17 Anatomic Principles of Thoracoscopic Spine Surgery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Anklyosed Spine: Fractures in DISH and Anklyosing Spondylitis
The Anklyosed Spine: Fractures in DISH and Anklyosing Spondylitis Lee F. Rogers, MD ACCR, Oct 26, 2012 Dallas, Texas Diffuse idiopathic skeletal hyperostosis (DISH) and ankylosing spondylitis (AS) are the most common diseases associated with spinal ankylosis. While they share the characteristic of ankylosis they are, in fact two separate diseases with distinct clinical, pathologic, and radiologic features. DISH: Diffuse idiopathic skeletal hyperostosis is a disease of older persons characterized by extensive ossification of the paraspinal ligaments anteriorly and laterally, bridging the intervening disc spaces. Bony bridging may be continuous or discontinuous. The anterior cortex of the vertebral body can be seen within the ossification. These findings are much more pronounced in the thoracic and lower cervical spine than in the lumbar area. Minor expressions of this disorder are commonly encountered in the mid-dorsal spine on lateral views of the chest. DISH characteristically spares the SI joints. The SI joints remain patent and clearly visible on radiographs or CT even in the presence of extensive disease in the thoracolumbar and cervical spine. DISH is also characterized by enthesopathy; ossification of ligaments or tendon insertions, forming so-called entheses. These appear as whiskering of the iliac crest, ischial tuberosites and greater trochanters. The radiographic appearance bears a superficial resemblance to that of AS. In DISH the spinal ossification is very irregular and unlike the thin, vertical syndesmophytes see in AS. The relative absence of changes in the lumbosacral spine, the patency of the SI joints, and absence of ankylosis of the facet and costovertebral joints should allow differentiation of DISH from AS. -
Paravertebral Block: Anatomy and Relevant Safety Issues Alberto E Ardon1, Justin Lee2, Carlo D
Paravertebral block: anatomy and relevant safety issues Alberto E Ardon1, Justin Lee2, Carlo D. Franco3, Kevin T. Riutort1, Roy A. Greengrass1 1Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, 2Department of Anesthesiology, Olympia Anesthesia Associates, Providence St. Peter Hospital, Olympia, WA, 3Department of Anesthesiology and Pain Management, John H. Review Article Stroger Jr. Hospital of Cook County, Chicago, IL, USA Korean J Anesthesiol 2020;73(5):394-400 Paravertebral block, especially thoracic paravertebral block, is an effective regional anes- https://doi.org/10.4097/kja.20065 thetic technique that can provide significant analgesia for numerous surgical procedures, pISSN 2005–6419 • eISSN 2005–7563 including breast surgery, pulmonary surgery, and herniorrhaphy. The technique, although straightforward, is not devoid of potential adverse effects. Proper anatomic knowledge and adequate technique may help decrease the risk of these effects. In this brief discourse, we discuss the anatomy and technical aspects of paravertebral blocks and emphasize the im- Received: February 10, 2020 portance of appropriate needle manipulation in order to minimize the risk of complica- Revised: March 5, 2020 tions. We propose that, when using a landmark-based approach, limiting medial and later- Accepted: March 15, 2020 al needle orientation and implementing caudal (rather than cephalad) needle redirection may provide an extra margin of safety when performing this technique. Likewise, recog- Corresponding author: nizing a target that is not in close proximity to the neurovascular bundle when using ultra- Alberto E Ardon, M.D., M.P.H. sound guidance may be beneficial. Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 4500 Keywords: Anatomy; Paravertebral; Postoperative pain; Regional anesthesia; Safety; Trun- San Pablo Rd, Jacksonville, FL 32224, USA cal nerve block. -
Ligaments of the Costovertebral Joints Including Biomechanics, Innervations, and Clinical Applications: a Comprehensive Review W
Open Access Review Article DOI: 10.7759/cureus.874 Ligaments of the Costovertebral Joints including Biomechanics, Innervations, and Clinical Applications: A Comprehensive Review with Application to Approaches to the Thoracic Spine Erfanul Saker 1 , Rachel A. Graham 2 , Renee Nicholas 3 , Anthony V. D’Antoni 2 , Marios Loukas 1 , Rod J. Oskouian 4 , R. Shane Tubbs 5 1. Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, West Indies 2. Department of Anatomy, The Sophie Davis School of Biomedical Education 3. Department of Physical Therapy, Samford University 4. Neurosurgery, Complex Spine, Swedish Neuroscience Institute 5. Neurosurgery, Seattle Science Foundation Corresponding author: Erfanul Saker, [email protected] Abstract Few studies have examined the costovertebral joint and its ligaments in detail. Therefore, the following review was performed to better elucidate their anatomy, function and involvement in pathology. Standard search engines were used to find studies concerning the costovertebral joints and ligaments. These often- overlooked ligaments of the body serve important functions in maintaining appropriate alignment between the ribs and spine. With an increasing interest in minimally invasive approaches to the thoracic spine and an improved understanding of the function and innervation of these ligaments, surgeons and clinicians should have a good working knowledge of these structures. Categories: Neurosurgery, Orthopedics, Rheumatology Keywords: costovertebral joint, spine, anatomy, thoracic Introduction And Background The costovertebral joint ligaments are relatively unknown and frequently overlooked anatomical structures [1]. Although small and short in size, they are abundant, comprising 108 costovertebral ligaments in the normal human thoracic spine, and they are essential to its stability and function [2-3]. -
Diaphragm and Intercostal Muscles
Diaphragm and intercostal muscles Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Skeletal System Adult Human contains 206 Bones 2 parts: Axial skeleton (axis): Skull, Vertebral column, Thoracic cage Appendicular skeleton: Bones of upper limb Bones of lower limb Dr. Heba Kalbouneh Structure of Typical Vertebra Body Vertebral foramen Pedicle Transverse process Spinous process Lamina Dr. Heba Kalbouneh Superior articular process Intervertebral disc Dr. Heba Inferior articular process Dr. Heba Facet joints are between the superior articular process of one vertebra and the inferior articular process of the vertebra directly above it Inferior articular process Superior articular process Dr. Heba Kalbouneh Atypical Vertebrae Atlas (1st cervical vertebra) Axis (2nd cervical vertebra) Dr. Heba Atlas (1st cervical vertebra) Communicates: sup: skull (atlanto-occipital joint) inf: axis (atlanto-axial joint) Atlas (1st cervical vertebra) Characteristics: 1. no body 2. no spinous process 3. ant. & post. arches 4. 2 lateral masses 5. 2 transverse foramina Typical cervical vertebra Specific to the cervical vertebra is the transverse foramen (foramen transversarium). is an opening on each of the transverse processes which gives passage to the vertebral artery Thoracic Cage - Sternum (G, sternon= chest bone) -12 pairs of ribs & costal cartilages -12 thoracic vertebrae Manubrium Body Sternum: Flat bone 3 parts: Xiphoid process Dr. Heba Kalbouneh Dr. Heba Kalbouneh The external intercostal muscle forms the most superficial layer. Its fibers are directed downward and forward from the inferior border of the rib above to the superior border of the rib below The muscle extends forward to the costal cartilage where it is replaced by an aponeurosis, the anterior (external) intercostal membrane Dr. -
Chapter 21 Fractures of the Upper Thoracic Spine: Approaches and Surgical Management
Chapter 21 Fractures of the Upper Thoracic Spine: Approaches and Surgical Management Sean D Christie, M.D., John Song, M.D., and Richard G Fessler, M.D., Ph.D. INTRODUCTION Fractures occurring in the thoracic region account for approximately 17 to 23% of all traumatic spinal fractures (1), with 22% of traumatic spinal fractures occurring between T1 and T4 (16). More than half of these fractures result in neurological injury, and almost three-quarters of those impaired suffer from complete paralysis. Obtaining surgical access to the anterior vertebral elements of the upper thoracic vertebrae (T1–T6) presents a unique anatomic challenge. The thoracic cage, which narrows significantly as it approaches the thoracic inlet, has an intimate association between the vertebral column and the superior mediastinal structures. The supraclavicular, transmanubrial, transthoracic, and lateral parascapular extrapleural approaches each provide access to the anterior vertebral elements of the upper thoracic vertebrae. However, each of these approaches has distinct advantages and disadvantages and their use should be tailored to each individual patient’s situation. This chapter reviews these surgical approaches. Traditional posterior approaches are illustrated in Figure 21.1, but will not be discussed in depth here. ANATOMIC CONSIDERATIONS AND STABILITY The upper thoracic spine possesses unique anatomic and biomechanical properties. The anterior aspects of the vertebral bodies are smaller than the posterior aspects, which contribute to the physiological kyphosis present in this region of the spine. Furthermore, this orientation results in a ventrally positioned axis of rotation, predisposing this region to compression injuries. The combination and interaction of the vertebral bodies, ribs, and sternum increase the inherent biomechanical stability of this segment of the spine to 2 to 3 times that of the thoracolumbar junction. -
How to Perform a Transrectal Ultrasound Examination of the Lumbosacral and Sacroiliac Joints
DIAGNOSTIC IMAGING How to Perform a Transrectal Ultrasound Examination of the Lumbosacral and Sacroiliac Joints Erik H.J. Bergman, DVM, Diplomate ECAR, Associate Member LA-ECVDI*; Sarah M. Puchalski, DVM, Diplomate ACVR; and Jean-Marie Denoix, DVM, PhD, Agre´ge´, Associate Member LA-ECVDI Authors’ addresses: Lingehoeve Veldstraat 3 Lienden 4033 AK, The Netherlands (Bergman); Uni- versity of California, Davis, One Shields Avenue, School of Veterinary Medicine, Davis, CA 95616 (Puchalski); E´ cole Nationale Ve´te´rinaire d’Alfort, 7 Avenue du Ge´ne´ral de Gaulle, 94700 Maisons- Alfort, France (Denoix); e-mail: [email protected]. *Corresponding and presenting author. © 2013 AAEP. 1. Introduction have allowed for identification of these structures 5 There is increasing interest in pathology of the and the inter-transverse joints. These authors urge lumbosacral and sacroiliac joints giving rise to stiff- caution in the interpretation of lesions identified on ness and/or lameness and decreased performance radiography in the absence of other diagnostic im- in equine sports medicine.1–3 Pain arising from aging and clinical examination. Nuclear scintigra- these regions can be problematic alone or in con- phy is an important component of work-up for junction with lameness arising from other sites sacroiliac region pain, but limitations exist. Sev- 9,10 (thoracolumbar spine, hind limbs, or forelimbs).4 eral reports exist detailing the anatomy and tech- Localization of pain to this region is critically impor- nique findings in normal horses11,12 and findings in tant through clinical assessment, diagnostic anes- lame horses.13 Patient motion, camera positioning, thesia, and imaging. and muscle asymmetry can cause errors in interpre- In general, diagnostic imaging of the axial skele- tation. -
The Effect of Training on Lumbar Spine Posture and Intervertebral Disc Degeneration in Active-Duty Marines
The Effect of Training on Lumbar Spine Posture and Intervertebral Disc Degeneration in Active-Duty Marines Ana E. Rodriguez-Soto, PhDc, David B. Berry, MScc, Rebecca Jaworski, PhDd,1, Andrew Jensen, MScd,g,2, Christine B. Chung, MDe,f, Brenda Niederberger, MAd,g, Aziza Qadirh, Karen R. Kelly, PT, PhDd,g , Samuel R. Ward, PT, PhDa,b,c aDepartments of Radiology, bOrthopaedic Surgery, and cBioengineering University of California, San Diego 9500 Gilman Drive (0610), La Jolla, CA 92093 dDepartment of Warfighter Performance, Naval Health Research Center 140 Sylvester Road, San Diego, CA 92106-3521 eDepartment of Radiology, Veteran Administration San Diego Healthcare System 3350 La Jolla Village Dr., San Diego, CA 92161 fDepartment of Radiology, University of California, San Diego Medical Center 408 Dickinson Street, San Diego, CA 92103-8226 gSchool of Exercise and Nutritional Sciences, San Diego State University ENS Building room 351, 5500 Campanile, San Diego, CA 92182-7251 hVital Imaging Center 5395 Ruffin Rd Suite 100, San Diego CA 92123 Ana Elvira Rodriguez-Soto, PhD E-mail: [email protected] David Barnes Berry, MS E-mail: [email protected] Rebecca Jaworski, PhD E-mail: [email protected] Present Address: 1Office of the Naval Inspector General 1254 9th St. SE, Washington Navy Yard, DC 90374-5006 Andrew Jensen, MS E-mail: [email protected] Present address: 2Department of Biological Sciences, University of Southern California PED 107 3560 Watt Way, Los Angeles, CA 90089-0652 Christine B. Chung, MD E-mail: [email protected] Brenda Niederberger, MA E-mail: [email protected] Aziza Qadir E-mail: [email protected] Karen R. -
Canine Thoracic Costovertebral and Costotransverse Joints Three Case Reports of Dysfunction and Manual Therapy Guidelines for A
Topics in Compan An Med 29 (2014) 1–5 Topical review Canine Thoracic Costovertebral and Costotransverse Joints: Three Case Reports of Dysfunction and Manual Therapy Guidelines for Assessment and Treatment of These Structures Laurie Edge-Hughes, BScPT, MAnimSt (Animal Physiotherapy), CAFCI, CCRTn Keywords: The costovertebral and costotransverse joints receive little attention in research. However, pain costovertebral associated with rib articulation dysfunction is reported to occur in human patients. The anatomic costotransverse structures of the canine rib joints and thoracic spine are similar to those of humans. As such, it is ribs physical therapy proposed that extrapolation from human physical therapy practice could be used for the assessment and rehabilitation treatment of the canine patient with presumed rib joint pain. This article presents 3 case studies that manual therapy demonstrate signs of rib dysfunction and successful treatment using primarily physical therapy manual techniques. General assessment and select treatment techniques are described. & 2014 Elsevier Inc. All rights reserved. The Canine Fitness Centre Ltd, Calgary, Alberta, Canada nAddress reprint requests to Laurie Edge-Hughes, BScPT, MAnimSt (Animal Physiotherapy), CAFCI, CCRT, The Canine Fitness Centre Ltd, 509—42nd Ave SE, Calgary, Alberta, Canada T2G 1Y7 E-mail: [email protected] The articular structures of the thorax comprise facet joints, the erect spine and further presented that in reviewing the literature, intervertebral disc, and costal joints. Little research has been they were unable to find mention of natural development of conducted on these joints in human or animal medicine. However, idiopathic scoliosis in quadrupeds; however, there are reports of clinical case presentations in human journals, manual therapy avian models and adolescent models in man. -
Posterior Longitudinal Ligament Status in Cervical Spine Bilateral Facet Dislocations
Thomas Jefferson University Jefferson Digital Commons Department of Orthopaedic Surgery Faculty Papers Department of Orthopaedic Surgery November 2005 Posterior longitudinal ligament status in cervical spine bilateral facet dislocations John A. Carrino Harvard Medical School & Brigham and Women's Hospital Geoffrey L. Manton Thomas Jefferson University Hospital William B. Morrison Thomas Jefferson University Hospital Alex R. Vaccaro Thomas Jefferson University Hospital and The Rothman Institute Mark E. Schweitzer New York University & Hospital for Joint Diseases Follow this and additional works at: https://jdc.jefferson.edu/orthofp Part of the Orthopedics Commons LetSee next us page know for additional how authors access to this document benefits ouy Recommended Citation Carrino, John A.; Manton, Geoffrey L.; Morrison, William B.; Vaccaro, Alex R.; Schweitzer, Mark E.; and Flanders, Adam E., "Posterior longitudinal ligament status in cervical spine bilateral facet dislocations" (2005). Department of Orthopaedic Surgery Faculty Papers. Paper 3. https://jdc.jefferson.edu/orthofp/3 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Orthopaedic Surgery Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. -
Sacroiliac Joint Dysfunction a Case Study
NOR200188.qxd 3/8/11 9:53 PM Page 126 Sacroiliac Joint Dysfunction A Case Study CPT William Murray Pain is a widespread issue in the United States. Nine of physical therapist. She was evaluated and her treatment 10 Americans regularly suffer from pain, and nearly every consisted of a transcutaneous electrical nerve stimula- person will experience low back pain at one point in their lives. tion unit while in the PT clinic, aqua therapy, and ice Undertreated or unrelieved pain costs more than and heat application. $60 billion a year from decreased productivity, lost income, After several weeks, Ms. T returned to the primary care and medical expenses. The ability to diagnose and provide ap- provider and informed her that the pain has not decreased and “feels like that it is getting worse.” She also informed propriate medical treatment is imperative. This case study ex- the provider that she was having difficulty sleeping and amines a 23-year-old Active Duty woman who is preparing to constantly feeling tired secondary to pain. Throughout the be involuntarily released from military duty for an easily cor- next several months, the primary care provider tried nu- rectable medical condition. She has complained of chronic low merous medication trials with no relief for the patient. Ms. back pain that radiates into her hip and down her leg since ex- T gives a history of being prescribed numerous medica- periencing a work-related injury. She has been seen by numer- tions within several drug classifications. She stated vari- ous providers for the previous 11 months before being referred ous side effects that are related to the medications and to the chronic pain clinic. -
1 the Thoracic Wall I
AAA_C01 12/13/05 10:29 Page 8 1 The thoracic wall I Thoracic outlet (inlet) First rib Clavicle Suprasternal notch Manubrium 5 Third rib 1 2 Body of sternum Intercostal 4 space Xiphisternum Scalenus anterior Brachial Cervical Costal cartilage plexus rib Costal margin 3 Subclavian 1 Costochondral joint Floating ribs artery 2 Sternocostal joint Fig.1.3 3 Interchondral joint Bilateral cervical ribs. 4 Xiphisternal joint 5 Manubriosternal joint On the right side the brachial plexus (angle of Louis) is shown arching over the rib and stretching its lowest trunk Fig.1.1 The thoracic cage. The outlet (inlet) of the thorax is outlined Transverse process with facet for rib tubercle Demifacet for head of rib Head Neck Costovertebral T5 joint T6 Facet for Tubercle vertebral body Costotransverse joint Sternocostal joint Shaft 6th Angle rib Costochondral Subcostal groove joint Fig.1.2 Fig.1.4 A typical rib Joints of the thoracic cage 8 The thorax The thoracic wall I AAA_C01 12/13/05 10:29 Page 9 The thoracic cage Costal cartilages The thoracic cage is formed by the sternum and costal cartilages These are bars of hyaline cartilage which connect the upper in front, the vertebral column behind and the ribs and intercostal seven ribs directly to the sternum and the 8th, 9th and 10th ribs spaces laterally. to the cartilage immediately above. It is separated from the abdominal cavity by the diaphragm and communicates superiorly with the root of the neck through Joints of the thoracic cage (Figs 1.1 and 1.4) the thoracic inlet (Fig. -
Diagnosis and Treatment Sacroiliac Joint Pain | Blue Cross NC
Corporate Medical Policy Diagnosis and Treatment of Sacroiliac Joint Pain File Name: diagnosis_and_treatment_of_sacroiliac_joint_pain Origination: 8/2010 Last CAP Review: 4/2021 Next CAP Review: 4/2022 Last Review: 4/2021 Description of Procedure or Service Sacroiliac joint (SIJ) arthrography using fluoroscopic guidance with injection of an anesthetic has been explored as a diagnostic test for sacroiliac joint pain. Duplication of the patient’s pain pattern with the injection of contrast medium suggests a sacroiliac etiology, as does relief of chronic back pain with injection of local anesthetic. Treatment of sacroiliac joint pain with corticosteroids, radiofrequency ablation (RFA), stabilization, or minimally invasive sacroiliac joint fusion has also been explored. Similar to other structures in the spine, it is assumed that the sacroiliac joint may be a source of low back pain. In fact, prior to 1928, the sacroiliac joint was thought to be the most common cause of sciatica. In 1928, the role of the intervertebral disc was elucidated, and from that point forward the sacroiliac joint received less research attention. Research into sacroiliac joint pain has been plagued by lack of a criterion standard to measure its prevalence and against which various clinical examinations can be validated. For example, sacroiliac joint pain is typically without any consistent, demonstrable radiographic or laboratory features and most commonly exists in the setting of morphologically normal joints. Clinical tests for sacroiliac joint pain may include various movement tests, palpation to detect tenderness, and pain descriptions by the patient. Further confounding the study of the sacroiliac joint is that multiple structures, such as posterior facet joints and lumbar discs, may refer pain to the area surrounding the sacroiliac joint.