Advancesin Understanding Marine Heatwaves and Their Impacts

Total Page:16

File Type:pdf, Size:1020Kb

Advancesin Understanding Marine Heatwaves and Their Impacts ADVANCES IN UNDERSTANDING MARINE HEATWAVES AND THEIR IMPACTS EDITED BY : Eric C. J. Oliver, Thomas Wernberg, Jessica Benthuysen and Ke Chen PUBLISHED IN : Frontiers in Marine Science Frontiers eBook Copyright Statement About Frontiers The copyright in the text of individual articles in this eBook is the Frontiers is more than just an open-access publisher of scholarly articles: it is a property of their respective authors or their respective institutions or pioneering approach to the world of academia, radically improving the way scholarly funders. The copyright in graphics research is managed. The grand vision of Frontiers is a world where all people have and images within each article may be subject to copyright of other an equal opportunity to seek, share and generate knowledge. Frontiers provides parties. In both cases this is subject immediate and permanent online open access to all its publications, but this alone to a license granted to Frontiers. is not enough to realize our grand goals. The compilation of articles constituting this eBook is the property of Frontiers. Frontiers Journal Series Each article within this eBook, and the eBook itself, are published under The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, the most recent version of the Creative Commons CC-BY licence. online journals, promising a paradigm shift from the current review, selection and The version current at the date of dissemination processes in academic publishing. All Frontiers journals are driven publication of this eBook is CC-BY 4.0. If the CC-BY licence is by researchers for researchers; therefore, they constitute a service to the scholarly updated, the licence granted by community. At the same time, the Frontiers Journal Series operates on a revolutionary Frontiers is automatically updated to the new version. invention, the tiered publishing system, initially addressing specific communities of When exercising any right under the scholars, and gradually climbing up to broader public understanding, thus serving CC-BY licence, Frontiers must be the interests of the lay society, too. attributed as the original publisher of the article or eBook, as applicable. Dedication to Quality Authors have the responsibility of ensuring that any graphics or other Each Frontiers article is a landmark of the highest quality, thanks to genuinely materials which are the property of collaborative interactions between authors and review editors, who include some others may be included in the CC-BY licence, but this should be of the world’s best academicians. Research must be certified by peers before entering checked before relying on the CC-BY licence to reproduce those a stream of knowledge that may eventually reach the public - and shape society; materials. Any copyright notices therefore, Frontiers only applies the most rigorous and unbiased reviews. relating to those materials must be complied with. Frontiers revolutionizes research publishing by freely delivering the most outstanding Copyright and source research, evaluated with no bias from both the academic and social point of view. acknowledgement notices may not By applying the most advanced information technologies, Frontiers is catapulting be removed and must be displayed in any copy, derivative work or scholarly publishing into a new generation. partial copy which includes the elements in question. All copyright, and all rights therein, What are Frontiers Research Topics? are protected by national and Frontiers Research Topics are very popular trademarks of the Frontiers Journals international copyright laws. The above represents a summary only. Series: they are collections of at least ten articles, all centered on a particular subject. For further information please read With their unique mix of varied contributions from Original Research to Review Frontiers’ Conditions for Website Use and Copyright Statement, and Articles, Frontiers Research Topics unify the most influential researchers, the latest the applicable CC-BY licence. key findings and historical advances in a hot research area! Find out more on how ISSN 1664-8714 to host your own Frontiers Research Topic or contribute to one as an author by ISBN 978-2-88963-697-6 DOI 10.3389/978-2-88963-697-6 contacting the Frontiers Editorial Office: [email protected] Frontiers in Marine Science 1 April 2020 | Advances in Understanding Marine Heatwaves ADVANCES IN UNDERSTANDING MARINE HEATWAVES AND THEIR IMPACTS Topic Editors: Eric C. J. Oliver, Dalhousie University, Canada Thomas Wernberg, University of Western Australia, Australia Jessica Benthuysen, Australian Institute of Marine Science (AIMS), Australia Ke Chen, Woods Hole Oceanographic Institution, United States Citation: Oliver, E. C. J., Wernberg, T., Benthuysen, J., Chen, K., eds. (2020). Advances in Understanding Marine Heatwaves and Their Impacts. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-697-6 Frontiers in Marine Science 2 April 2020 | Advances in Understanding Marine Heatwaves Table of Contents 06 Editorial: Advances in Understanding Marine Heatwaves and Their Impacts Jessica A. Benthuysen, Eric C. J. Oliver, Ke Chen and Thomas Wernberg 10 Marine Heat Waves and the Influence of El Niño off Southeast Queensland, Australia Hanna Heidemann and Joachim Ribbe 25 Local Extinction of Bull Kelp (Durvillaea spp.) Due to a Marine Heatwave Mads S. Thomsen, Luca Mondardini, Tommaso Alestra, Shawn Gerrity, Leigh Tait, Paul M. South, Stacie A. Lilley and David R. Schiel 35 Major Shifts in Pelagic Micronekton and Macrozooplankton Community Structure in an Upwelling Ecosystem Related to an Unprecedented Marine Heatwave Richard D. Brodeur, Toby D. Auth and Anthony Jason Phillips 50 Meridional Oceanic Heat Transport Influences Marine Heatwaves in the Tasman Sea on Interannual to Decadal Timescales Erik Behrens, Denise Fernandez and Phil Sutton 67 Air-Sea Heat Flux Variability in the Southeast Indian Ocean and its Relation With Ningaloo Niño Xue Feng and Toshiaki Shinoda 82 Simmered Then Boiled: Multi-Decadal Poleward Shift in Distribution by a Temperate Fish Accelerates During Marine Heatwave Kimberley A. Smith, Christopher E. Dowling and Joshua Brown 98 Spatial Variability in the Resistance and Resilience of Giant Kelp in Southern and Baja California to a Multiyear Heatwave Kyle C. Cavanaugh, Daniel C. Reed, Tom W. Bell, Max C. N. Castorani and Rodrigo Beas-Luna 112 Severe Continental-Scale Impacts of Climate Change are Happening Now: Extreme Climate Events Impact Marine Habitat Forming Communities Along 45% of Australia’s Coast Russell C. Babcock, Rodrigo H. Bustamante, Elizabeth A. Fulton, Derek J. Fulton, Michael D. E. Haywood, Alistair James Hobday, Robert Kenyon, Richard James Matear, Eva E. Plagányi, Anthony J. Richardson and Mathew A. Vanderklift 126 Corrigendum: Severe Continental-Scale Impacts of Climate Change are Happening Now: Extreme Climate Events Impact Marine Habitat Forming Communities Along 45% of Australia’s Coast Russell C. Babcock, Rodrigo H. Bustamante, Elizabeth A. Fulton, Derek J. Fulton, Michael D. E. Haywood, Alistair James Hobday, Robert Kenyon, Richard James Matear, Eva E. Plagányi, Anthony J. Richardson and Mathew A. Vanderklift Frontiers in Marine Science 3 April 2020 | Advances in Understanding Marine Heatwaves 128 A Systematic Review of How Multiple Stressors From an Extreme Event Drove Ecosystem-Wide Loss of Resilience in an Iconic Seagrass Community Gary A. Kendrick, Robert J. Nowicki, Ylva S. Olsen, Simone Strydom, Matthew W. Fraser, Elizabeth A. Sinclair, John Statton, Renae K. Hovey, Jordan A. Thomson, Derek A. Burkholder, Kathryn M. McMahon, Kieryn Kilminster, Yasha Hetzel, James W. Fourqurean, Michael R. Heithaus and Robert J. Orth 143 Predicting the Evolution of the 2014–2016 California Current System Marine Heatwave From an Ensemble of Coupled Global Climate Forecasts Michael G. Jacox, Desiree Tommasi, Michael A. Alexander, Gaelle Hervieux and Charles A. Stock 156 Factors Affecting the Recovery of Invertebrate Stocks From the 2011 Western Australian Extreme Marine Heatwave Nick Caputi, Mervi Kangas, Arani Chandrapavan, Anthony Hart, Ming Feng, Maxime Marin and Simon de Lestang 174 Marine Heatwave Hotspots in Coral Reef Environments: Physical Drivers, Ecophysiological Outcomes, and Impact Upon Structural Complexity Alexander J. Fordyce, Tracy D. Ainsworth, Scott F. Heron and William Leggat 191 The Decline and Recovery of a Crab Population From an Extreme Marine Heatwave and a Changing Climate Arani Chandrapavan, Nick Caputi and Mervi I. Kangas 203 Extreme Marine Heatwaves Alter Kelp Forest Community Near its Equatorward Distribution Limit Nur Arafeh-Dalmau, Gabriela Montaño-Moctezuma, José A. Martínez, Rodrigo Beas-Luna, David S. Schoeman and Guillermo Torres-Moye 221 Photophysiological Responses of Canopy-Forming Kelp Species to Short-Term Acute Warming Heidi L. Burdett, Honor Wright and Dan A. Smale 232 Regional Structure in the Marine Heat Wave of Summer 2015 Off the Western United States Melanie R. Fewings and Kevin S. Brown 246 Characteristics of an Advective Marine Heatwave in the Middle Atlantic Bight in Early 2017 Glen Gawarkiewicz, Ke Chen, Jacob Forsyth, Frank Bahr, Anna M. Mercer, Aubrey Ellertson, Paula Fratantoni, Harvey Seim, Sara Haines and Lu Han 260 Detecting Marine Heatwaves With Sub-Optimal Data Robert W. Schlegel, Eric C. J. Oliver, Alistair J. Hobday and Albertus J. Smit 274 Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact Eric C. J. Oliver,
Recommended publications
  • Missing the Marine Forest for the Trees
    Vol. 612: 209–215, 2019 MARINE ECOLOGY PROGRESS SERIES Published March 7 https://doi.org/10.3354/meps12867 Mar Ecol Prog Ser OPENPEN ACCESSCCESS OPINION PIECE Missing the marine forest for the trees Thomas Wernberg1,2,*, Karen Filbee-Dexter1,3 1UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia 2Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark 3Institute of Marine Research, 4817 His, Norway ABSTRACT: Seascapes dominated by large, structurally complex seaweeds are ubiquitous. These critical ecosystems are under increasing pressure from human activities, and conceiving success- ful management strategies to ensure their persistence and/or recovery is of paramount impor- tance. Currently, ecosystems dominated by large seaweeds are referred to as either ‘forests’ or ‘beds’. We demonstrate how this dual terminology is confusing, is used inconsistently, and reduces the efficiency of communication about the importance and perils of seaweed habitats. As a conse- quence, it undermines work to alleviate and mitigate their loss and impedes research on unifying principles in ecology. We conclude that there are clear benefits of simply using the more intuitive term ‘forest’ to describe all seascapes dominated by habitat-forming seaweeds. This is particularly true as researchers scramble to reconcile ecological functions and patterns of change across dis- parate regions and species to match the increasingly global scale of environmental forcing on these critical ecosystems. KEY WORDS: Seaweed · Terminology · Kelp · Macroalgae · Communication 1. TREES OF THE SEAS AND MARINE FORESTS can be described as ‘forests’. Some experts use this term sparingly, referring only to seaweeds that reach Seascapes dominated by large seaweeds are ubiq- the sea surface (e.g.
    [Show full text]
  • Emerging Risks from Marine Heat Waves
    COMMENT DOI: 10.1038/s41467-018-03163-6 OPEN Emerging risks from marine heat waves Thomas L. Frölicher1,2 & Charlotte Laufkötter 1,2 Recent marine heat waves have caused devastating impacts on marine ecosystems. Sub- stantial progress in understanding past and future changes in marine heat waves and their risks for marine ecosystems is needed to predict how marine systems, and the goods and 1234567890():,; services they provide, will evolve in the future. Extreme climate and weather events shape the structure of terrestrial biological systems and affect the biogeochemical functions and services they provide for society in a fundamental manner1. There is overwhelming evidence that atmospheric heat waves over land are changing under global warming, increasing the risk of severe, pervasive and in some cases irreversible impacts on natural and socio-economic systems2. In contrast, we know little how extreme events in the ocean, especially those associated with warming will change under global warming, and how they will impact marine organisms. This knowledge gap is of particular concern as some of the recent observed marine heat waves (MHWs) demonstrated the high vulnerability of marine organisms and ecosystems services to such extreme climate events. Definition, observations, and key processes A marine heat wave is usually defined as a coherent area of extreme warm sea surface tem- perature (SST) that persists for days to months3. MHWs have been observed in all major ocean basins over the recent decade, but only a few MHWs have been documented and analyzed extensively (Fig. 1). One of the first MHW that has been characterized in the literature occurred in 2003 in the northwestern Mediterranean Sea with SSTs reaching 3–5 °C above the 1982–2016 reference period4.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Akatore Study Published in Earth and Planetary
    Earth and Planetary Science Letters 520 (2019) 18–25 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand ∗ Elahe Parvizi a, Dave Craw b, , Jonathan M. Waters a a Zoology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand b Geology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand a r t i c l e i n f o a b s t r a c t Article history: Holocene paleoseismic activity on the Akatore Fault zone, southeastern New Zealand, has caused uplift Received 20 January 2019 of a 23 km section of coastline by several metres. Prominent relict shoreline terraces are preserved at Received in revised form 4 May 2019 6 m and 3 m above the present sea level, and the latter terrace was formed 1000-1400 yrs BP. The Accepted 22 May 2019 main fault strand farther inland has 6 mof late Holocene vertical offset, but the relationships between Available online xxxx coastal offsets and fault offsets are not understood. There is no preserved geological evidence on the Editor: J.-P. Avouac coastline to distinguish between incremental uplift (e.g., numerous centimetre-scale events) and major, Keywords: metre-scale, uplift events: a distinction that is important for evaluating regional paleoseismicity. We have paleoseismology used genetic characterisation of populations of live kelp, Durvillaea antarctica growing along the shoreline neotectonics to investigate whether or not there has been a catastrophic uplift event, greater than the two metre tidal fault range, that was sufficient to extirpate intertidal kelp populations.
    [Show full text]
  • VARIATION in SETTLEMENT and LARVAL DURATION of Klng GEORGE WHITING, SILLAGINODES PUNCTATA (SILLAGINIDAE), in SWAN BAY, VICTORIA, AUSTRALIA
    BULLETIN OF MARINE SCIENCE, 54(1): 281-296, 1994 VARIATION IN SETTLEMENT AND LARVAL DURATION OF KlNG GEORGE WHITING, SILLAGINODES PUNCTATA (SILLAGINIDAE), IN SWAN BAY, VICTORIA, AUSTRALIA Gregory P. Jenkins and Helen M. A. May ABSTRACT Otoliths were examined from late-stage larvae and juveniles of King George whiting, Sillaginodes punctata, collected from Swan Bay in spring 1989. Increments in otoliths of larval S. punctata are known to be formed daily. A transition in the microstructure of otoliths from late-stage larvae was apparently related to environmental changes associated with entry to Port Phillip Bay. The pattern of abundance of post-larvae of S. punctata in fortnightly samples supported the contention that the transition was formed immediately prior to "set- tlement" in seagrass habitats. Backcalculation to the otolith transition suggested that five cohorts had entered Swan Bay, each approximately 10 days apart, from late September to early November. Stability of this pattern for juveniles from sequential samples indicated that otolith increments continued to be formed daily in the juvenile stage. The pattern of settlement was consistent for two sites within Swan Bay. The larval phase of King George whiting settling in Port Phillip Bay was extremely long and variable, ranging from approximately 100 to 170 days. Age at settlement was more variable than length, and growth rate at settlement was I I extremely slow, approximately 0.06 mm ·d- • • Backcalculated hatching dates ranged from April to JUly. July. Increment widths in the larval stage suggest that growth slows after approxi- mately 45 to 75 days; beyond which individuals are in a slow growth, competent stage of 40 to 100 days.
    [Show full text]
  • Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 1-2021 Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks Lillian R. Aoki Karen J. McGlathery Patricia L. Wiberg Matthew P. J. Oreska Amelie C. Berger See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Aoki, Lillian R.; McGlathery, Karen J.; Wiberg, Patricia L.; Oreska, Matthew P. J.; Berger, Amelie C.; Berg, Peter; and Orth, Robert J., Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks (2021). Frontiers in Marine Science, 7, 576784.. doi: 10.3389/fmars.2020.576784 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors Lillian R. Aoki, Karen J. McGlathery, Patricia L. Wiberg, Matthew P. J. Oreska, Amelie C. Berger, Peter Berg, and Robert J. Orth This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/2036 fmars-07-576784 December 23, 2020 Time: 12:35 # 1 ORIGINAL RESEARCH published: 07 January 2021 doi: 10.3389/fmars.2020.576784 Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks Lillian R. Aoki1*†, Karen J. McGlathery1, Patricia L. Wiberg1, Matthew P. J. Oreska1, Amelie C. Berger1, Peter Berg1 and Robert J. Orth2 1 Department of Environmental Sciences, University of Virginia, Charlottesville, VA, United States, 2 Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, United States Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • S41598-020-69258-7.Pdf
    www.nature.com/scientificreports OPEN Substantial blue carbon in overlooked Australian kelp forests Karen Filbee‑Dexter1,2 & Thomas Wernberg1,2,3* Recognition of the potential for vegetated coastal ecosystems to store and sequester carbon has led to their increasing inclusion into global carbon budgets and carbon ofset schemes. However, kelp forests have been overlooked in evaluations of this ‘blue carbon’, which have been limited to tidal marshes, mangrove forests, and seagrass beds. We determined the continental-scale contribution to blue carbon from kelp forests in Australia using areal extent, biomass, and productivity measures from across the entire Great Southern Reef. We reveal that these kelp forests represent 10.3–22.7 Tg C and contribute 1.3–2.8 Tg C year−1 in sequestered production, amounting to more than 30% of total blue carbon stored and sequestered around the Australian continent, and ~ 3% of the total global blue carbon. We conclude that the omission of kelp forests from blue carbon assessments signifcantly underestimates the carbon storage and sequestration potential from vegetated coastal ecosystems globally. Te rapidly changing climate provides a strong impetus to uncover sinks in the global carbon cycle, in order to identify possible ways to mitigate current carbon emissions1,2. Vegetated coastal ecosystems store and sequester large amounts of organic carbon globally3–5, and this recognition has recently led to their recent inclusion into global carbon budgets and carbon ofset schemes6. Current accounting for this ‘blue carbon’ is restricted to veg- etation in accreting coastal ecosystems, such as tidal marshes, mangrove forests, and seagrass beds, which have high internal carbon burial rates and accumulate carbon in their soils and sediments.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Information Sheet
    Illustration © R. Swainston/anima.net.au Information sheet Yellowfin whiting (Sillago schombergkii) Distribution Identification Yellowfin whiting (also known as western sand Adults have no distinguishing body markings and are whiting) are endemic to south-western Australia from best identified by their yellow ventral and anal fins Western Australia (Onslow) to South Australia (Gulf St and a weakly forked tail. Juveniles have faint black Vincent). WA and SA host separate breeding stocks. blotches on the body and may be confused with juvenile western trumpeter whiting. Stock structure and movement In WA, populations within the Gascoyne Coast Growth Bioregion and West Coast Bioregion are believed Can reach a maximum of 427 mm total length (TL) to have limited connectivity and so are regarded as and 12 years of age. Females and males attain separate stocks. sexual maturity at 2 years, at 200 and 190 mm TL, respectively. Females grow slightly larger than males. In the West Coast Bioregion, some fish live in estuaries for much the year, but these fish migrate Reproduction to sea to join their ocean-dwelling counterparts to Spawning typically occurs at water temperatures spawn in late spring/early summer. Hence, fish of 22-24 ºC. Spawning occurs August-December across the West Coast Bioregion belong to the same in northern areas (e.g. Shark Bay) and December- breeding stock (e.g. fish caught in the Peel-Harvey February in southern areas (e.g. Perth). Spawning Estuary are part of the same population as those in occurs over a longer period in northern areas Geographe Bay or Jurien Bay).
    [Show full text]
  • Our World-Underwater Scholarship Society ®
    our world-underwater scholarship society ® 47th Annual Awards Program – June 3 - 5, 2021 Welcome to the 47th anniversary celebration of the Our World-Underwater Scholarship Society®. It has always been a great pleasure for me as president of the Society to bring the “family” together each year in New York City, so of course it is with great disappointment that for the second year we are unable to do so. A year ago, as the pandemic was beginning to spread throughout the world, the board of directors made the difficult decision to put all scholarship and internship activities on hold. 2020 was the first time in the Society’s history that we did not put Scholars or Interns in the field. But there is good news – the Society has new energy and is working with our hosts and sponsors to safely get our incoming 2021 Scholars and Interns started on their journeys. We bring three new Rolex Scholars and five new interns into our family for a total of 103 Rolex Scholars and 107 interns since the inception of the Society, and all of this has been accomplished by our all-volunteer organization. Forty-seven years of volunteers have been selfless in their efforts serving as directors, officers, committee members, coordinators, and technical advisors all motivated to support the Society’s mission “to promote educational activities associated with the underwater world.” None of this would have been possible without the incredible support by the Society’s many organizational partners and corporate sponsors throughout the years. The one constant in the Society’s evolution has been Rolex which continues to support the Society as part of its Perpetual Planet Initiative.
    [Show full text]
  • The Tale of a Surprisingly Cold Blob in the North Atlantic
    VARIATIONSUS CLIVAR VARIATIONS CUS CLIVAR lim ity a bil te V cta ariability & Predi Spring 2016 • Vol. 14, No. 2 A Tale of Two Blobs The evolution and known atmospheric Editors: forcing mechanisms behind the 2013-2015 Kristan Uhlenbrock & Mike Patterson North Pacific warm anomalies From 2013 to 2015, the scientific 1 2 community and the media were Dillon J. Amaya Nicholas E. Bond , enthralled with two anomalous Arthur J. Miller1, and Michael J. DeFlorio3 sea surface temperature events, both getting the moniker 1Scripps Institution of Oceanography the “Blob,” although one was 2 warm and one was cold. These University of Washington 3 events occurred during a Jet Propulsion Laboratory, California Institute of Technology period of record-setting global mean surface temperatures. This edition focuses on the timing and extent, possible mechanisms, and impacts ear-to-year variations in the El Niño Southern Oscillation (ENSO) indices of these unusual ocean heat Ygenerate significant interest throughout the general public and the scientific anomalies, and what we might community due to the sometimes destructive nature of this climate mode. For expect in the future as climate example, so-called “Godzilla” ENSOs can generate billions of dollars in damages changes. from the US agricultural industry alone due to unanticipated flooding or drought The “Warm Blob” feature (Adams et al. 1999). However, in the winter of 2013/2014, North Pacific sea surface appeared in the North Pacific temperature (SST) anomalies exceeded three standard deviations above the mean during winter 2013 and was over a large region, shifting focus away from the tropics and onto the extratropics first identified by Nick Bond, as the associated atmospheric circulation patterns helped exacerbate the most University of Washington.
    [Show full text]