoente de Lyapunov. As √ retas em cinza estão situadas em r = 3, r = 1 + 6 e r = 3, 55424: nos pontos que designam bifurcação em (a) e expoentes de Lyapunov nulos em (b), respectivamente........................... 29 Figura 6 – Diagrama de Lyapunov α × γ para o MRM, tal que 0 ≤ α ≤ 10 e 0 ≤ γ ≤ 22, com uma malha de 1000 × 1000 pontos igualmente espaçados. Uma descrição mais detalhada deste diagrama pode ser encontrada na Figura 15........................... 30 Figura 7 – Representação dos impulsos gerados no sistema.............. 35 Figura 8 – O espaço de fases do Mapa de Rede para (a-d) q = 4; (a-b) K = 1, 5; (c) K = 3, 15 e (d) K = 6, 7. Estas figuras foram construídas utilizando 200 condições iniciais de (v0, u0) escolhidas aleatoriamente no intervalo [0, 2π] com um tempo total de 105 iterações...............
Recommended publications
  • Memòria Del Curs Acadèmic 2003-2004
    MEMÒRIA DEL CURS ACADÈMIC 2003-2004 Universitat de les Illes Balears Edició: Universitat de les Illes Balears. Servei de Publicacions i Intercanvi Científic. Cas Jai. Campus de la UIB. Cra. de Valldemossa, km 7.5. E-07122 Palma (Illes Balears). SUMARI 0. Introducció ........................................................................................................... 1. Òrgans generals universitaris............................................................................. 1.1. Claustre......................................................................................................................................... 1.1.1. Composició..................................................................................................................... 1.1.2. Activitats........................................................................................................................ 1.2. Consell de Govern ....................................................................................................................... 1.2.1. Composició..................................................................................................................... 1.2.2. Activitats........................................................................................................................ 1.3. Consell de Direcció ...................................................................................................................... 1.3.1. Composició....................................................................................................................
    [Show full text]
  • Noise-Induced Order out of Chaos by Bailout Embedding
    Fluctuation and Noise Letters Vol. 0, No. 0 (2002) 000–000 c World Scientific Publishing Company NOISE-INDUCED ORDER OUT OF CHAOS BY BAILOUT EMBEDDING JULYAN H. E. CARTWRIGHT Laboratorio de Estudios Cristalograficos,´ CSIC, E-18071 Granada, Spain. MARCELO O. MAGNASCO Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste, Italy. ORESTE PIRO and IDAN TUVAL Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain. Received (received date) Revised (revised date) Accepted (accepted date) We review the concept of bailout embedding; a general process for obtaining order from chaotic dy- namics by embedding the system within another larger one. Such an embedding can target islands of order and hence control chaos. Moreover, a small amount of noise enhances this process. Keywords: Bailout embedding, emergence in noisy environments, noise-induced patterns, noisy self- organization 1. Introduction “But how does it happen,” I said with admiration, “that you were able to solve the mystery of the library looking at it from the outside, and you were unable to solve it when you were inside?” “Thus God knows the world, because He conceived it in His mind, as if from the outside, before it was created, and we do not know its rule, because we live inside it, having found it already made.” Dialogue between Adso and William, in Umberto Eco’s The Name of the Rose, Third Day: Vespers. Many times we have a given system, we want to study it or modify its behaviour, but we cannot get inside. We are thus obliged to do so from the outside.
    [Show full text]
  • Table of Contents (Print, Part 2)
    PERIODICALS PHYSICAL REVIEW E Postmaster send address changes to: For editorial and subscription correspondence, APS Subscription Services please see inside front cover Suite 1NO1 „ISSN: 1539-3755… 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 76, NUMBER 4 CONTENTS OCTOBER 2007 PART 2: NONLINEAR AND PLASMA PHYSICS, FLUID DYNAMICS, AND RELATED TOPICS RAPID COMMUNICATIONS Interdisciplinary physics Component sizes in networks with arbitrary degree distributions (4 pages) ............................. 045101͑R͒ M. E. J. Newman How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems (4 pages) ............................................................................ 045102͑R͒ Wei Li, Xiaoming Zhang, and Gang Hu Modular networks emerge from multiconstraint optimization (4 pages) ................................ 045103͑R͒ Raj Kumar Pan and Sitabhra Sinha Chaos and pattern formation Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling (4 pages) ................................................................................... 045201͑R͒ Michael Peil, Laurent Larger, and Ingo Fischer Negative filament tension of scroll rings in an excitable system (4 pages) .............................. 045202͑R͒ Tamás Bánsági, Jr. and Oliver Steinbock Fluid dynamics Dynamics of thin liquid films falling on vertical cylindrical surfaces subjected to ultrasound forcing (4 pages) ..................................................................................
    [Show full text]
  • C Copyright 2014 Sudharsan Madhavan
    c Copyright 2014 Sudharsan Madhavan Lagrangian coherent structures and the dynamics of inertial particles Sudharsan Madhavan A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2014 Reading Committee: James J. Riley, Chair Steven L. Brunton J. Nathan Kutz Christopher S. Bretherton Program Authorized to Offer Degree: UW Applied Mathematics University of Washington Abstract Lagrangian coherent structures and the dynamics of inertial particles Sudharsan Madhavan Chair of the Supervisory Committee: James J. Riley Professor, Mechanical Engineering Adjunct Professor, Applied Mathematics Dynamics of inertial particles in two-dimensional planar flow have been investigated by evaluating finite-time Lyapunov exponents (FTLE). The first part of our work deals with inertial particle dynamics. The Maxey-Riley equations have been employed to track par- ticles. Patterns formed by inertial particles are reported along with their dependance on Strokes number and density of particles relative to the carrier-fluid density. Our results dis- tinguish patterns formed by particles denser than the fluid (aerosols) from those formed by particles lighter than the fluid (bubbles). Preferential concentration of these particles at specific regions of the flow have been observed. The attenuating, low-pass filter effect of Stokes drag on bubbles are reported for the first time. The results from this part of the work motivated further investigations into the underlying organizing structures of the flow, namely the Lagrangian coherent structures (LCS). LCS is traditionally evaluated us- ing FTLE. In the next part of the work, our objective was to interpret the dynamics of inertial par- ticles by evaluating finite-time Lyapunov exponents on their trajectories.
    [Show full text]
  • Dynamics of Finite-Size Particles in Chaotic Fluid Flows
    Dynamics of Finite-Size Particles in Chaotic Fluid Flows Julyan H.E. Cartwright, Ulrike Feudel, György Károlyi, Alessandro de Moura, Oreste Piro, and Tamás Tél Abstract We review recent advances on the dynamics of finite-size particles advected by chaotic fluid flows, focusing on the phenomena caused by the inertia of finite-size particles which have no counterpart in traditionally studied passive tracers. Particle inertia enlarges the phase space and makes the advection dynamics much richer than the passive tracer dynamics, because particles’ trajectories can diverge from the trajectories of fluid parcels. We cover both confined and open flow regimes, and we also discuss the dynamics of interacting particles, which can undergo fragmentation and coagulation. 1 Introduction and Overview A correct formulation of the problem of the motion of finite-size particles in fluid flows has presented difficult challenges for generations of fluid dynamicists. Although in principle this problem is “just” another application of the Navier– Stokes equation, with moving boundary conditions, a direct solution of the fluid dynamical equations is not only very difficult, but also not very illuminating. So from the nineteenth century onwards efforts were made to find the appropriate approximations which allow one to write the equations of motion of small rigid particles in a given flow in the form of ordinary differential equations, regarding the flow’s velocity field as given. Some very subtle issues are involved in making the right kinds of approximations and assumptions in a self-consistent way, and a number of incorrect results appeared in the early literature. The issue was finally resolved when Maxey and Riley [1] wrote down the equations of motion for a small spherical rigid particle advected by a (smooth) flow and Auton et al.
    [Show full text]
  • Bubbling and On-Off Intermittency in Bailout Embeddings
    PHYSICAL REVIEW E 68, 016217 ͑2003͒ Bubbling and on-off intermittency in bailout embeddings Julyan H. E. Cartwright,1,* Marcelo O. Magnasco,2,† Oreste Piro,3,‡ and Idan Tuval3,§ 1Laboratorio de Estudios Cristalogra´ficos, CSIC, E-18071 Granada, Spain 2Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste, Italy 3Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain ͑Received 14 February 2003; published 21 July 2003͒ We establish and investigate the conceptual connection between the dynamics of the bailout embedding of a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded phase space can be recognized as Hamiltonian bubbling. DOI: 10.1103/PhysRevE.68.016217 PACS number͑s͒: 05.45.Gg I. INTRODUCTION ture of the dynamics away from the invariant manifold. In the foregoing, we have supposed that both the re- Symmetry is a fundamental concept in science, both at the stricted and the unrestricted dynamics are dissipative. But we level of physical laws and when applied to specific applica- might envision a case in which the global dissipative dynam- tions.
    [Show full text]
  • And Inertia-Induced Inhomogeneity in the Distribution of Small Particles in fluid flows Julyan H
    CHAOS VOLUME 12, NUMBER 2 JUNE 2002 Noise- and inertia-induced inhomogeneity in the distribution of small particles in fluid flows Julyan H. E. Cartwrighta) Laboratorio de Estudios Cristalogra´ficos, CSIC, E-18071 Granada, Spain Marcelo O. Magnascob) Mathematical Physics Laboratory, Rockefeller University, P.O. Box 212, 1230 York Avenue, New York, New York 10021 Oreste Piroc) Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain ͑Received 2 November 2001; accepted 25 March 2002; published 20 May 2002͒ The dynamics of small spherical neutrally buoyant particulate impurities immersed in a two-dimensional fluid flow are known to lead to particle accumulation in the regions of the flow in which vorticity dominates over strain, provided that the Stokes number of the particles is sufficiently small. If the flow is viewed as a Hamiltonian dynamical system, it can be seen that the accumulations occur in the nonchaotic parts of the phase space: the Kolmogorov–Arnold–Moser tori. This has suggested a generalization of these dynamics to Hamiltonian maps, dubbed a bailout embedding. In this paper we use a bailout embedding of the standard map to mimic the dynamics of neutrally buoyant impurities subject not only to drag but also to fluctuating forces modeled as white noise. We find that the generation of inhomogeneities associated with the separation of particle from fluid trajectories is enhanced by the presence of noise, so that they appear in much broader ranges of the Stokes number than those allowing spontaneous separation. © 2002 American Institute of Physics. ͓DOI: 10.1063/1.1480441͔ Impurities suspended in a fluid flow are frequently ob- I.
    [Show full text]
  • Arxiv:1911.08207V1 [Nlin.CD] 19 Nov 2019
    Power-law trapping in the volume-preserving Arnold-Beltrami-Childress map Swetamber Das1 and Arnd B¨acker2, 1 1Max-Planck-Institut f¨urPhysik komplexer Systeme, N¨othnitzerStraße 38, 01187 Dresden, Germany 2Technische Universit¨atDresden, Institut f¨urTheoretische Physik and Center for Dynamics, 01062 Dresden, Germany (Dated: November 20, 2019) Understanding stickiness and power-law behavior of Poincar´erecurrence statistics is an open problem for higher-dimensional systems, in contrast to the well-understood case of systems with two degrees-of-freedom. We study such intermittent behavior of chaotic orbits in three-dimensional volume-preserving systems using the example of the Arnold-Beltrami-Childress map. The map has a mixed phase space with a cylindrical regular region surrounded by a chaotic sea for the considered parameters. We observe a characteristic overall power-law decay of the cumulative Poincar´erecur- rence statistics with significant oscillations superimposed. This slow decay is caused by orbits which spend long times close to the surface of the regular region. Representing such long-trapped orbits in frequency space shows clear signatures of partial barriers and reveals that coupled resonances play an essential role. Using a small number of the most relevant resonances allows for classifying long-trapped orbits. From this the Poincar´erecurrence statistics can be divided into different ex- ponentially decaying contributions which very accurately explains the overall power-law behavior including the oscillations. I. INTRODUCTION Thus already purely for topological reasons additional types of transport are possible, leading for example to Hamiltonian systems generically have a mixed phase the famous Arnold diffusion [47{49]. space in which regular and chaotic motion coexist.
    [Show full text]
  • Arxiv:Nlin/0311056V1 [Nlin.CD] 26 Nov 2003 Oi Rnnyeblc Nhproi Hoi Scattering, Chaotic Hyperbolic in Hyper Either Nonhyperbolic
    [Phys. Rev. E 68, 056307 (2003)] Reactive dynamics of inertial particles in nonhyperbolic chaotic flows Adilson E. Motter,1, ∗ Ying-Cheng Lai,2 and Celso Grebogi3 1Max Planck Institute for the Physics of Complex Systems, N¨othnitzer Strasse 38, 01187 Dresden, Germany 2Departments of Mathematics, Electrical Engineering, and Physics, Arizona State University, Tempe, Arizona 85287, USA 3Instituto de F´ısica, Universidade de S˜ao Paulo, Caixa Postal 66318, 05315-970 S˜ao Paulo, Brazil (Dated: October 31, 2018) Anomalous kinetics of infective (e.g., autocatalytic) reactions in open, nonhyperbolic chaotic flows are im- portant for many applications in biological, chemical, and environmental sciences. We present a scaling theory for the singular enhancement of the production caused by the universal, underlying fractal patterns. The key dynamical invariant quantities are the effective fractal dimension and effective escape rate, which are primarily determined by the hyperbolic components of the underlying dynamical invariant sets. The theory is general as it includes all previously studied hyperbolic reactive dynamics as a special case. We introduce a class of dissipative embedding maps for numerical verification. PACS numbers: 47.70.Fw, 47.53.+n, 47.52.+j, 05.45.-a Many chemical and biological processes in fluids are char- the periodic orbits are unstable and there are no Kolmogorov- acterized by a filamental distribution of active particles along Arnold-Moser (KAM) tori in the phase space, while the non- fractal invariant sets of the advection chaotic dynamics. These hyperbolic counterpart is frequently characterized as having fractal structures act as dynamical catalysts for the reaction, both chaotic and marginally stable periodic orbits.
    [Show full text]
  • Arxiv:Nlin.CD/0111005 V1 2 Nov 2001 Ple Namical Tems: on Asymptotically While Islands Lands W to the Apply Class
    Bailout Embeddings, Targeting of KAM Orbits, and the Control of Hamiltonian Chaos 1, 2, 3, Julyan H. E. Cartwright, ∗ Marcelo O. Magnasco, y and Oreste Piro z 1Laboratorio de Estudios Cristalograficos,´ CSIC, E-18071 Granada, Spain 2Mathematical Physics Lab, Rockefeller University, Box 212, 1230 York Avenue, NY 10021 3Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain (Dated: version of December 11, 2001) We present a novel technique, which we term bailout embedding, that can be used to target orbits having par- ticular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for Hamiltonian systems so as to target KAM orbits. We show how the bailout dynamics is able to lock onto extremely small KAM islands in an ergodic sea. PACS numbers: 05.45.Gg Control of chaos in nonlinear dynamical systems has been a parameter taking the system away from integrability is in- achieved by applying small perturbations that effectively creased, these tori break and give rise to chaotic regions in a change the dynamics of the system around the region — typ- precise sequence; for any particular value of this parameter ically a periodic orbit — that one wishes to stabilize [1]. in a neighborhood of the integrable case, there are surviving This method has been successful in dissipative systems, but tori. The problem with finding them is that, the dynamics its extensions to control and targeting in Hamiltonian sys- being volume-preserving, merely evolving trajectories either tems [2, 3, 4, 5, 6, 7, 8, 9, 10] have met various difficulties forwards or backwards does not give us convergence onto tori not present in the dissipative case: the absence of attracting [13], and since for large values of the nonlinearity, they cover sets, for instance, makes it hard to stabilize anything.
    [Show full text]
  • The Fluid Mechanics of Poohsticks
    The fluid mechanics of poohsticks rsta.royalsocietypublishing.org Julyan H. E. Cartwright1;2, Oreste Piro3 1Instituto Andaluz de Ciencias de la Tierra, Research CSIC–Universidad de Granada, E-18100 Armilla, Granada, Spain 2Instituto Carlos I de Física Teórica y Computacional, Article submitted to journal Universidad de Granada, E-18071 Granada, Spain 3Departament de Física, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain Subject Areas: fluid mechanics; dynamical systems 2019 is the bicentenary of George Gabriel Stokes, who Keywords: in 1851 described the drag — Stokes drag — on a body moving immersed in a fluid, and 2020 is the centenary Maxey–Riley equation, of Christopher Robin Milne, for whom the game of Basset–Boussinesq–Oseen equation, poohsticks was invented; his father A. A. Milne’s “The poohsticks House at Pooh Corner”, in which it was first described in print, appeared in 1928. So this is an apt moment to Author for correspondence: review the state of the art of the fluid mechanics of a solid body in a complex fluid flow, and one floating at Julyan Cartwright the interface between two fluids in motion. Poohsticks e-mail: [email protected] pertains to the latter category, when the two fluids are Oreste Piro water and air. e-mail: [email protected] arXiv:2104.03056v1 [physics.flu-dyn] 7 Apr 2021 © The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited. 1. Poohsticks 2 The game or pastime of poohsticks is best described in the original source, A.
    [Show full text]
  • CURRICULUM VITÆ Julyan Cartwright
    CURRICULUM VITÆ Julyan Cartwright http://www.iact.csic.es/personal/julyan_cartwright Versión de marzo de 2019 1 CURRICULUM VITAE APELLIDO: Cartwright NOMBRES: Julyan Harold Edward FECHA DE NACIMIENTO: 4 Agosto 1967 NACIONALIDAD: Británica NIE: X1656430Q (España) SEXO: Varón TEL.: 609 355224 FORMACION ACADEMICA LICENCIATURA: (Homologada en España) Licenciado en Física Teorica University of Newcastle upon Tyne, Gran Bretaña Título de tesina: The Spherical Pendulum Revisited: Chaos in a Forced Oscillator DIRECTOR DE TESINA: Dr. David J. Tritton FECHA: Junio 1988 DOCTORADO: (Homologado en España) Doctor en Matematica Aplicada University of London, Gran Bretaña Título de tesis: Chaos in Dissipative Systems: Bifurcations and Basins DIRECTOR DE TESIS: Dr. David K. Arrowsmith FECHA: Octubre 1992 SITUACION PROFESIONAL: Científico Titular del CSIC (cuatro sexenios; cinco quinquenios) y Miembro del Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada. INSTITUTO: Instituto Andaluz de Ciencias de la Tierra (CSIC–UGR) DIRECCION POSTAL: E-18100 Armilla, Granada. CORREO ELECTRONICO: [email protected] WWW http://www.iact.csis.es/personal/julyan_cartwright DEDICACION: A tiempo completo ACTIVIDADES ANTERIORES DE CARACTER CIENTIFICO FECHAS PUESTO INSTITUCION Mar 00 Científico Titular; antes Consejo Superior de Investigaciones — presente ‘Ramón y Cajal’ Fellow Científicas (CSIC), España. Nov 15 Miembro Instituto Carlos I de Física Teórica y — presente Computacional, Universidad de Granada. May 14 Visiting Scholar Pembroke College, — May 15 Cambridge University, UK. Nov 99 Visiting Scholar Lawrence Livermore Natl Laboratory, — Sep 01 University of California, USA. Nov 98 Profesor Visitante Universidad de Granada y — Feb 00 Universidad de las Islas Baleares, España Ene 98 Profesor Visitante Bioengineering Institute & Dept of Physics, — Oct 98 Miguel Hernández University, España.
    [Show full text]