WO 2012/167920 Al 13 December 2012 (13.12.2012) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2012/167920 Al 13 December 2012 (13.12.2012) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/167920 Al 13 December 2012 (13.12.2012) P O P C T (51) International Patent Classification: (74) Agents: BORJES-PESTALOZZA, Henrich et al; PAT A01N 43/14 (2006.01) C07H 15/04 (2006.01) ENT- UND RECHTSANWALTE, MAUCHER BORJES A01N 63/02 (2006.01) C12P 19/44 (2006.01) JENKINS, Urachstrasse 23, 79102 Freiburg i. Br. (DE). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP2012/002399 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) Date: International Filing CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 6 June 2012 (06.06.2012) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (25) Filing Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 11004776.8 10 June 201 1 (10.06.201 1) EP SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): IN- TERMED DISCOVERY GMBH [DE/DE]; Ot- (84) Designated States (unless otherwise indicated, for every to-Hahn-Strasse 15, 44227 Dortmund (DE). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (72) Inventors; and UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (75) Inventors/Applicants (for US only): STADLER, Marc TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [DE/DE]; Hauptstrasse 120, 67150 Niederkirchen (DE). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV, BITZER, Jens [DE/DE]; Wildrosenstrasse 30, 44225 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, Dortmund (DE). KOPCKE, Barbel [DE/DE]; Baroper TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Schulstrasse 1A, 44225 Dortmund (DE). REINHARDT, ML, MR, NE, SN, TD, TG). Kathrin [DE/DE]; Am Beisenufer 12, D-44225 Dortmund (DE). MOLDENHAUER, Jana [DE/DE]; Feldbank 72, Published: 44265 Dortmund (DE). — with international search report (Art. 21(3)) [Continued on next page] (54) Title: LONG CHAIN GLYCOLIPIDS USEFUL TO AVOID PERISHING OR MICROBIAL CONTAMINATION OF MA TERIALS (57) Abstract: The invention relates to the use of, OH and methods of use employing, certain glycolipid compounds as defined in detail below and having Η — H3c r i sr - - , preservative or antimicrobial properties, novel com OH pounds of the glycolipid class, and related invention OH embodiments. The compounds have the formula (I) wherein m is (3) to (5), n is (2) to (5), o is (0) or (1) and p is (3) to (17), with the proviso that the sum m + n + o + p is not less than (14); and R is a carbo hydrate moiety bound via one of its carbon atoms to the binding oxygen, and/or a physiologically, espe cially pharmaceutically or nutraceutically or cosmet ically, acceptable salt thereof, or an ester thereof, as such or in the form of a composition, where the com pound may be present in open chain form and/or in the form of a lactone. o Fig. 1 o w o 2012/167920 Al III III II II III III I I III llll l I II III II I II before the expiration of the time limit for amending the — with (an) indication^) in relation to deposited biological claims and to be republished in the event of receipt of material furnished under Rule 13bis separately from the amendments (Rule 48.2(h)) description (Rules 13bis.4(d)(i) and 48.2(a)(viii)) with sequence listing part of description (Rule 5.2(a)) Long chain glycolipids useful to avoid perishing or microbial contamination of materials Summary of the invention The invention relates to the use of, and methods of use employing, certain glycolipid compounds as defined in detail below and having preservative or antimicrobial properties, novel compounds of the glycolipid class, and related invention embodiments. These and related invention embodiments are described below and in the claims which are incorporated into the specification by reference. Background of the invention Bacteria and other microbial organisms cause food and beverage products, cosmetic and home care products as well as other products to go bad, thereby reducing the shelf life or useful life of such products or goods. Thus, numerous efforts have been made to reduce the deleterious effects of microbial contaminants in food and beverage products, cosmetics, dressing material and other materials, e.g. medical devices such as implants. Other food preservatives such as salt, sugar and vinegar have been used for generations and while relatively safe to use, their preservative effect is limited in both duration of effect and the types of food and beverages for which they can be used. In addition, at higher levels, preservatives such as salt and vinegar can affect the taste of the product. Commonly used preservatives for cosmetics include antimicrobial agents such as quaternary ammonium compounds, alcohols, chlorinated phenols, parabens and paraben salts, imidazolidinyl urea, phenoxyethanol, p-hydroxybenzoate, small carboxylic acids like benzoic acid, sorbic acid, salicylic acid, formic acid, proponic acid or corresponding salts. Formaldehyde-releasers and isothiazolinones may also be used. However, these materials often may not be tolerated or, e.g. in the case of formaldehyde, may even be toxic and even carcinogenic, or they may cause allergies or food intolerance. Another preservative e.g. used in food and especially beverages is sulfuric acid, while in meat products, e.g. sausages, preserved meat and meat, stabilizers which decrease water activity such as potassium and/or sodium nitrites and nitrates are often added. Also smoke is often used for preserving meat products, with the undesirable side effect of formation of polycyclic aromatic hydrocarbons which have carcinogenic properties. Food and beverages have varying degrees of sensitivity to microbiological spoilage depending on intrinsic factors of the food or beverage such as pH, nutrient content (e.g., juice, vitamin, or micronutrient content), carbonation level, Brix (an indicator of sugar content), water quality (e.g., alkalinity and/or hardness), and preservatives. Spoilage events occur when microorganisms are able to overcome the product's intrinsic protection factors and grow. The microorganisms' ability to overcome these hurdles can be influenced by, among other things, initial contamination level, temperature, water content, e.g. water activity, and package integrity. Of special importance are also recurrent contaminations of cosmetics, e.g. by hand contact during normal use. A number of organisms are responsible for spoiling a variety of beverages materials, including cold-filled beverages. Yeasts such as Saccharomyces, Zygosaccharomyces, Candida, and Dekkera spp. are most common. Also, acidophilic bacteria such as Lactobacillus, Leuconostoc, Gluconobacter, and Zymomonas spp., and molds like Penicillium, Aspergillus and Mucor spp. can spoil various water containing materials. Other materials and also other types of beverages are susceptible to spoilage by microorganisms. Spores of acidophilic, thermophilic bacteria, such as Alicyclobacillus spp., and heat resistant mold spores of Byssochlamys, its anamorphic (asexual) stages Paecilomyces, and Neosartorya spp. can survive pasteurization and may spoil non- carbonated, hot-filled products such as sport drinks and teas. Also, packaged waters are susceptible to contamination by molds. In cosmetic, personal care and home care products spoilage occurs by a variety of micro organisms, ranging from Gram-positive bacteria (e.g. Staphylococcus spp.), Gram-negative bacteria (e.g. Escherichia coli, Pseudomonas spp.) to yeasts (e.g. Candida albicans) and common molds (e.g. Aspergillus niger). Microbial growth in or on these products depends on several instrinsic factors such as water activity of the formulation (minimum water activity requirements for growth or proliferation range from 0.99 for Acinetobacter species down to 0.61 for some fungal species), formulation composition, pH value (e.g., optimum pH for the growth of most yeasts and molds is between 4.0 and 6.0), and processing conditions such as temperature. While high temperatures, e.g. 80 °C for 20 minutes, may reduce microbial contaminations during processing, it is important to prevent inactivation or degradation of the preservatives in the formulation. Furthermore, product packaging, solubility of the preservative and its antimicrobial susceptibility profile will influence preserving efficacy and, consequently, the shelf life of the products. Protection against microbiological spoilage of sensitive products can be achieved using chemical preservatives and/or processing techniques such as hot filling, tunnel pasteuriza¬ tion, ultra-high temperature (UHT), or pasteurization followed by aseptic packaging, and/or pasteurization followed by chilling the beverage. Generally, beverages with a pH < 4.6 can be chemically preserved, heat processed, and filled into packages such that the product is not re-contaminated. For example, process techniques such as cold-filling, followed by chemical preservatives or pasteurization with cold filling, may be used to preserve a cold- filled beverage. In a similar manner, this same beverage may be processed using non- preserved techniques such as hot filling, tunnel pasteurization, pasteurization followed by aseptic filling, or requiring the beverage to be chilled, i.e., under refrigeration following the pasteurization step. Beverages having a pH 2 - 4.6 must be processed such that spores are destroyed using ultra-high temperatures followed by aseptic filling into packages or by using a retort.
Recommended publications
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Survey and Risk Assessment of Chemical Substances in Deodorants
    Survey and risk assessment of chemical substances in deodorants Suresh C. Rastogi & Gitte Hellerup Jensen National Environmental Research Institute Jeanne Duus Johansen National Allergy Research Centre Survey of Chemical Substances in Consumer Products, No. 86 2007 The Danish Environmental Protection Agency will, when opportunity offers, publish reports and contributions relating to environmental research and development projects financed via the Danish EPA. Please note that publication does not signify that the contents of the reports necessarily reflect the views of the Danish EPA. The reports are, however, published because the Danish EPA finds that the studies represent a valuable contribution to the debate on environmental policy in Denmark. Contents SAMMENFATNING 5 SUMMARY 7 1 INTRODUCTION 11 2 MARKET SURVEY AND PRODUCT SAMPLING 13 2.1 MARKET SURVEY 13 2.2 LEGISLATION 15 2.3 SAMPLING OF PRODUCTS AND CONTROL OF LABELLING 15 2.4 SELECTION OF PRODUCTS FOR ANALYSIS 18 3 ANALYSIS 19 3.1 MATERIALS 19 3.2 ANALYSIS 19 3.2.1 Sample preparation 19 3.2.2 Analysis of fragrance substances 19 3.2.3 Analysis of triclosan 20 4 RESULTS 21 5 RISK ASSESSMENT 27 5.1 DEODORANTS AND CONTACT ALLERGY 27 5.2 RISK ASSESSMENT – IN GENERAL 27 5.3 THE SELECTED FRAGRANCE SUBSTANCES 28 5.3.1 HYDOXYISOHEXYL 3-CYCLOHEXENE CARBOXALDEHYDE (HICC) 28 5.3.2 HYDROXYCITRONELLAL 32 5.3.3 ISOEUGENOL 33 5.3.4 CINNAMAL/CINNAMYL ALCOHOL 34 5.4 FARNESOL 35 5.5 COMMENTS CONCERNING OTHER FRAGRANCE SUBSTANCES 35 5.6 ALLERGEN LOAD OF FRAGRANCE SUBSTANCES 36 5.7 TRICLOSAN 36 6 DISCUSSION 38 7 REFERENCES 43 ANNEX 1 49 3 4 Sammenfatning Deodoranter anvendes dagligt af store dele af befolkningen og kan indeholde ingredienser, som visse duftstoffer og konserveringsmidler, der er hyppige år- sager til hudallergi.
    [Show full text]
  • Identification and Phylogeny of Ascomycetous Yeasts from Analysis
    Antonie van Leeuwenhoek 73: 331–371, 1998. 331 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences Cletus P. Kurtzman∗ & Christie J. Robnett Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Ser- vice, U.S. Department of Agriculture, Peoria, Illinois 61604, USA (∗ author for correspondence) E-mail: [email protected] Received 19 June 1998; accepted 19 June 1998 Key words: Ascomycetous yeasts, phylogeny, ribosomal DNA, systematics Abstract Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported. Introduction lesser ranges of nDNA relatedness than those found among heterothallic species. Disadvantages of nDNA reassociation studies in- Procedures commonly used for yeast identification clude the need for pairwise comparisons of all isolates rely on the appearance of cellular morphology and dis- under study and that resolution is limited to the ge- tinctive reactions on a standardized set of fermentation netic distance of sister species, i.e., closely related and assimilation tests.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann Et Al
    US 2014O127257A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann et al. (43) Pub. Date: May 8, 2014 (54) DERMATOLOGICALLY EFFECTIVE YEAST Publication Classification EXTRACT (51) Int. Cl. (75) Inventors: Yvonne Schiemann, Essen (DE); Mike A61E36/064 (2006.01) Farwick, Essen (DE); Thomas Haas, CI2P I/02 (2006.01) Muenster (DE); Mirja Wessel, Bochum A61E36/06 (2006.01) (DE) (52) U.S. Cl. CPC ............... A61K 36/064 (2013.01); A61K 36/06 (73) Assignee: EVONIK DEGUSSA GMBH, Essen (2013.01); CI2P I/02 (2013.01) (DE) USPC ...................................... 424/195.16; 435/171 (21) Appl. No.: 14/128,244 (22) PCT Fled: Jun. 14, 2012 (57) ABSTRACT (86) PCT NO.: PCT/EP2012/061263 The invention relates to a method for producing a dermato S371 (c)(1), logically active yeast extract, comprising the following steps: (2), (4) Date: Dec. 20, 2013 providing a preculture of the yeast cells, culturing the cells for (30) Foreign Application Priority Data at least fifteen minutes at a pH of 1.8-4, harvesting the cells and lysing the cells, and a yeast extract produced thereby and Jun. 29, 2011 (EP) .................................. 11171953.0 products comprising said yeast extract. Patent Application Publication May 8, 2014 Sheet 1 of 3 US 2014/O127257 A1 -0-Yarrowia------------ lipolytica -- Pichia CBS 1991 - A - Saccharomyces Cerevisiae Fig. 1 US 2014/O127257 A1 May 8, 2014 DERMATOLOGICALLY EFFECTIVE YEAST skin. Against the background of consumers’ uncertainty with EXTRACT respect to genetic engineering techniques, there is a particular demand for corresponding agents that can be regarded, 0001.
    [Show full text]
  • Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones by Ming-Hsiu Yang Su
    Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones By Ming-Hsiu Yang Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chairperson Ryan A. Altman Michael D. Clift Apurba Dutta Michael F. Rafferty Jon A. Tunge Date Defended: April 26, 2017 The Dissertation Committee for Ming-Hsiu Yang certifies that this is the approved version of the following dissertation: Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones Chairperson Ryan A. Altman Date Approved: April 26, 2017 ii Abstract Ming-Hsiu Yang Department of Medicinal Chemistry, April 2017 The University of Kansas Fluorine plays an important role in drug design, because of some unique features imparted by fluorine. The incorporation of fluorine into small molecules can modulate molecular physicochemical properties, metabolic stability, lipophilicity, and binding affinity to the target proteins. However, few fluorinated molecules are biosynthesized by enzymes. This means incorporating fluorine into the molecules relies on synthetic methods. Thus, efficient synthetic strategies to access the molecules bearing a variety of privileged fluorinated moieties are important for drug discovery. Fluoroalkenes are an isopolar and isosteric mimic of an amide bond with distinct biophysical properties, including decreased H-bond donating and accepting abilities, increased lipophilicity, and metabolic stability. Moreover, fluoroalkenes can also serve as probes for conducting conformational analyses of amides. These potential applications require the development of efficient methods to access fluoroalkenes. In chapter 2, a Shapiro fluorination strategy to access peptidomimetic fluoroalkenes is demonstrated.
    [Show full text]
  • Breast Cysts and Aluminium-Based Antiperspirant Salts
    Breast cysts and aluminium-based antiperspirant salts Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open access Darbre, P. (2019) Breast cysts and aluminium-based antiperspirant salts. Clinical Dermatology: Research and Therapy, 2 (1). 128. Available at http://centaur.reading.ac.uk/88553/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Publisher: Scientific Literature All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Clinical Dermatology: Research And Therapy Special Issue Article “Breast Cyst” Research Article Breast cysts and aluminium-based antiperspirant salts Philippa D Darbre* School of Biological Sciences, University of Reading, UK ARTICLE INFO ABSTRACT On the basis that aluminium-based antiperspirant salts are designed to block apocrine Received Date: July 17, 2019 Accepted Date: September 23, 2019 sweat ducts of the axilla, and that breast cysts result from blocked breast ducts in the Published Date: September 30, 2019 adjacent region of the body, it has been proposed that breast cysts may arise from KEYWORDS antiperspirant use if sufficient aluminium is absorbed into breast tissues over long-term usage. This review collates evidence that aluminium can be absorbed from dermal Aluminium application of antiperspirant salts and describes studies measuring levels of aluminium Breast cancer Breast cysts in breast tissues, including in breast cyst fluids.
    [Show full text]
  • Review of the Regulation of Products at the Interface Between Cosmetics and Therapeutic Goods
    PO Box 100, Woden ACT 2606, Australia Review of the regulation of products at the interface between cosmetics and therapeutic goods 18 March 2005 Review of the regulation of products at the interface between cosmetics and therapeutic goods March 2005 Prepared for the TGA by David B Newgreen Review of the regulation of products at the interface between cosmetics and therapeutic goods CONTENTS ABBREVIATIONS ..........................................................................................................ii ACKNOWLEDGMENTS .............................................................................................. iii TERMS OF REFERENCE ..............................................................................................iv SUMMARY.....................................................................................................................vi RECOMMENDATIONS..................................................................................................x 1. INTRODUCTION ......................................................................................................13 2. OVERVIEW OF THE REGULATION OF MEDICINES AND COSMETICS IN AUSTRALIA AND NEW ZEALAND ....................................................................23 2.1 AUSTRALIA......................................................................................................23 2.2 NEW ZEALAND ...............................................................................................33 3. OVERVIEW OF THE REGULATION OF MEDICINES AND COSMETICS IN
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Candida Species
    Introduction Introduction ulvovaginal candidiasis (VVC) is a disease caused by V the abnormal growth of yeast-like fungi on the mucosa of the female genital tract (Souza et al., 2009). Although Candida species occur as normal vaginal flora, opportunistic conditions such as diabetes, pregnancy and other immune depressants in the host enable them to proliferate and cause infection (Pam et al., 2012). There are approximately 200 Candida species, among which are Candida albicans, glabrata, tropicalis, stellatoidea, parapsilosis, catemilata, ciferri, guilliermondii, haemulonii, kefyr and krusei. Candida albicans is the most common species (Pam et al., 2012). The most frequent cause of VVC is Candida albicans. Non-Candida albicans species of Candida, predominantly Candida glabrata, are responsible for the remainder of cases (Ge et al., 2010). It is estimated that 75% of women experience at least one episode of vulvovaginal candidiasis throughout their life and 40-50% of them have at least one recurrence (González et al., 2011). Most patients with symptomatic VVC may be readily diagnosed on the basis of microscopic examination of vaginal 1 Introduction secretions. Culture is a more sensitive method of diagnosis than vaginal smears, especially in a suspected patient with a negative result for microscopy (Khosravi et al., 2011). Antifungal agents that are used for treatment of VVC include imidazole antifungals (e.g., butoconazole, clotrimazole, and miconazole), triazole antifungals (eg, fluconazole, terconazole), and polyene antifungals (e.g., nystatin) (Abdelmonem et al., 2012). The azoles, particularly fluconazole, remain among the most common antifungal drugs used for prophylaxis and treatment (Pietrella et al., 2011). It is recommended in various guidelines as the first drug of choice because it is less toxic and can be taken as a single oral dose (Pam et al., 2012).
    [Show full text]
  • Opinion of the Scientific Committee on Consumer Safety on O
    SCCS/1613/19 Final Opinion Version S Scientific Committee on Consumer Safety SCCS OPINION ON the safety of aluminium in cosmetic products Submission II The SCCS adopted this document at its plenary meeting on 03-04 March 2020 SCCS/1613/19 Final Opinion Opinion on the safety of aluminium in cosmetic products – submission II ___________________________________________________________________________________________ ACKNOWLEDGMENTS Members of the Working Group are acknowledged for their valuable contribution to this Opinion. The members of the Working Group are: For the preliminary and the final versions SCCS members Dr U. Bernauer Dr L. Bodin (Rapporteur) Prof. Q. Chaudhry (SCCS Chair) Prof. P.J. Coenraads (SCCS Vice-Chair and Chairperson of the WG) Prof. M. Dusinska Dr J. Ezendam Dr E. Gaffet Prof. C. L. Galli Dr B. Granum Prof. E. Panteri Prof. V. Rogiers (SCCS Vice-Chair) Dr Ch. Rousselle Dr M. Stepnik Prof. T. Vanhaecke Dr S. Wijnhoven SCCS external experts Dr A. Koutsodimou Dr A. Simonnard Prof. W. Uter All Declarations of Working Group members are available on the following webpage: http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm This Opinion has been subject to a commenting period of a minimum eight weeks after its initial publication (from 16 December 2019 until 17 February 2020). Comments received during this time period are considered by the SCCS. For this Opinion, some changes occurred, in particular in sections 1, 3.2, 3.3.4.5, 3.3.8.1, 3.5, as well as in related discussion parts and conclusion (question 1). The list of references has also been updated.
    [Show full text]
  • Inhibition of MRN Activity by a Telomere Protein Motif
    ARTICLE https://doi.org/10.1038/s41467-021-24047-2 OPEN Inhibition of MRN activity by a telomere protein motif Freddy Khayat1,6, Elda Cannavo2,6, Majedh Alshmery1, William R. Foster1, Charly Chahwan 1,4, Martino Maddalena1,5, Christopher Smith 1, Antony W. Oliver 1, Adam T. Watson1, Antony M. Carr 1, ✉ Petr Cejka2,3 & Alessandro Bianchi 1 The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) 1234567890():,; initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N- terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end- resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles’ heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well. 1 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK. 2 Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universitàdella Svizzera italiana (USI), Bellinzona, Switzerland. 3 Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
    [Show full text]
  • Vr Meds Ex01 3B 0825S Coding Manual Supplement Page 1
    vr_meds_ex01_3b_0825s Coding Manual Supplement MEDNAME OTHER_CODE ATC_CODE SYSTEM THER_GP PHRM_GP CHEM_GP SODIUM FLUORIDE A12CD01 A01AA01 A A01 A01A A01AA SODIUM MONOFLUOROPHOSPHATE A12CD02 A01AA02 A A01 A01A A01AA HYDROGEN PEROXIDE D08AX01 A01AB02 A A01 A01A A01AB HYDROGEN PEROXIDE S02AA06 A01AB02 A A01 A01A A01AB CHLORHEXIDINE B05CA02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D08AC02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D09AA12 A01AB03 A A01 A01A A01AB CHLORHEXIDINE R02AA05 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S01AX09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S02AA09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S03AA04 A01AB03 A A01 A01A A01AB AMPHOTERICIN B A07AA07 A01AB04 A A01 A01A A01AB AMPHOTERICIN B G01AA03 A01AB04 A A01 A01A A01AB AMPHOTERICIN B J02AA01 A01AB04 A A01 A01A A01AB POLYNOXYLIN D01AE05 A01AB05 A A01 A01A A01AB OXYQUINOLINE D08AH03 A01AB07 A A01 A01A A01AB OXYQUINOLINE G01AC30 A01AB07 A A01 A01A A01AB OXYQUINOLINE R02AA14 A01AB07 A A01 A01A A01AB NEOMYCIN A07AA01 A01AB08 A A01 A01A A01AB NEOMYCIN B05CA09 A01AB08 A A01 A01A A01AB NEOMYCIN D06AX04 A01AB08 A A01 A01A A01AB NEOMYCIN J01GB05 A01AB08 A A01 A01A A01AB NEOMYCIN R02AB01 A01AB08 A A01 A01A A01AB NEOMYCIN S01AA03 A01AB08 A A01 A01A A01AB NEOMYCIN S02AA07 A01AB08 A A01 A01A A01AB NEOMYCIN S03AA01 A01AB08 A A01 A01A A01AB MICONAZOLE A07AC01 A01AB09 A A01 A01A A01AB MICONAZOLE D01AC02 A01AB09 A A01 A01A A01AB MICONAZOLE G01AF04 A01AB09 A A01 A01A A01AB MICONAZOLE J02AB01 A01AB09 A A01 A01A A01AB MICONAZOLE S02AA13 A01AB09 A A01 A01A A01AB NATAMYCIN A07AA03 A01AB10 A A01
    [Show full text]