XII Congreso De F´Isica Estad´Istica

Total Page:16

File Type:pdf, Size:1020Kb

XII Congreso De F´Isica Estad´Istica XII Congreso de F´ısica Estad´ıstica Pamplona, 23 a 25 de octubre de 2003 Libro de resumenes´ Departamento de F´ısica y Matem´atica Aplicada Universidad de Navarra Organismos patrocinadores Real Sociedad Ministerio de Espanola~ de F´ısica Ciencia y Tecnolog´ıa Caja Navarra Facultad de Ciencias Gobierno de Navarra Universidad de Navarra Organiza Departamento de F´ısica y Matem´atica Aplicada Universidad de Navarra Irunlarrea s/n, E { 31080 Pamplona, Spain c FisEs03, 2003. Cubierta: Convecci´on de B´enard-Marangoni (Reconstrucci´on num´erica) Maquetaci´on y compilaci´on, J. Burguete D.L: NA - 2583 / 2003 I.S.B.N. 84-688-3354-1 Comit´e Cient´ıfico J. Brey (U. Sevilla) • E. Hern´andez-Garc´ıa (U. Illes Balears) • A. Hern´andez Machado (U. Barcelona) • E. Lomba (CSIC) • E. Louis (U. Alicante) • J.M.R. Parrondo (U. Complutense) • C. P´erez-Garc´ıa (U. Navarra) • V. P´erez-Munuzuri~ (U. Santiago de Compostela) • J. de la Rubia (UNED) • A. Santos Reyes (U. Extremadura) • L. Vega (U. Rovira i Virgili) • Comit´e Local J. Bragard • J. Burguete • A. Garcimart´ın • W. Gonz´alez-Vinas~ • D. Maza • C. P´erez-Garc´ıa • F. Varela • Programa Hora Jueves, 23 de octubre Viernes, 23 de octubre Sabado, 25 de octubre 8:30-9:00 Inscripción 9:00-9:30 Inauguración S. Ciliberto F. Briones (I-2) (I-1) 9:30-10:00 F. Sagués (I-8) J.J. Ruiz-Lorenzo (O-17) R. Guantes (O-7) 10:00-10:30 L. Lafuente (O-9) M.C. Miguel (O-11) 10:30-11:00 J. Buceta (O-1) A. Díaz-Guilera (I-4) L. Vázquez (I-10) 11:00-11:30 Café 11:30-12:00 F. Siperstein (O-19) R. Pastor-Satorras (O-15) R. Deza (I-3) D. G. Míguez (O-6) C. Wolluschek (O-20) J. Gómez-Cardeñes (O-5) 12:00-12:30 J. Ignés-Mullol (O-8) C. Nieto (O-14) J.M. López (O-10) M. Miranda (O-12) M.J. Ruiz-Montero (O-18) J. Cartwright (O-2) 12:30-13:00 Clausura Comida 13:00-15:00 Paneles (sesión 1) Paneles (sesión 2) 15:00-16:30 P 1-64 P 65-128 16:30-17:00 Café R. Goldstein I. Szleifer 17:00-18:00 (I-5) (I-9) 18:00-18:30 S. Manrubia (I-6) M.A. Rodríguez (I-7) B. Echebarria (O-3) A.Fernández-Nieves (O-4) 18:30-19:00 F. Penna (O-16) C. Molina-Paris (O-13) 19:00-19:30 ´Indice General I Conferencias invitadas 1 1. Resultados experimentales en nanoestructuras 3 Fernando Briones 2. Fluctuation dissipation relation in aging systemes 4 Sergio Ciliberto 3. Variabilidad clim´atica y procesos estoc´asticos 5 Roberto Deza∗, Vicente P´erez-Munuzuri~ y Nieves Lorenzo 4. F´ısica Estad´ıstica de Redes Complejas∗ 6 Albert D´ıaz-Guilera∗∗ 5. Individual and Collective Dynamics of Swimming Microorganisms 7 Raymond E. Goldstein 6. De Petri a Markov: Mecanismos evolutivos en poblaciones asexuales in-vitro e in-silico 8 Susanna C. Manrubia1, Ester L´azaro, Juan P´erez-Mercader, Cristina Escarm´ıs 2, and Esteban Domingo 7. La predicci´on meteorol´ogica como un problema de caos desorden y ruido. 9 Miguel Angel Rodr´ıguez∗ 8. Ondas qu´ımicas: Mecanismos de generaci´on y control 10 F. Sagu´esy∗ 9. Thermodynamics and kinetics of protein adsorption 11 Igal Szleifer 10. Formaci´on de patrones nanom´etricos en superficies por bombardeo de iones 12 Luis V´azquez1∗ II Contribuciones Orales 13 1. Novel Mechanisms for Pattern Formation 15 J. Buceta∗ 2. Fluid-dynamical basis of the embryonic development of left{right asymmetry in vertebrates 16 Julyan H. E. Cartwright1, Oreste Piro2, & Idan Tuval2 3. Dinamica Espacio-Temporal y Control de Alternans en Tejido Cardiaco 17 Blas Echebarria , Alain Karma y z 4. Electrooptics of two-dimensional colloidal crystals based on nematic liquid crystal drops 18 A. Fern´andez-Nieves ∗, D. R. Link , D. A. Weitz y y y 5. Movilidad e Interacci´on de breathers en Redes de Schr¨odinger no lineales 19 J.Gomez-Gardenes~ ∗ ,F. Falo∗∗ ,L.M. Floria∗∗∗ 6. Formacion de patrones qu´ımicos y biol´ogicos por un mecanismo de anclaje de oscilaciones 20 David G. M´ıguez∗ y Alberto P. Mununzuri~ 7. Transporte Cl´asico de Atomos´ sobre Superficies Met´alicas: Caos, Transporte Dirigido y Difusi´on Activada 21 Raul´ Guantes∗, Jos´e Luis Vega y Salvador Miret-Art´es 8. Estructuras espaciotemporales en monocapas de Langmuir fotosensibles 22 Jordi Ign´es-Mullol∗1, Rosa Albalat, Joaquim Crusats, Josep Claret, Francesc Sagu´es 9. La leyenda de la bella y la bestia: De c´omo de un modelo completamente repulsivo surge otro completamente atractivo 23 Luis Lafuente∗ y Jos´e A. Cuestay 10. Intermitencia, Sucesos Raros y Din´amica Invariante de Escala de las Perturbaciones en Sistemas Ca´oticos con Retraso Temporal 24 Alejandro D. S´anchez, Juan M. L´opez∗, Miguel A. Rodr´ıguez Manuel A. Mat´ıas 11. Dislocation dynamics and tearing transitions in crystalline thin films 25 M.-Carmen Miguel1∗ and Stefano Zapperi2 12. Dominios de deriva y otras estructuras con din´amica unidimensional en convecci´on con calen- tamiento localizado 26 M.A. Miranda∗, J. Burguete 13. The thymic contribution to T cell tolerance 27 Hugo van den Berg and Carmen Molina-Par´ıs∗ 14. The Soret effect in aqueous solutions of associating fluids. Analysis of the anomalous change of sign with varying composition 28 Carlos Nieto Draghiy, Bernard Rousseauz and Josep Bonet Av´ alosy∗ 15. Epidemic spreading in complex networks 29 Romualdo Pastor-Satorras 16. Aplicaci´on del DDF al arrastre de part´ıculas coloidales 30 F. Penna1 , J.Dzubiella2 y P. Tarazona 1 17. Relaciones de fluctuaci´on-disipaci´on fuera del equilibrio en vidrios de esp´ın 31 A. Cruz1;4, L. A. Fern´andez2;4, S. Jimenez1;4,J. J. Ruiz-Lorenzo3;4 y A. Taranc´on1;4 18. Medida de un nuevo coeficiente de transporte en medios granulares 32 M.J. Ruiz-Montero 19. Phase behavior of surfactant-inorganic oxides liquid crystals 33 Flor R. Siperstein1;2∗ and Keith E. Gubbins1 20. Transporte de calor en sistemas de dos fluidos 34 C. Wolluschek∗, D. Maza III Paneles 35 1. Propiedades estructurales y termodin´amicas exactas para esferas penetrables en el l´ımite de alta temperatura. 37 L. Acedo∗ y A. Santos 2. Din´amica del frente de reacci´on en procesos de reacci´on-subdifusi´on. 38 L. Acedo∗, Santos B. Yuste y Katja Lindenbergy 3. Forzamiento estoc´astico de medios excitables tridimensionales 39 S. Alonso∗, J. M. Sanchoy y F. Sagu´es 4. Procesos de magnetizaci´on a energ´ıa constante 40 Juan J. Alonsoy y Julio F. Fern´andez∗z 5. Parrondo's Paradox and the Fokker{Planck Equation 41 Raul´ Toral1, Pau Amengual1 and Sergio Mangioni2 6. Localidad en la Adopci´on Social de una Opini´on Minoritaria 42 Pau Amengual∗, Claudio Juan Tessone∗, Raul´ Toral, Horacio Wio y Maxi San Miguel 7. Aparici´on de defectos durante la electrodeposici´on 2D de part´ıculas coloidales 43 M. Cristina Arcos∗y, Wenceslao Gonz´alez{Vinas~ z, Rafael Sireray, Mar´ıa Yoldiz 8. `Universalidad en el desorden': transici´on de desnaturalizaci´on del ADN 44 Saul´ Ares∗ y Angel Sanchezy 9. Transiciones de fase escurridizas: >existe la superrugosidad? 45 Saul´ Ares∗ y Angel Sanchezy 10. Corrugation instability of planar negative streamer fronts 46 Manuel Array´as1∗ and Ute Ebert2 11. Un sistema de esferas duras el´asticas como modelo de gas granular 47 Antonio Astillero∗ y Andr´es Santosy 12. Saltos de fase en sistemas de dos neuronas de Hodgkin-Huxley con ruido intr´ınseco acopladas difusivamente 48 J. M. Casado, J. P. Baltan´as∗;y 13. Estimaci´on de las dimensiones de la capa estoc´astica para un modelo de trazadores pasivos en un flujo plano 49 J. L. Trueba, J. P. Baltan´as∗, F. Feudely, M. A. F. Sanju´an 14. Quantitative phase-field description of fluctuations and transients during thermal solidification 50 R. Ben´ıtez∗, L. Ram´ırez-Piscina 15. Caos Cu´antico, Cicatrices y Espectros 51 Rosa M. Benito∗, F.J. Arranz? J.C. Losaday y F.Borondoz 16. Synchronization between two Hele-Shaw cells 52 A. Bernardini, J. Bragard and H. Mancini 17. Class of correlated random networks with hidden variables 53 Mari´an Bogun´~a∗ and Romualdo Pastor-Satorras 18. Non-markovian mean-fied theory for non-homogeneous polymer systems 54 Henry Lambis, and Josep Bonet Av´ alos∗ 19. Asymmetric coupling effects in the synchronization of spatially extended chaotic systems 55 J.Bragard1, H.L. Mancini1 and S. Boccaletti2 20. Estad´ıstica del orden de atrapamiento en medios desordenados 56 Santos B. Yuste∗ y L. Acedoy 21. Difusi´on an´omala y atrapamiento. Algunos resultados exactos. 57 Santos B. Yuste∗ y L. Acedoy 22. Caracterizaci´on de un estr´es celular manifestado por rugosidad y desorganizaci´on interna en plantas contaminadas. 58 A. Bru´∗, J. Pastor∗, A. J. Hern´andezy 23. Arrastre de una estructura no lineal espacialmente extensa utilizando un forzado selectivo 59 Javier Burguete1∗ y Roland Ribotta2 24. Din´amica de la polarizaci´on en un laser de Nd:YAG 60 Eduardo Cabrera∗, Oscar G. Calder´on, J.M. Guerra 25. Efectos del campo local en la formaci´on de patrones en laseres de gran apertura 61 Eduardo Cabrera∗, Oscar G. Calder´on, M. Ant´on, J.M. Guerra 26. Actin-based motility of droplets 62 Otger Camp`as *z, Jaume Casademunt z, Jean-Fran¸cois Joanny * and Jacques Prost * 27. Resonancia estoc´astica subumbral: Las senales~ rectangulares pueden dar lugar a ganancias anormalmente altas.
Recommended publications
  • Memòria Del Curs Acadèmic 2003-2004
    MEMÒRIA DEL CURS ACADÈMIC 2003-2004 Universitat de les Illes Balears Edició: Universitat de les Illes Balears. Servei de Publicacions i Intercanvi Científic. Cas Jai. Campus de la UIB. Cra. de Valldemossa, km 7.5. E-07122 Palma (Illes Balears). SUMARI 0. Introducció ........................................................................................................... 1. Òrgans generals universitaris............................................................................. 1.1. Claustre......................................................................................................................................... 1.1.1. Composició..................................................................................................................... 1.1.2. Activitats........................................................................................................................ 1.2. Consell de Govern ....................................................................................................................... 1.2.1. Composició..................................................................................................................... 1.2.2. Activitats........................................................................................................................ 1.3. Consell de Direcció ...................................................................................................................... 1.3.1. Composició....................................................................................................................
    [Show full text]
  • Noise-Induced Order out of Chaos by Bailout Embedding
    Fluctuation and Noise Letters Vol. 0, No. 0 (2002) 000–000 c World Scientific Publishing Company NOISE-INDUCED ORDER OUT OF CHAOS BY BAILOUT EMBEDDING JULYAN H. E. CARTWRIGHT Laboratorio de Estudios Cristalograficos,´ CSIC, E-18071 Granada, Spain. MARCELO O. MAGNASCO Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste, Italy. ORESTE PIRO and IDAN TUVAL Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain. Received (received date) Revised (revised date) Accepted (accepted date) We review the concept of bailout embedding; a general process for obtaining order from chaotic dy- namics by embedding the system within another larger one. Such an embedding can target islands of order and hence control chaos. Moreover, a small amount of noise enhances this process. Keywords: Bailout embedding, emergence in noisy environments, noise-induced patterns, noisy self- organization 1. Introduction “But how does it happen,” I said with admiration, “that you were able to solve the mystery of the library looking at it from the outside, and you were unable to solve it when you were inside?” “Thus God knows the world, because He conceived it in His mind, as if from the outside, before it was created, and we do not know its rule, because we live inside it, having found it already made.” Dialogue between Adso and William, in Umberto Eco’s The Name of the Rose, Third Day: Vespers. Many times we have a given system, we want to study it or modify its behaviour, but we cannot get inside. We are thus obliged to do so from the outside.
    [Show full text]
  • Table of Contents (Print, Part 2)
    PERIODICALS PHYSICAL REVIEW E Postmaster send address changes to: For editorial and subscription correspondence, APS Subscription Services please see inside front cover Suite 1NO1 „ISSN: 1539-3755… 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 76, NUMBER 4 CONTENTS OCTOBER 2007 PART 2: NONLINEAR AND PLASMA PHYSICS, FLUID DYNAMICS, AND RELATED TOPICS RAPID COMMUNICATIONS Interdisciplinary physics Component sizes in networks with arbitrary degree distributions (4 pages) ............................. 045101͑R͒ M. E. J. Newman How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems (4 pages) ............................................................................ 045102͑R͒ Wei Li, Xiaoming Zhang, and Gang Hu Modular networks emerge from multiconstraint optimization (4 pages) ................................ 045103͑R͒ Raj Kumar Pan and Sitabhra Sinha Chaos and pattern formation Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling (4 pages) ................................................................................... 045201͑R͒ Michael Peil, Laurent Larger, and Ingo Fischer Negative filament tension of scroll rings in an excitable system (4 pages) .............................. 045202͑R͒ Tamás Bánsági, Jr. and Oliver Steinbock Fluid dynamics Dynamics of thin liquid films falling on vertical cylindrical surfaces subjected to ultrasound forcing (4 pages) ..................................................................................
    [Show full text]
  • C Copyright 2014 Sudharsan Madhavan
    c Copyright 2014 Sudharsan Madhavan Lagrangian coherent structures and the dynamics of inertial particles Sudharsan Madhavan A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2014 Reading Committee: James J. Riley, Chair Steven L. Brunton J. Nathan Kutz Christopher S. Bretherton Program Authorized to Offer Degree: UW Applied Mathematics University of Washington Abstract Lagrangian coherent structures and the dynamics of inertial particles Sudharsan Madhavan Chair of the Supervisory Committee: James J. Riley Professor, Mechanical Engineering Adjunct Professor, Applied Mathematics Dynamics of inertial particles in two-dimensional planar flow have been investigated by evaluating finite-time Lyapunov exponents (FTLE). The first part of our work deals with inertial particle dynamics. The Maxey-Riley equations have been employed to track par- ticles. Patterns formed by inertial particles are reported along with their dependance on Strokes number and density of particles relative to the carrier-fluid density. Our results dis- tinguish patterns formed by particles denser than the fluid (aerosols) from those formed by particles lighter than the fluid (bubbles). Preferential concentration of these particles at specific regions of the flow have been observed. The attenuating, low-pass filter effect of Stokes drag on bubbles are reported for the first time. The results from this part of the work motivated further investigations into the underlying organizing structures of the flow, namely the Lagrangian coherent structures (LCS). LCS is traditionally evaluated us- ing FTLE. In the next part of the work, our objective was to interpret the dynamics of inertial par- ticles by evaluating finite-time Lyapunov exponents on their trajectories.
    [Show full text]
  • Dynamics of Finite-Size Particles in Chaotic Fluid Flows
    Dynamics of Finite-Size Particles in Chaotic Fluid Flows Julyan H.E. Cartwright, Ulrike Feudel, György Károlyi, Alessandro de Moura, Oreste Piro, and Tamás Tél Abstract We review recent advances on the dynamics of finite-size particles advected by chaotic fluid flows, focusing on the phenomena caused by the inertia of finite-size particles which have no counterpart in traditionally studied passive tracers. Particle inertia enlarges the phase space and makes the advection dynamics much richer than the passive tracer dynamics, because particles’ trajectories can diverge from the trajectories of fluid parcels. We cover both confined and open flow regimes, and we also discuss the dynamics of interacting particles, which can undergo fragmentation and coagulation. 1 Introduction and Overview A correct formulation of the problem of the motion of finite-size particles in fluid flows has presented difficult challenges for generations of fluid dynamicists. Although in principle this problem is “just” another application of the Navier– Stokes equation, with moving boundary conditions, a direct solution of the fluid dynamical equations is not only very difficult, but also not very illuminating. So from the nineteenth century onwards efforts were made to find the appropriate approximations which allow one to write the equations of motion of small rigid particles in a given flow in the form of ordinary differential equations, regarding the flow’s velocity field as given. Some very subtle issues are involved in making the right kinds of approximations and assumptions in a self-consistent way, and a number of incorrect results appeared in the early literature. The issue was finally resolved when Maxey and Riley [1] wrote down the equations of motion for a small spherical rigid particle advected by a (smooth) flow and Auton et al.
    [Show full text]
  • Bubbling and On-Off Intermittency in Bailout Embeddings
    PHYSICAL REVIEW E 68, 016217 ͑2003͒ Bubbling and on-off intermittency in bailout embeddings Julyan H. E. Cartwright,1,* Marcelo O. Magnasco,2,† Oreste Piro,3,‡ and Idan Tuval3,§ 1Laboratorio de Estudios Cristalogra´ficos, CSIC, E-18071 Granada, Spain 2Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste, Italy 3Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain ͑Received 14 February 2003; published 21 July 2003͒ We establish and investigate the conceptual connection between the dynamics of the bailout embedding of a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded phase space can be recognized as Hamiltonian bubbling. DOI: 10.1103/PhysRevE.68.016217 PACS number͑s͒: 05.45.Gg I. INTRODUCTION ture of the dynamics away from the invariant manifold. In the foregoing, we have supposed that both the re- Symmetry is a fundamental concept in science, both at the stricted and the unrestricted dynamics are dissipative. But we level of physical laws and when applied to specific applica- might envision a case in which the global dissipative dynam- tions.
    [Show full text]
  • And Inertia-Induced Inhomogeneity in the Distribution of Small Particles in fluid flows Julyan H
    CHAOS VOLUME 12, NUMBER 2 JUNE 2002 Noise- and inertia-induced inhomogeneity in the distribution of small particles in fluid flows Julyan H. E. Cartwrighta) Laboratorio de Estudios Cristalogra´ficos, CSIC, E-18071 Granada, Spain Marcelo O. Magnascob) Mathematical Physics Laboratory, Rockefeller University, P.O. Box 212, 1230 York Avenue, New York, New York 10021 Oreste Piroc) Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain ͑Received 2 November 2001; accepted 25 March 2002; published 20 May 2002͒ The dynamics of small spherical neutrally buoyant particulate impurities immersed in a two-dimensional fluid flow are known to lead to particle accumulation in the regions of the flow in which vorticity dominates over strain, provided that the Stokes number of the particles is sufficiently small. If the flow is viewed as a Hamiltonian dynamical system, it can be seen that the accumulations occur in the nonchaotic parts of the phase space: the Kolmogorov–Arnold–Moser tori. This has suggested a generalization of these dynamics to Hamiltonian maps, dubbed a bailout embedding. In this paper we use a bailout embedding of the standard map to mimic the dynamics of neutrally buoyant impurities subject not only to drag but also to fluctuating forces modeled as white noise. We find that the generation of inhomogeneities associated with the separation of particle from fluid trajectories is enhanced by the presence of noise, so that they appear in much broader ranges of the Stokes number than those allowing spontaneous separation. © 2002 American Institute of Physics. ͓DOI: 10.1063/1.1480441͔ Impurities suspended in a fluid flow are frequently ob- I.
    [Show full text]
  • Arxiv:1911.08207V1 [Nlin.CD] 19 Nov 2019
    Power-law trapping in the volume-preserving Arnold-Beltrami-Childress map Swetamber Das1 and Arnd B¨acker2, 1 1Max-Planck-Institut f¨urPhysik komplexer Systeme, N¨othnitzerStraße 38, 01187 Dresden, Germany 2Technische Universit¨atDresden, Institut f¨urTheoretische Physik and Center for Dynamics, 01062 Dresden, Germany (Dated: November 20, 2019) Understanding stickiness and power-law behavior of Poincar´erecurrence statistics is an open problem for higher-dimensional systems, in contrast to the well-understood case of systems with two degrees-of-freedom. We study such intermittent behavior of chaotic orbits in three-dimensional volume-preserving systems using the example of the Arnold-Beltrami-Childress map. The map has a mixed phase space with a cylindrical regular region surrounded by a chaotic sea for the considered parameters. We observe a characteristic overall power-law decay of the cumulative Poincar´erecur- rence statistics with significant oscillations superimposed. This slow decay is caused by orbits which spend long times close to the surface of the regular region. Representing such long-trapped orbits in frequency space shows clear signatures of partial barriers and reveals that coupled resonances play an essential role. Using a small number of the most relevant resonances allows for classifying long-trapped orbits. From this the Poincar´erecurrence statistics can be divided into different ex- ponentially decaying contributions which very accurately explains the overall power-law behavior including the oscillations. I. INTRODUCTION Thus already purely for topological reasons additional types of transport are possible, leading for example to Hamiltonian systems generically have a mixed phase the famous Arnold diffusion [47{49]. space in which regular and chaotic motion coexist.
    [Show full text]
  • Arxiv:Nlin/0311056V1 [Nlin.CD] 26 Nov 2003 Oi Rnnyeblc Nhproi Hoi Scattering, Chaotic Hyperbolic in Hyper Either Nonhyperbolic
    [Phys. Rev. E 68, 056307 (2003)] Reactive dynamics of inertial particles in nonhyperbolic chaotic flows Adilson E. Motter,1, ∗ Ying-Cheng Lai,2 and Celso Grebogi3 1Max Planck Institute for the Physics of Complex Systems, N¨othnitzer Strasse 38, 01187 Dresden, Germany 2Departments of Mathematics, Electrical Engineering, and Physics, Arizona State University, Tempe, Arizona 85287, USA 3Instituto de F´ısica, Universidade de S˜ao Paulo, Caixa Postal 66318, 05315-970 S˜ao Paulo, Brazil (Dated: October 31, 2018) Anomalous kinetics of infective (e.g., autocatalytic) reactions in open, nonhyperbolic chaotic flows are im- portant for many applications in biological, chemical, and environmental sciences. We present a scaling theory for the singular enhancement of the production caused by the universal, underlying fractal patterns. The key dynamical invariant quantities are the effective fractal dimension and effective escape rate, which are primarily determined by the hyperbolic components of the underlying dynamical invariant sets. The theory is general as it includes all previously studied hyperbolic reactive dynamics as a special case. We introduce a class of dissipative embedding maps for numerical verification. PACS numbers: 47.70.Fw, 47.53.+n, 47.52.+j, 05.45.-a Many chemical and biological processes in fluids are char- the periodic orbits are unstable and there are no Kolmogorov- acterized by a filamental distribution of active particles along Arnold-Moser (KAM) tori in the phase space, while the non- fractal invariant sets of the advection chaotic dynamics. These hyperbolic counterpart is frequently characterized as having fractal structures act as dynamical catalysts for the reaction, both chaotic and marginally stable periodic orbits.
    [Show full text]
  • Arxiv:Nlin.CD/0111005 V1 2 Nov 2001 Ple Namical Tems: on Asymptotically While Islands Lands W to the Apply Class
    Bailout Embeddings, Targeting of KAM Orbits, and the Control of Hamiltonian Chaos 1, 2, 3, Julyan H. E. Cartwright, ∗ Marcelo O. Magnasco, y and Oreste Piro z 1Laboratorio de Estudios Cristalograficos,´ CSIC, E-18071 Granada, Spain 2Mathematical Physics Lab, Rockefeller University, Box 212, 1230 York Avenue, NY 10021 3Institut Mediterrani d’Estudis Avanc¸ats, CSIC–UIB, E-07071 Palma de Mallorca, Spain (Dated: version of December 11, 2001) We present a novel technique, which we term bailout embedding, that can be used to target orbits having par- ticular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for Hamiltonian systems so as to target KAM orbits. We show how the bailout dynamics is able to lock onto extremely small KAM islands in an ergodic sea. PACS numbers: 05.45.Gg Control of chaos in nonlinear dynamical systems has been a parameter taking the system away from integrability is in- achieved by applying small perturbations that effectively creased, these tori break and give rise to chaotic regions in a change the dynamics of the system around the region — typ- precise sequence; for any particular value of this parameter ically a periodic orbit — that one wishes to stabilize [1]. in a neighborhood of the integrable case, there are surviving This method has been successful in dissipative systems, but tori. The problem with finding them is that, the dynamics its extensions to control and targeting in Hamiltonian sys- being volume-preserving, merely evolving trajectories either tems [2, 3, 4, 5, 6, 7, 8, 9, 10] have met various difficulties forwards or backwards does not give us convergence onto tori not present in the dissipative case: the absence of attracting [13], and since for large values of the nonlinearity, they cover sets, for instance, makes it hard to stabilize anything.
    [Show full text]
  • The Fluid Mechanics of Poohsticks
    The fluid mechanics of poohsticks rsta.royalsocietypublishing.org Julyan H. E. Cartwright1;2, Oreste Piro3 1Instituto Andaluz de Ciencias de la Tierra, Research CSIC–Universidad de Granada, E-18100 Armilla, Granada, Spain 2Instituto Carlos I de Física Teórica y Computacional, Article submitted to journal Universidad de Granada, E-18071 Granada, Spain 3Departament de Física, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain Subject Areas: fluid mechanics; dynamical systems 2019 is the bicentenary of George Gabriel Stokes, who Keywords: in 1851 described the drag — Stokes drag — on a body moving immersed in a fluid, and 2020 is the centenary Maxey–Riley equation, of Christopher Robin Milne, for whom the game of Basset–Boussinesq–Oseen equation, poohsticks was invented; his father A. A. Milne’s “The poohsticks House at Pooh Corner”, in which it was first described in print, appeared in 1928. So this is an apt moment to Author for correspondence: review the state of the art of the fluid mechanics of a solid body in a complex fluid flow, and one floating at Julyan Cartwright the interface between two fluids in motion. Poohsticks e-mail: [email protected] pertains to the latter category, when the two fluids are Oreste Piro water and air. e-mail: [email protected] arXiv:2104.03056v1 [physics.flu-dyn] 7 Apr 2021 © The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited. 1. Poohsticks 2 The game or pastime of poohsticks is best described in the original source, A.
    [Show full text]
  • CURRICULUM VITÆ Julyan Cartwright
    CURRICULUM VITÆ Julyan Cartwright http://www.iact.csic.es/personal/julyan_cartwright Versión de marzo de 2019 1 CURRICULUM VITAE APELLIDO: Cartwright NOMBRES: Julyan Harold Edward FECHA DE NACIMIENTO: 4 Agosto 1967 NACIONALIDAD: Británica NIE: X1656430Q (España) SEXO: Varón TEL.: 609 355224 FORMACION ACADEMICA LICENCIATURA: (Homologada en España) Licenciado en Física Teorica University of Newcastle upon Tyne, Gran Bretaña Título de tesina: The Spherical Pendulum Revisited: Chaos in a Forced Oscillator DIRECTOR DE TESINA: Dr. David J. Tritton FECHA: Junio 1988 DOCTORADO: (Homologado en España) Doctor en Matematica Aplicada University of London, Gran Bretaña Título de tesis: Chaos in Dissipative Systems: Bifurcations and Basins DIRECTOR DE TESIS: Dr. David K. Arrowsmith FECHA: Octubre 1992 SITUACION PROFESIONAL: Científico Titular del CSIC (cuatro sexenios; cinco quinquenios) y Miembro del Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada. INSTITUTO: Instituto Andaluz de Ciencias de la Tierra (CSIC–UGR) DIRECCION POSTAL: E-18100 Armilla, Granada. CORREO ELECTRONICO: [email protected] WWW http://www.iact.csis.es/personal/julyan_cartwright DEDICACION: A tiempo completo ACTIVIDADES ANTERIORES DE CARACTER CIENTIFICO FECHAS PUESTO INSTITUCION Mar 00 Científico Titular; antes Consejo Superior de Investigaciones — presente ‘Ramón y Cajal’ Fellow Científicas (CSIC), España. Nov 15 Miembro Instituto Carlos I de Física Teórica y — presente Computacional, Universidad de Granada. May 14 Visiting Scholar Pembroke College, — May 15 Cambridge University, UK. Nov 99 Visiting Scholar Lawrence Livermore Natl Laboratory, — Sep 01 University of California, USA. Nov 98 Profesor Visitante Universidad de Granada y — Feb 00 Universidad de las Islas Baleares, España Ene 98 Profesor Visitante Bioengineering Institute & Dept of Physics, — Oct 98 Miguel Hernández University, España.
    [Show full text]