George Cuvier DISCOURSE on the REVOLUTIONARY UPHEAVALS

Total Page:16

File Type:pdf, Size:1020Kb

George Cuvier DISCOURSE on the REVOLUTIONARY UPHEAVALS George Cuvier DISCOURSE ON THE REVOLUTIONARY UPHEAVALS ON THE SURFACE OF THE GLOBE AND ON THE CHANGES WHICH THEY HAVE PRODUCED IN THE ANIMAL KINGDOM Translated by Ian Johnston Vancouver Island University Nanaimo, BC Canada [Revised 2009] [Note that this text may be downloaded, printed, and distributed or distributed electronically, in whole or in part, without permission and without charge. Commercial publication of any part of it is, however, prohibited, without the permission of the translator. For information, please contact [email protected] . Please note that in order to make the download of this text quicker, the diagrams at the end of Cuvier’s text have been placed in a different file. These may be accessed by the following link: Diagrams . If the link does not work try typing the address http://records.viu.ca/~johnstoi/cuvier/illustrations.pdf into the browser. 1 Table of Contents 1 Introductory Note 3 Translator’s Note 5 Foreword 6 Exposition 7 The First Appearance of the Earth 8 The First Proofs of Upheavals 9 Proofs that these Revolutions have been Numerous 10 Proofs that these Revolutions have been Sudden 11 Proofs that there were Revolutionary Upheavals before the Existence of Living Things 12 Examination of the Causes Which Are Still at Work Today on the Surface of the Earth 15 Collapses 16 Alluvial Deposits 16 Dunes 17 Cliffs 17 Deposits Under the Waters 18 Stalactites 18 Lithophytes 19 Encrustations 19 Volcanoes 20 Constant Astronomical Causes 20 Ancient Systems of Geologists 21 More Recent Systems 22 Divergences of All Systems 24 Causes of These Divergences 24 The Nature and Conditions of the Problem 25 Reason for the Neglect of These Conditions 26 Progress of Mineral Geology 26 Importance of Fossils in Geology 26 1 [ Translator’s note : Cuvier’s text has words in the margins to indicate the start of impor- tant sections. These remarks in the margins have been made headings in the following text and are listed above in the Table of Contents]. 2 Special Importance of the Fossil Bones of Quadrupeds 28 There is Little Hope of Discovering New Species of Large Quadrupeds 29 The Fossil Bones of Quadrupeds are Difficult to Determine 39 Principle of Determination 40 Tabulated General Results of These Studies 44 Relationships Between Species and the Strata 45 The Lost Species Are Not Varieties of the Living Species 48 There Are No Human Fossil Bones 53 Physical Proofs of the Newness of the Present State of the Continents 56 Deposits of Material 56 The March of the Dunes 63 Peat Bogs and Rock Falls 64 The History of Peoples Confirms the Newness of the Continents 64 The Excessive Antiquity Attributed to Certain People Has No Historical Basis 69 The Astronomical Monuments Left by the Ancients Do Not Bear the Excessively Distant Dates Which People Believe They Have Seen in Them 92 The Zodiac Is Far From Carrying in Itself a Certain and Excessively Ancient Date 103 Exaggerations Concerning Certain Mine Works 106 General Conclusion Concerning the Time of the Latest Revolution 107 Ideas About Later Geological Research Projects 107 A Summary of the Observations on the Successive Formations 109 Enumeration of Fossil Animals Recognized by the Author 113 Appendix: Determination of the Birds Called Ibis by the Ancient Egyptians 133 Illustrations 149 A Note on the Translator 157 Introductory Note Georges Cuvier (1769-1832) was a major scientific figure in the early 19 th century, a brilliant and enormously influential naturalist in France and throughout Europe. His work on the comparative anatomy of living and fossil animals, especially vertebrates, was a major landmark in the history of modern biology. Cuvier was, like many other naturalists at the time, a staunch opponent of the theory of evolution, above all as that theory had been presented by his colleague Jean-Baptiste Lamarck in Philosophie zoologique (1809). 3 Cuvier’s Discourse on the Revolutions On the Surface of the Earth was or- iginally (in a somewhat different form) the preface to his larger work Research into the Fossil Remains of Quadrupeds (published in 1812, 1821, and 1825). The Discourse was immediately popular and was later published as an independent work, went through several editions, and was translated into a number of different languages. In the Discourse , Cuvier has at least three main purposes. First, he wishes to review the present state of knowledge in geology, paleontology, and comparative anatomy, particularly with a view to listing some of the many competing contemporary theories about the formation of the earth and to explaining why there is so much confusion. Second, he wants to demon- strate conclusively that the earth’s surface has undergone at least three major catastrophes (not simply one, as Biblical literalists were insisting), thus making the case for a scientific position known as catastrophism (changes have come about by a series of unique general upheavals, rather than by slow, constant processes or by local disasters). And finally he wishes to demonstrate, equally conclusively, that the last such catastrophe was fairly recent (a few thousand years ago at most) and thus that the present forms of human society are not nearly as ancient as many people have been claiming. Cuvier’s opposition to the theory of evolution rests upon some important scientific claims. To begin with, he argues that there could have been no uninterrupted continuity in the development of life, because the sudden universal catastrophes, which brought about mass extinctions, cannot be explained in terms of present forces at work on the surface of the earth (hence, the claim of the uniformitarians, like Lamarck, that the history of the earth’s surface can be accounted for in terms of present forces con- stantly working at present rates, is simply wrong). Moreover, there is not sufficient time since the last catastrophe for the development of new species. In addition, his principle of the correlation of parts in organic beings (one of his most important contributions to anatomy) indicates that simple changes in particular organs would not assist an animal, which is a complex coordinated whole; hence, the minor organic transformations upon which evolution depends would lead to extinction rather than to new species. Also the fossil record provides insufficient evidence of transitional types, an essential requirement of evolutionary theory in Lamarck (and later in Darwin). Finally, on the basis of his wide experience with the organic structure of animals, Cuvier argues that there are naturally fixed limits to the variations within species, beyond which new varieties are not possible. As Cuvier himself admits, his argument raises some significant questions of its own. For example: Why are there no human fossils? If there is no continuity between the extinct animals of past ages and present species, where were the latter species during the catastrophes? Where did our present species come from? 4 Cuvier’s objections to evolution, although set aside by Darwinian theory, have by no means been entirely dismissed (catastrophism, for example, has made something of a comeback in recent years), and many of his most important ideas have been incorporated into modern biology. Cuvier’s argument in the Discourse is remarkable for its clarity, for its grasp of many different areas of science, and, perhaps more than anything else, for its astonishing range. His analysis takes into account, not merely the findings of many of his scientific contemporaries and his own remark- able research results, but also the often questionable evidence in ancient writings from widely different cultures, as well as the claims of ancient and modern astronomers about the significance of astronomy and astrology in arguments about the age of the earth. It would be difficult to find a modern scientific argument which involves such a detailed look at ancient books and monuments and at the commentaries upon them. These qual- ities make Cuvier’s argument an exceptionally interesting and accessible scientific work from the most vital era of pre-Darwinian biology, the first decades of the 19 th century. One factor of particular interest, too, is Cuvier’s use of evidence from the French expedition to Egypt in 1798 (particularly in his discussions of the zodiac and in his report on the ibis, included as an appendix to the Discourse ). Although that campaign had ended in military failure in 1801, it produced an enormous wealth of scientific information of great interest and importance to those dealing with the history of the earth, the devel- opment of animal life, and the history of human societies. Much of this information was still being processed and catalogued and published in the first decades of the 19 th century, as one can see from different editions of the Discourse (later editions, including the Third, which is the basis for the translated text here, draw much more upon the Egyptian material than did the first version). The major publication prompted by this material from Egypt was called Description de l’Égypte , a series of volumes on ancient and modern Egypt produced by the 160 scholars who accompanied the military expedition and who shipped a great many valuable artifacts home (everything from mummified birds to temple ceilings). The first volume was published in 1810 and the last in 1829. Its full name was Description de l'Égypte, ou Recueil des observations et des recherches qui ont été faites en Égypte pendant l'expédition de l'armée française [Description of Egypt, or collection of observations and research which was made in Egypt during the expedition of the French Army ). Cuvier routinely refers to the entire publication in his footnotes as “the great work on Egypt,” and sometimes he provides a partial title. Translator’s Note The footnotes in the following translation all come from Cuvier’s text, other than those in square brackets with the initial phrase Translator’s 5 note .
Recommended publications
  • The Scientist from a Flourishing Sex-Life to Modern DNA Technology
    The Scientist From a Flourishing Sex-life to Modern DNA Technology Linnaeus the Scientist ll of a sudden you are standing there, in the bo- tanic garden that is to be Linnaeus’s base for a whole lifetime of scientific achievements. It is a beautiful spring day in Uppsala, the sun’s rays warm your heart as cheerfully as in your own 21st century. The hus- tle and bustle of the town around you break into the cen- trally located garden. Carriage wheels rattle over the cob- blestones, horses neigh, hens cackle from the house yards. The acrid smell of manure and privies bears witness to a town atmosphere very different from your own. You cast a glance at what is growing in the garden. The beds do not look particularly well kept. In fact, the whole garden gives a somewhat dilapidated impression. Suddenly, in the distance, you see a young man squat- A ting down by one of the beds. He is looking with great concentration at a small flower, examining it closely through a magnifying glass. When he lifts his head for a moment and ponders, you recognise him at once. It is Carl von Linné, or Carl Linnaeus as he was originally called. He looks very young, just over 20 years old. His pale cheeks tell you that it has been a harsh winter. His first year as a university student at Uppsala has been marked by a lack of money for both food and clothes as well as for wood to warm his rented room. 26 linnaean lessons • www.bioresurs.uu.se © 2007 Swedish Centre for School Biology and Biotechnology, Uppsala University, Sweden.
    [Show full text]
  • Of Dahlia Myths.Pub
    Cavanilles’ detailed illustrations established the dahlia in the botanical taxonomy In 1796, the third volume of “Icones” introduced two more dahlia species, named D. coccinea and D. rosea. They also were initially thought to be sunflowers and had been brought to Spain as part of the Alejandro Malaspina/Luis Neé expedition. More than 600 drawings brought the plant collection to light. Cavanilles, whose extensive correspondence included many of Europe’s leading botanists, began to develop a following far greater than his title of “sacerdote” (priest, in French Abbé) ever would have offered. The A. J. Cavanilles archives of the present‐day Royal Botanical Garden hold the botanist’s sizable oeu‐ vre, along with moren tha 1,300 letters, many dissertations, studies, and drawings. In time, Cavanilles achieved another goal: in 1801, he was finally appointed professor and director of the garden. Regrettably, he died in Madrid on May 10, 1804. The Cavanillesia, a tree from Central America, was later named for this famousMaterial Spanish scientist. ANDERS DAHL The lives of Dahl and his Spanish ‘godfather’ could not have been any more different. Born March 17,1751, in Varnhem town (Västergötland), this Swedish botanist struggled with health and financial hardship throughout his short life. While attending school in Skara, he and several teenage friends with scientific bent founded the “Swedish Topographic Society of Skara” and sought to catalogue the natural world of their community. With his preacher father’s support, the young Dahl enrolled on April 3, 1770, at Uppsala University in medicine, and he soon became one of Carl Linnaeus’ students.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Download Download
    European Journal of Taxonomy 753: 1–80 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.753.1389 www.europeanjournaloftaxonomy.eu 2021 · Tissier J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:8009DD3B-53B0-45C9-921E-58D04C9C0B48 New species, revision, and phylogeny of Ronzotherium Aymard, 1854 (Perissodactyla, Rhinocerotidae) Jérémy TISSIER 1,*, Pierre-Olivier ANTOINE 2 & Damien BECKER 3 1,3 Route de Fontenais 21, JURASSICA Museum, 2900 Porrentruy, Switzerland & Chemin du musée 4, Université de Fribourg, Department of Geosciences, 1700 Fribourg, Switzerland. 2 Place Eugène Bataillon, Institut des sciences de l’évolution de Montpellier-CNRS-IRD-RPHE, Université de Montpellier, 34095 Montpellier, France. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:7418361D-FAA0-4D7D-AE4A-80B5C9288B31 2 urn:lsid:zoobank.org:author:61FBD377-963B-4530-A4BC-0AB4CBCAD967 3 urn:lsid:zoobank.org:author:E1D8E6B2-6F92-4B0B-A772-4F5C561851DB Abstract. Ronzotherium is one of the earliest Rhinocerotidae in Europe, which fi rst appeared just after the Eocene/Oligocene transition (Grande Coupure), and became extinct at the end of the Oligocene. It is a large-sized rhinocerotid, with a special position in the phylogeny of this group, as being one of the earliest-branching true Rhinocerotidae. However, its intra-generic systematics has never been tested through computational phylogenetic methods and it is basically unknown. Its taxonomical history has gone through numerous complications, and thus we aim to provide here a complete revision of this genus, through phylogenetic methods.
    [Show full text]
  • Instr Uct Or's Guide Science
    Scientists Of The Past SCIENCE Lesson Objectives • Students will compare and contrast how the rules of society restricted the progress of science in the past. • Students will list several famous scientists from history. Activities Checklist In this lesson, the student will • Watch the instructional video about how the rules of society restricted the progress of science in the past and the scientists who, over time, were able to break away from these restrictions • Interact with My Book and learn about how the rules of society restricted the progress of science in the past • Complete the crossword puzzle, in the Science Activities Workbook, by determining the scientist who made each cited discovery • Complete all learning activities assessing understanding of the sequence of scientifi c events and discoveries Video Summary Students are given a modern-day scenario of reading something aloud in front of the classroom to better understand the stress scientists felt during the sixteenth and seventeenth centuries, when they were presenting new scientifi c theories to society. Scientists of the past were not always respected. Sometimes publicly voicing their scientifi c opinions could result in jail, exile, or even death. Religion determined what could or could not be accepted as explanations and discoveries. When a scientist would come up with a new explanation for why something occurred in nature, he or she would often have to argue the claim against the church -- and the church always won. After many, many years, the scientifi c community was able to break away from the church, resulting in numerous scientifi c endeavors. Some of the most famous scientists include Anton van Leeuwenhoek (improved the microscope), Carl Linnaeus (developed the classifi cation of life on Earth), Charles Darwin (developed the Theory of Evolution by Natural Selection), and Albert Einstein (worked within mathematics, GUIDE INSTRUCTOR’S physics, and astronomy).
    [Show full text]
  • Birdobserver17.4 Page183-188 an Honor Without Profit Richard K
    AN HONOR WITHOUT PROFIT by Richard K. Walton eponymy n The derivation of a name of a city, country, era, institution, or other place or thing from the name of a person. Gruson in his Words for Birds gives seven categories for the origins of common bird names: appearance (Black-capped Chickadee), eponymy (Henslow’s Sparrow), echoics (Whooping Crane), habitat (Marsh Wren), behavior (woodpecker), food (oystercatcher), and region (California Condor). The second category comprises people and places memorialized in bird names. Many of our most famous ornithologists as well as a fair number of obscure friends and relations have been so honored. A majority of these names were given during the eighteenth and nineteenth centuries, the pioneering era of North American ornithology. While some of these tributes are kept alive in our everyday birding language, others have slipped into oblivion. Recognition or obscurity may ultimately hinge on the names we use for birds. There is no more famous name in the birding culture than that of John James Audubon. His epic The Birds of America was responsible for putting American science, art, and even literature on the international map. This work was created, produced, promoted, and sold largely by Audubon himself. In the years since his death in 1851, the Audubon legend has been the inspiration for a multitude of ornithological pursuits and causes, both professional and amateur. Audubon painted some five hundred birds in Birds of America and described these in his five-volume Ornithological Biographies. Many of the names given by Audubon honored men and women of his era.
    [Show full text]
  • From the Late–Middle Eocene of Eastern Thrace
    G Model PALEVO-993; No. of Pages 15 ARTICLE IN PRESS C. R. Palevol xxx (2017) xxx–xxx Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) First occurrence of Palaeotheriidae (Perissodactyla) from the late–middle Eocene of eastern Thrace (Greece) Première occurrence de Palaeotheriidae (Perissodactyla) du Miocène moyen–tardif de Thrace orientale (Grèce) a,b,∗ a Grégoire Métais , Sevket Sen a CR2P, Paléobiodiversité et Paléoenvironnements, UMR 7207 (CNRS, MNHN, UPMC), Sorbonne Université, Muséum national d’histoire naturelle, 8, rue Buffon, 75005 Paris, France b Department of Ecology and Evolutionary Biology, University of Kansas, 66045 Lawrence, Kansas, USA a b s t r a c t a r t i c l e i n f o Article history: A detailed assessment of postcranial fossils collected at Balouk Keui (Thrace, Greece) in the Received 11 July 2016 mid-19th Century by the naturalist Auguste Viquesnel enabled us to identify the material Accepted after revision 10 January 2017 as pertaining to Palaeotherium sp., cf. P. magnum, which constitutes the easternmost occur- Available online xxx rence of the genus during the Eocene. We have constrained the geographic and stratigraphic provenance of the fossil by reassessing information about Viquesnel’s itinerary and observa- Handled by Lars vanden Hoek Ostende tions. Although the exact age of the fossil remains uncertain, the occurrence of a palaeothere in the Thrace Basin during the Eocene indicates a wider geographic distribution for the Keywords: genus, which had previously been restricted to western and central Europe. The palaeothere Palaeotherium of Balouk Keui confirms that the palaeogeographic range of this group included the Balkans Thrace during the middle–late Eocene.
    [Show full text]
  • Checklist of Mediterranean Free-Living Dinoflagellates Institutional Rate: € 938,-/Approx
    Botanica Marina Vol. 46,2003, pp. 215-242 © 2003 by Walter de Gruyter • Berlin ■ New York Subscriptions Botanica Marina is published bimonthly. Annual subscription rate (Volume 46,2003) Checklist of Mediterranean Free-living Dinoflagellates Institutional rate: € 938,-/approx. SFr1 50 1 in the US and Canada US $ 938,-. Individual rate: € 118,-/approx. SFr 189,-; in the US and Canada US $ 118,-. Personal rates apply only when copies are sent to F. Gómez a private address and payment is made by a personal check or credit card. Personal subscriptions must not be donated to a library. Single issues: € 178,-/approx. SFr 285,-. All prices exclude postage. Department of Aquatic Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan, [email protected] Orders Institutional subscription orders should be addressed to the publishers orto your usual subscription agent. Individual subscrip­ tion orders must be sent directly to one of the addresses indicated below. The Americas: An annotated checklist of the free-living dinoflagellates (Dinophyceae) of the Mediterranean Sea, based on Walter de Gruyter, Inc., 200 Saw Mill River Road, Hawthorne, N.Y. 10532, USA, Tel. 914-747-0110, Fax 914-747-1326, literature records, is given. The distribution of 673 species in 9 Mediterranean sub-basins is reported. The e-mail: [email protected]. number of taxa among the sub-basins was as follows: Ligurian (496 species), Balear-Provençal (360), Adri­ Australia and New Zealand: atic (322), Tyrrhenian (284), Ionian (283), Levantine (268), Aegean (182), Alborán (179) and Algerian Seas D. A. Information Services, 648 Whitehorse Road, P.O.
    [Show full text]
  • Julius Firmicus Maternus: De Errore Profanarum Religionum
    RICE UNIVERSITY JULIUS FIRMICUS MATERNUS: DE ERRORE PROFANARUM RELIGIONUM. INTRODUCTION, TRANSLATION AND COMMENTARY by Richard E. Oster, Jr. A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director's Signature: Houston, Texas May 1971 ABSTRACT JULIUS FIRMICUS MATERNUS: DE ERRORE PROFANARUM RELIGIONUM. INTRODUCTION, TRANSLATION AND COMMENTARY BY Richard E. Oster, Jr. B.A. Texas Technological College M.A. Rice University Julius Firmicus Maternus, author of De Errore Profanarum Religiomm. and Mathesis, is an important but oftentimes over¬ looked writer from the middle of the fourth century. He is known to us only from the two works which he left behind, the former being a Christian polemic against pagan religion and the latter, a work he wrote while still a pagan, being on the subject of astrology. It is his Christian work which is the topic of this thesis. The middle of the fourth century when Firmicus wrote his work, A.D. 346-350, was a time of religious change and struggle in the Roman Empire. Within Christianity there were still troubles over the issues which precipitated the Council of Nicea. Outside of the church, paganism, though on the defensive, was still strong. Legislation had been passed against the pagan cults but it was not being enforced. So, about A.D. 348, a Roman Senator, Julius Firmicus Maternus, wrote a letter Concerning the Error of Profane 1 2 Religions to the Emperors Constans and Constantius. The first section of this work, chapters 1-17, presents the various gods of antiquity. Firmicus ridicules these by de¬ picting the crimes and immorality of the gods, by showing that the pagan gods were nothing more than personified elements or processes of nature.
    [Show full text]
  • Case Fil Copy
    NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program.
    [Show full text]
  • (Evolution) Prior to Darwin's Origin of Species
    Theories of Species Change (Evolution) Prior to Darwin’s Origin of Species Theories of Species Change Prior to Darwin Entangled with: 1. Theories of geological change. 2. Theories of heredity. 3. And theories of ontogenesis, that is, of individual development– embryology. Notions of Species in the Classical Period of Greece Plato: the essence or form of an organism is eternal and unchanging; embodiment only the appearance of that form. Aristotle: the essence or form of an organism is incorporated in the physical body; the only kind of eternity enjoyed is through continued reproduction. Theories of Species Change in the Early Modern Period Descartes: gradual evolution of physical system according to fix laws (Discourse on Method, 1628). Buffon (1707-88) and Linnaeus (1707-78): God created a limited number of species, but through hybridization and impact of environment, new species appear. Kant: evolutionary development from earth possible only if earth already construed as purposive; species change possible but no evidence (Critique of Judgment, 1790). Transformation of one species into another through change of scaling, from D’Arcy Thompson, On Growth and Form (1942). Carus’s illustration of the Richard Owen’s illustration of the archetype archetype, from his On the Nature of Limbs (1849) Georges Cuvier (1769-1832). Portrait by François-André Vincent Adam’s Mammoth, found in Siberia in 18th century; St. Petersburg Natural History Museum Cuvier’s illustration of the Siberian mammoth; he identified it as an extinct species of elephant (1796). Cuvier’s illustration of the “Ohio Animal,” which he named “mastodon.” Megatherium (i.e., “large animal”), discovered in South America, described by Cuvier as an extinct creature similar to the modern sloth.
    [Show full text]
  • Magnetized Impact Craters
    Icarus xxx (2011) xxx–xxx Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Predicted and observed magnetic signatures of martian (de)magnetized impact craters ⇑ Benoit Langlais a, , Erwan Thébault b a CNRS UMR 6112, Université de Nantes, Laboratoire de Planétologie et Géodynamique, 2 Rue de la Houssinière, F-44000 Nantes, France b CNRS UMR 7154, Institut de Physique du Globe de Paris, Équipe de Géomagnétisme, 1 Rue Cuvier, F-75005 Paris, France article info abstract Article history: The current morphology of the martian lithospheric magnetic field results from magnetization and Received 3 May 2010 demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Revised 6 January 2011 Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is Accepted 6 January 2011 usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the mag- Available online xxxx netization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a care- ful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact Keywords: lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly Mars, Surface dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area cre- Mars, Interior Impact processes ated by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters Magnetic fields is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude.
    [Show full text]