Eurycea Cirrigera)

Total Page:16

File Type:pdf, Size:1020Kb

Eurycea Cirrigera) Genetic Distinctiveness of a Peripheral Illinois Population of the Southern Two-lined Salamander (Eurycea cirrigera) Thesis submitted to the Department of Biological Sciences Chicago State University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences By Maria Boyle Eric L. Peters, Thesis Advisor Timothy J. Bell, Committee member Mark A. Erhart, Committee member April 14, 2005 Approval Sheet We have examined this thesis manuscript and we verify that it meets the program and university requirements for the degree of Master of Science in Biological Sciences Eric L. Peters, Ph.D. (Thesis Advisor) (Date) Timothy J. Bell, Ph.D. (Date) Mark A. Erhart, Ph.D. (Date) Mark A. Erhart, Ph.D. (Graduate Committee Chair, Biological Sciences) (Date) Floyd W. Banks, Ph.D. (Department Chairperson, Biological Sciences) (Date) Anitra Ward, Ph.D. (Acting Dean of The Graduate School) (Date) Table of Contents Acknowledgements.....................................................................................................................1 Abstract ......................................................................................................................................2 Introduction ................................................................................................................................3 Molecular evaluation of population differentiation ................................................................4 The two-lined salamander species complex ...........................................................................5 Geographic isolation of the southern two-lined salamander in eastern Illinois........................7 Materials and Methods................................................................................................................9 Sampling...............................................................................................................................9 DNA primers ......................................................................................................................10 DNA Sample processing .....................................................................................................11 Statistical Analyses .............................................................................................................11 Results ......................................................................................................................................13 Identification and evaluation of primers ..............................................................................13 Differentiation among populations ......................................................................................14 Allelic variability among the KRSP population(s) ...............................................................15 Discussion ................................................................................................................................17 Appendix A ..............................................................................................................................22 Literature Cited.........................................................................................................................23 1 Acknowledgements I must extend my sincerest thanks and appreciation to the members of my thesis committee: my advisor, Dr. Eric Peters for his encouragement, field work assistance, expertise and the crea- tion of an alliance between me and several of his colleagues (Mr. Tony Mills, Dr. Olga Tsyusko, Dr. Steve Harper) at the University of Georgia’s Savannah River Ecology Laboratory who as- sisted me in sample retrieval, statistical analyses and imaging, Dr. Tim Bell, whose office door was always open to me in Dr. Peters’ absence for questions of all sorts and for accompanying me to my initial visit to Indiana, Dr. Mark Erhart who extended the use of the resources in his lab to facilitate the completion of this project. I am so appreciative of Dr. Joyce Ache Gana’s assistance with this project. She unconditionally gave of her time and lab resources so that I could move forward with the data collection for this project. I was fortunate to have been provided with all the primers used in this project from Dr. Paul Cabe’s lab at Washington and Lee University. His generous donation allowed me to screen all the primers available from his lab’s work on P. cin- ereus. I would also like to acknowledge the Illinois Department of Natural Resources for grant- ing a Special Use Permit for the collections in Will County, IL and the Indiana Department of Natural Resources for granting a Scientific Collectors License (No. 2988) for the collections in Warren County and Lake County, IN. My sincerest appreciation to Dave Mauger (Will County Forest Preserve District) for assisting me in locating some of the collection sites at KRSP and for providing me with background literature from his personal research on E. cirrigera and related species and Michelle Boyle, Angela Boyle, and Tim Thompson for their field work assistance. And finally once again to Dr. Peters, in what may have been a moment of altered consciousness, but nonetheless… referred to me as a colleague. I thank you. 2 Abstract The southern two-lined salamander (Eurycea cirrigera) is a predominantly southeastern North American species whose peripheral range extends into eastern Illinois. An isolated popula- tion inhabits tributaries of the Kankakee River within and near the Kankakee River State Park (KRSP) in Will County, Illinois: the northwestern-most extent of its known range. Using seven microsatellite loci developed for the red-backed salamander (Plethodon cinereus), the genetic variability of the KRSP population was compared with nearby populations in Warren County, Indiana (WC) and a distant population in Aiken County, South Carolina (AC). Pair-wise com- parisons indicated significant differences at all loci between the KRSP and AC samples and sig- nificant differences in six out of seven loci between KRSP and WC population samples. There was a significant correlation (r2 = 0.96) between the mean genetic and geographical distance over all population locations. Differentiation within the KRSP samples demonstrated significant variability at three of the seven loci, with pair-wise comparisons of Fst (correlation measurement of genetic difference between pairs of populations) showing significant genetic differences in eight out of ten population matches, including two of three site comparisons on the north and south sides of the Kankakee River, suggesting that the river forms an isolating boundary between these locations. 3 Introduction Gene flow between members of small subpopulations can homogenize allele frequencies and influence the effects of selection and drift by thwarting the fixation of alleles that may promote genetic differentiation (Balloux 2002). In natural populations, however, population structuring may segregate individuals into small sub-structured, internally-reproducing units (demes) that may promote allelic variation as a consequence of restricted gene flow (Kirkpatrick 2002). As has been shown for simulated populations (Church and Taylor 2002), speciation events may be enhanced in the absence of migration among demes. In natural populations, however, it can be difficult to know where subpopulation boundaries occur. Populations that are reduced in size along with habitat dimensions may be subject to inbreeding effects. Inbreeding can alter geno- typic frequencies (not allele frequencies) by increasing the occurrence of homozygotes within a population. The effective population size (the number of individuals in a population who con- tribute offspring to the next generation) is an important factor in determining the extent to which individuals are able to overcome the effects of inbreeding. Gene flow supports the integrity of populations by homogenizing alleles and opposing the in- fluences of differentiation induced by adaptation and genetic drift (Morjan 2004). In an isolated population, the absence of gene flow can have pronounced influences on genetic diversity. The differentiation among alleles subject to the effects of selection will be dependent on a trait’s heri- tability and its ability to express under environmental influence (Garcia-Ramos 1997). Small populations can be particularly susceptible to the detrimental effects of drift, which can fix al- leles that may reduce fitness. If random changes in allele frequencies do not lead to adaptive traits in a population, fitness may be further compromised (Freeman 2004). 4 Populations that develop independently while adapting to their isolated habitats can eventu- ally become subject to speciation events. Reproductive isolation secondary to habitat fragmenta- tion may initiate speciation (Garcia-Ramos1997, Slatkin 1987). Although most populations display genetic differentiation among their members (variations in the gene pool which do not result in divergence), geographically-isolated populations typically demonstrate greater genetic differentiation than is found among populations in close (but barrier-free) proximity (Balloux 2002). Where such reproductively-isolating barriers are present, divergences can develop rapidly in peripheral populations. Under such conditions, evolution of pre- and post-zygotic barriers can inhibit successful reproduction among subpopulations and lead to speciation. Although there is an appreciation of the genetic factors that can result
Recommended publications
  • Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
    Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered.
    [Show full text]
  • 50 CFR Ch. I (10–1–20 Edition) § 16.14
    § 15.41 50 CFR Ch. I (10–1–20 Edition) Species Common name Serinus canaria ............................................................. Common Canary. 1 Note: Permits are still required for this species under part 17 of this chapter. (b) Non-captive-bred species. The list 16.14 Importation of live or dead amphib- in this paragraph includes species of ians or their eggs. non-captive-bred exotic birds and coun- 16.15 Importation of live reptiles or their tries for which importation into the eggs. United States is not prohibited by sec- Subpart C—Permits tion 15.11. The species are grouped tax- onomically by order, and may only be 16.22 Injurious wildlife permits. imported from the approved country, except as provided under a permit Subpart D—Additional Exemptions issued pursuant to subpart C of this 16.32 Importation by Federal agencies. part. 16.33 Importation of natural-history speci- [59 FR 62262, Dec. 2, 1994, as amended at 61 mens. FR 2093, Jan. 24, 1996; 82 FR 16540, Apr. 5, AUTHORITY: 18 U.S.C. 42. 2017] SOURCE: 39 FR 1169, Jan. 4, 1974, unless oth- erwise noted. Subpart E—Qualifying Facilities Breeding Exotic Birds in Captivity Subpart A—Introduction § 15.41 Criteria for including facilities as qualifying for imports. [Re- § 16.1 Purpose of regulations. served] The regulations contained in this part implement the Lacey Act (18 § 15.42 List of foreign qualifying breed- U.S.C. 42). ing facilities. [Reserved] § 16.2 Scope of regulations. Subpart F—List of Prohibited Spe- The provisions of this part are in ad- cies Not Listed in the Appen- dition to, and are not in lieu of, other dices to the Convention regulations of this subchapter B which may require a permit or prescribe addi- § 15.51 Criteria for including species tional restrictions or conditions for the and countries in the prohibited list.
    [Show full text]
  • Volume 2, Chapter 14-8: Salamander Mossy Habitats
    Glime, J. M. and Boelema, W. J. 2017. Salamander Mossy Habitats. Chapt. 14-8. In: Glime, J. M. Bryophyte Ecology. Volume 2. 14-8-1 Bryological Interaction.Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 14-8 SALAMANDER MOSSY HABITATS Janice M. Glime and William J. Boelema TABLE OF CONTENTS Tropical Mossy Habitats – Plethodontidae........................................................................................................ 14-8-3 Terrestrial and Arboreal Adaptations ......................................................................................................... 14-8-3 Bolitoglossa (Tropical Climbing Salamanders) ......................................................................................... 14-8-4 Bolitoglossa diaphora ................................................................................................................................ 14-8-5 Bolitoglossa diminuta (Quebrada Valverde Salamander) .......................................................................... 14-8-5 Bolitoglossa hartwegi (Hartweg's Mushroomtongue Salamander) ............................................................ 14-8-5 Bolitoglossa helmrichi ............................................................................................................................... 14-8-5 Bolitoglossa jugivagans ............................................................................................................................
    [Show full text]
  • Crotalus Tancitarensis. the Tancítaro Cross-Banded Mountain Rattlesnake
    Crotalus tancitarensis. The Tancítaro cross-banded mountain rattlesnake is a small species (maximum recorded total length = 434 mm) known only from the upper elevations (3,220–3,225 m) of Cerro Tancítaro, the highest mountain in Michoacán, Mexico, where it inhabits pine-fir forest (Alvarado and Campbell 2004; Alvarado et al. 2007). Cerro Tancítaro lies in the western portion of the Transverse Volcanic Axis, which extends across Mexico from Jalisco to central Veracruz near the 20°N latitude. Its entire range is located within Parque Nacional Pico de Tancítaro (Campbell 2007), an area under threat from manmade fires, logging, avocado culture, and cattle raising. This attractive rattlesnake was described in 2004 by the senior author and Jonathan A. Campbell, and placed in the Crotalus intermedius group of Mexican montane rattlesnakes by Bryson et al. (2011). We calculated its EVS as 19, which is near the upper end of the high vulnerability category (see text for explanation), its IUCN status has been reported as Data Deficient (Campbell 2007), and this species is not listed by SEMARNAT. More information on the natural history and distribution of this species is available, however, which affects its conservation status (especially its IUCN status; Alvarado-Díaz et al. 2007). We consider C. tancitarensis one of the pre-eminent flagship reptile species for the state of Michoacán, and for Mexico in general. Photo by Javier Alvarado-Díaz. Amphib. Reptile Conserv. | http://amphibian-reptile-conservation.org 128 September 2013 | Volume 7 | Number 1 | e71 Copyright: © 2013 Alvarado-Díaz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for Amphibian & Reptile Conservation 7(1): 128–170.
    [Show full text]
  • July to December 2019 (Pdf)
    2019 Journal Publications July Adelizzi, R. Portmann, J. van Meter, R. (2019). Effect of Individual and Combined Treatments of Pesticide, Fertilizer, and Salt on Growth and Corticosterone Levels of Larval Southern Leopard Frogs (Lithobates sphenocephala). Archives of Environmental Contamination and Toxicology, 77(1), pp.29-39. https://www.ncbi.nlm.nih.gov/pubmed/31020372 Albecker, M. A. McCoy, M. W. (2019). Local adaptation for enhanced salt tolerance reduces non‐ adaptive plasticity caused by osmotic stress. Evolution, Early View. https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.13798 Alvarez, M. D. V. Fernandez, C. Cove, M. V. (2019). Assessing the role of habitat and species interactions in the population decline and detection bias of Neotropical leaf litter frogs in and around La Selva Biological Station, Costa Rica. Neotropical Biology and Conservation 14(2), pp.143– 156, e37526. https://neotropical.pensoft.net/article/37526/list/11/ Amat, F. Rivera, X. Romano, A. Sotgiu, G. (2019). Sexual dimorphism in the endemic Sardinian cave salamander (Atylodes genei). Folia Zoologica, 68(2), p.61-65. https://bioone.org/journals/Folia-Zoologica/volume-68/issue-2/fozo.047.2019/Sexual-dimorphism- in-the-endemic-Sardinian-cave-salamander-Atylodes-genei/10.25225/fozo.047.2019.short Amézquita, A, Suárez, G. Palacios-Rodríguez, P. Beltrán, I. Rodríguez, C. Barrientos, L. S. Daza, J. M. Mazariegos, L. (2019). A new species of Pristimantis (Anura: Craugastoridae) from the cloud forests of Colombian western Andes. Zootaxa, 4648(3). https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4648.3.8 Arrivillaga, C. Oakley, J. Ebiner, S. (2019). Predation of Scinax ruber (Anura: Hylidae) tadpoles by a fishing spider of the genus Thaumisia (Araneae: Pisauridae) in south-east Peru.
    [Show full text]
  • Pseudoeurycea Robertsi[I]
    Natural history of the critically endangered salamander Pseudoeurycea robertsi. Armando Sunny Corresp., Equal first author, 1 , Carmen Caballero-Viñas 2 , Luis Duarte-deJesus 1 , Fabiola Ramírez-Corona 3 , Javier Manjarrez 4 , Giovanny González-Desales 1 , Xareni P. Pacheco 1 , Octavio Monroy-Vilchis 1 , Andrea González- Fernández Corresp. Equal first author, 4 1 Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Toluca, Estado de México, México 2 Laboratorio de Sistemas Biosustentables, Universidad Autónoma del Estado de México, Toluca, Estado de México, México 3 Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, México 4 Laboratorio de Biología Evolutiva, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, México Corresponding Authors: Armando Sunny, Andrea González-Fernández Email address: [email protected], [email protected] Mexico is one of the most diverse countries that is losing a large amount of forest due to land use change, these data put Mexico in fourth place for global deforestation rate, therefore, Mexico occupies the first place in number of endangered species in the world with 665 endangered species. It is important to study amphibians because they are among the most threatened vertebrates on Earth and their populations are rapidly declining worldwide due primarily to the loss and degradation of their natural habitats. Pseudoeurycea robertsi is a micro-endemic and critically endangered Plethodontid salamander from the Nevado de Toluca Volcano and to date almost nothing is known about its natural history therefore, we survey fourteen sites of the Nevado de Toluca Volcano a mountain that is part of the Trans-Mexican Volcanic Belt, Mexico.
    [Show full text]
  • Sex, Food, and Dimorphism: Insights Into the Trophic Ecology of Euproctus Platycephalus
    Herpetological Conservation and Biology 12(3):683–687. Submitted: 17 August 2016; Accepted 10 November 2017; Published: 16 December 2017. SEX, FOOD, AND DIMORPHISM: INSIGHTS INTO THE TROPHIC ECOLOGY OF EUPROCTUS PLATYCEPHALUS GIUSEPPE SOTGIU1, CLAUDIO ANGELINI1,4, GIULIA ZANCOLLI2,3, CRISTINA GIACOMA2, AND STEFANO BOVERO1 1Zirichiltaggi - Sardinia Wildlife Conservation, strada vicinale Filigheddu 62/c, 07100, Sassari, Sardinia 2Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, via Accademia albertina 13, 10123, Torino, Italy 3School of Biological Sciences, Bangor University, LL57 2HX Bangor, UK 4Corresponding author, email: [email protected] Abstract.—Euproctus platycephalus is among the few urodeles with forced insemination, a behavior usually invoked to explain another peculiarity of this species: males are larger than females, and they have larger heads and longer hind limbs. We examined the diet in a population of E. platycephalus to evaluate if head size dimorphism is associated with trophic divergence between sexes. We analyzed the contents of the stomach of newts from one population in central Sardinia, taking into account their sex, age, and biometric features. Our data indicated that the newts were generalist benthic foragers, and that diets of males and females were similar. Head size dimorphism likely is influenced only by sexual selection. Key Words.—diet; Sardinia; Sardinian Brook Newt; selection INTRODUCTION hind limbs than females (Bovero et al. 2003; Angelini et al. 2015). Moreover, E. platycephalus and its sister Sexual dimorphism, the differences in appearance species, E. montanus, are among the few urodeles with between females and males of the same species, is forced insemination (Wells 2007).
    [Show full text]
  • DEPARTMENT of the INTERIOR Fish and Wildlife
    This document is scheduled to be published in the Federal Register on 01/13/2016 and available online at http://federalregister.gov/a/2016-00452, and on FDsys.gov DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 16 RIN 1018–BA77 [Docket No. FWS–HQ–FAC–2015–0005] [FXFR13360900000–156–FF09F14000] Injurious Wildlife Species; Listing Salamanders Due to Risk of Salamander Chytrid Fungus AGENCY: Fish and Wildlife Service, Interior. ACTION: Interim rule; request for comments; notice of availability of economic analysis. 1 SUMMARY: The U.S. Fish and Wildlife Service is amending its regulations under the Lacey Act to add all species of salamanders from 20 genera, of which there are 201 species, to the list of injurious amphibians. With this interim rule, both importation into the United States and interstate transportation between States, the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States of any live or dead specimen, including parts, of these 20 genera of salamanders are prohibited, except by permit for zoological, educational, medical, or scientific purposes (in accordance with permit conditions) or by Federal agencies without a permit solely for their own use. This action is necessary to protect the interests of wildlife and wildlife resources from the introduction, establishment, and spread of the chytrid fungus Batrachochytrium salamandrivorans into ecosystems of the United States. The fungus affects salamanders, with lethal effects on many species, and is not yet known to be found in the United States. Because of the devastating effect that we expect the fungus will have on native U.S.
    [Show full text]
  • EAZA Best Practice Guidelines for Sardinian Brook Salamander
    EAZA Amphibian Taxon Advisory Group Best Practice Guidelines for the Sardinian brook salamander Euproctus platycephalus Version 1 Benjamin Tapley, Christopher Michaels, Daniele Macale, Leonardo Vignoli, Luke Harding, Zoe Bryant, Iri Gill and Sheila Funnel EAZA Amphibian TAG Chair: Gerardo Garcia, Chester Zoo, United Kingdom, CH2 [email protected] EAZA Amphibian TAG Vice-chairs: Warren Spencer, Artis Zoo, Amsterdam, The Netherlands and Olivier Marquis, Parc Zoologique de Paris, Paris, France. Published: 2015 1 EAZA Best Practice Guidelines disclaimer Copyright (2015) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. EAZA and the EAZA Amphibian TAG make a diligent effort to provide a complete and accurate representation of the data in its reports, publications, and services. However, EAZA does not guarantee the accuracy, adequacy, or completeness of any information. EAZA disclaims all liability for errors or omissions that may exist and shall not be liable for any incidental, consequential, or other damages (whether resulting from negligence or otherwise) including, without limitation, exemplary damages or lost profits arising out of or in connection with the use of this publication. Because the technical information provided in the EAZA Best Practice Guidelines can easily be misread or misinterpreted unless properly analysed, EAZA strongly recommends that users of this information consult with the editors in all matters related to data analysis and interpretation.
    [Show full text]
  • B838: the Amphibians and Reptiles of Maine Malcolm L
    The University of Maine DigitalCommons@UMaine Bulletins Maine Agricultural and Forest Experiment Station 7-1992 B838: The Amphibians and Reptiles of Maine Malcolm L. Hunter Jr. John Albright Jane Arbuckle Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_bulletin Recommended Citation Hunter Jr., M.L., J. Albright, and J. Arbuckle, eds. 1992. The Amphibians and Reptiles of Maine. Maine Agricultural Experiment Station Bulletin 838. This Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Tbe ~ ,Amphibians I and Reptiles of Maine The Amphibians and Reptiles of Maine edited by Malcolm L. Hunter, Jr. John Albright Jane Arbuckle Illustrated by Mark McCollough THE MAINE AMPHIBIAN AND REPTILE ATLAS PROJECT In collaboration with the Endangered and Nongame Wildlife Fund Maine Department of Inland Fisheries and Wildlife Maine Audubon Society Maine Natural Heritage Program Department of Economic and Community Development The Nature Conservancy, Maine Chapter Wildlife Department University of Maine Bulletin 838 July 1992 MAINE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF MAINE ORONO ME 04469 Available from: Maine Department of Inland Fisheries and Wildlife State House Station 41 Augusta Maine 04333 Proceeds from the sale of this book will be used for reptile and amphibian conservation work in Maine. Suggested citation: Hunter, M.L., J. Albright, and J. Arbuckle (editors). 1992. The amphibians and reptiles of Maine. Maine Agricultural Experiment Station Bulletin 838. 188pp. Copyright is claimed on the illustrations in the present work.
    [Show full text]
  • ARIES Research Summary
    ARIES Research Summary Edmund C. Jong, Gregory D. Boardman, and Michael E. Karmis Appalachian Research Initiative for Environmental Science, Virginia Center for Coal and Energy Research, Virginia Tech January 3, 2019 Introduction In the mid-2000s, concerns were raised about the impact of Appalachian coal mining and especially mountaintop mining. These concerns were prompted by various research studies that alleged a direct link between coal mining and various negatively trending aspects of community health. Some studies related coal mining to higher rates of cancer and infant mortality. Other investigations claimed that coal mining perpetuated poverty and harms community character. These alarming reports prompted a significant public outcry that resulted in litigation and regulatory attention toward the coal industry. In response, a number of meetings and strategic sessions were held in 2009 and 2010 to address these concerns. Major Appalachian coal producers, coal associations, and essential coal infrastructure companies participated in these conferences. After rigorous debate, the participants decided to form an indepen- dent research program designed to address community concerns through objec- tive, focused research. This program was designated the Appalachian Research Initiative for Environmental Science (ARIES). ARIES would be a research con- sortium designed to elicit the participation of major research universities across the U.S. The primary objective of this research collaboration would be to in- vestigate the impacts of coal mining and energy production on Appalachian communities. To support this goal, ARIES adopted a research paradigm that delivered objective, robust, and transparent results though the support of in- dustry. This paradigm was composed of four core principles: 1.
    [Show full text]
  • Federal Register/Vol. 81, No. 8/Wednesday, January 13, 2016
    1534 Federal Register / Vol. 81, No. 8 / Wednesday, January 13, 2016 / Rules and Regulations If . Then include . ******* (j) the estimated value of the acquisition exceeds $10 million ................ 52.222–24 Pre-award On-site Equal Opportunity Compliance Evalua- tion. (k) the contracting officer requires cost or pricing data for work or serv- 52.215–10 Price Reduction for Defective Certified Cost or Pricing Data. ices exceeding the threshold identified in FAR 15.403–4. 52.215–12 Subcontractor Certified Cost or Pricing Data. ******* [FR Doc. 2016–00475 Filed 1–12–16; 8:45 am] DATES: This interim rule is effective as the offspring or eggs of any of the BILLING CODE 6820–161–P of January 28, 2016. Interested persons foregoing that are injurious to human are invited to submit written comments beings, to the interests of agriculture, on this interim rule on or before March horticulture, or forestry, or to the DEPARTMENT OF THE INTERIOR 14, 2016 wildlife or wildlife resources of the ADDRESSES: You may submit comments United States. Fish and Wildlife Service by any of the following methods: We have determined that salamanders • Federal eRulemaking Portal: http:// that can carry the fungus 50 CFR Part 16 www.regulations.gov. Search for Docket Batrachochytrium salamandrivorans (Bsal) are injurious to wildlife and RIN 1018–BA77 No. FWS–HQ–FAC–2015–0005 and follow the instructions for submitting wildlife resources of the United States. [Docket No. FWS–HQ–FAC–2015–0005; comments. This determination was based on a FXFR13360900000–156–FF09F14000] • Mail, Hand Delivery, or Courier: review of the literature and an Public Comments Processing, Attn: evaluation under the criteria for Injurious Wildlife Species; Listing FWS–HQ–FAC–2015–0005; Division of injuriousness by the Service.
    [Show full text]