Appendix D Soil Series Descriptions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paxton Soil Series Is Named for the Town of Paxton in Worcester County Massachusetts Where It Was First Described
Paxton Massachusetts State Soil Soil Science Society of America Introduction Many states have a designated state bird, flower, fish, tree, rock, etc. And, many states also have a state soil – one that has significance or is important to the state. The Paxton is the offi- cial state soil of Massachusetts. Let’s explore how the Paxton is important to Massachusetts. History The Paxton soil series is named for the town of Paxton in Worcester County Massachusetts where it was first described. The series was established in 1922, described in the Soil Survey of Worcester County in 1927, and then in 1991 it was designated as the official state soil of Massachusetts. Created by the movement of glaciers thousands of years ago, Paxton soils can be found throughout New England and are exemplified by scenic rolling hills dotted with dairy farms. It is considered one of the most productive soils for agricul- ture in New England. What is Paxton Soil? Paxton soil is made of well drained loamy soils formed on wind deposited material that sits on top of rock deposited by glaciers. Classified as a coarse-loamy soil, Paxton soils possess soil particles that are at the larger end of the textural spectrum. Being composed of material scraped from the surface of the landscape over which glaciers traveled, its mineral composi- tion is varied. The rocks contributing to Paxton soils include schist, gneiss, and granite. The clays in its composition have good cation-exchange ca- pacity, although the pH of these soils is low. A cation is a positively charged ion (such as an atom or molecule) which influences the soil’s ability to hold onto essential nutrients and provides a buf- fer against soil acidification. -
The Soil Survey
The Soil Survey The soil survey delineates the basal soil pattern of an area and characterises each kind of soil so that the response to changes can be assessed and used as a basis for prediction. Although in an economic climate it is necessarily made for some practical purpose, it is not subordinated to the parti cular need of the moment, but is conducted in a scientific way that provides basal information of general application and eliminates the necessity for a resurvey whenever a new problem arises. It supplies information that can be combined, analysed, or amplified for many practical purposes, but the purpose should not be allowed to modify the method of survey in any fundamental way. According to the degree of detail required, soil surveys in New Zealand are classed as general, . district, or detailed. General surveys produce sufficient detail for a final map on the scale of 4 miles to an inch (1 :253440); they show the main sets of soils and their general relation to land forms; they are an aid to investigations and planning on the regional or national scale. District surveys, for maps, on the scale of 2 miles to an inch (1: 126720), show soil types or, where the pattern is detailed, combinations of types; they are designed to show the soil pattern in sufficient detail to allow the study of local soil problems and to provide a basis for assembling and distributing information in many fields such as agriculture, forestry, and engineering. Detailed surveys, mostiy for maps on the scale of 40 chains to an inch (1 :31680), delineate soil types and land-use phases, and show the soil pattern in relation to farm boundaries and subdivisional fences. -
A Guide to Potential Soil Carbon Sequestration Land-Use Management for Mitigation of Greenhouse Gas Emissions
A Guide to Potential Soil Carbon Sequestration Land-Use Management for Mitigation of Greenhouse Gas Emissions By H.W. Markewich and G.R. Buell Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) “map” carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon. Ongoing efforts of the USGS to achieve these objectives are: • compilation and synthesis of site-specific data needed to estimate carbon storage and inventory in soils, reservoir sediments, wetlands, and lakes of the conterminous United States; • characterization of present-day carbon storage by Black Mountain Range, western North Carolina—an area landscape feature and environment; and of high carbon soils—looking north from summit of Mount Mitchell, highest peak in eastern United States. -
Drummer Illinois State Soil
Drummer Illinois State Soil Soil Science Society of America Introduction Many states have designated state symbols such as bird, flower, fish, tree, rock, and more. Many states also have a state soil – one that has significance or is important to the state. As there are many types of birds, flowers, and trees, there are hundreds of soil types in our state but Drummer is the official state soil of Illinois. How important is the Drummer soil to Illinois? History Drummer was first established as a type of soil in Ford County in 1929. It was named after Drummer Creek in Drummer Township. 1n 1987, Drummer was selected as the state soil by the Illinois Soil Classifiers Association over other soils such as Cisne, Flanagan, Hoyleton, Ipava, Sable, and Saybrook. Since then, Drummer has been repeatedly chosen by other as- sociations who work with soil. In 1992, the Illinois Association of Vocational Agriculture Teachers sponsored a state soil election in their classrooms and Drummer won by a margin of 2 to 1. In 1993, the statewide 4H Youth Conference also selected Drummer out of 6 nomi- nees. Also in 1993 at the FFA state convention, Drummer and Ipava were tied in the contest. Finally, in 2001, after many attempts, it was finally passed by the Illinois Legislature and signed into law by Governor George Ryan. What is Drummer Soil? It is the most common among the dark colored soils or “black dirt” of Illinois. The dark color is due to the high amount of organic matter inherited from the decomposition of the prairie vegetation that is growing on the soil. -
Characterization of Soils A,\?) Saprolites from the Piedmont Region for M7aste Disposal Purposes
CHARACTERIZATION OF SOILS A,\?) SAPROLITES FROM THE PIEDMONT REGION FOR M7ASTE DISPOSAL PURPOSES Aziz Amoozegar, Philip J. Schoeneberger , and Michael J. Vepraskas Soil Science Department Agricultural Research Service College of Agriculture and Life Sciences North Carolina State University Raleigh, North Carolina 27695-7619 The activities on which this report is based were financed in part by the United States Department of the Interior, U. S. Geological Survey, through the Water Resources Research Institute of the University of North Carolina. Contents of this publication do not necessarily reflect the views and policies of the United States Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement by the United States Government. Also, the use of trade names does not imply endorsement by the North Carolina Agricultural Research Service of the products named nor criticism of similar ones not mentioned. Agreement No. 14-08-0001-G1580 UWProject Number 70091 USGS Project No. 02(FY88) ACKNOWLEDGMENT Special recognition should be given to Ms. Barbara Pitman, former Agricultural Research Technician, Soil Science Department, who devoted long hours conducting the laboratory solute flow experiments and assisted with other field and laboratory investigations in this project. Thanks to Mr. Stewart J. Starr, College of Agriculture and Life Sciences, for providing land on Unit 1 Research Farm and for his patience with our research program. Appreciation is extended to Mr. Kevin Martin, president of Soil and Environmental Consultants, for his assistance in locating research sites, and to Mr. J. B. Hunt (Oak City Realty) and Mr. S. Dorsett (Dorsett and Associates) for allowing our research team to collect soil samples and conduct research on properties located in Franklin and Orange Counties, respectively. -
Soil-Water, Chemical and Physical Characteristics of Eight Soil Series in Maine
SOIL-WATER, CHEMICAL AND PHYSICAL CHARACTERISTICS OF EIGHT SOIL SERIES IN MAINE R. V. Rourke and C. Beek SPECIFIC INFORMATION FOR HIGHWAY ENGINEERING URBAN DEVELOPMENT PLANNING WATERSHED MANAGEMENT AGRICULTURAL SOIL AND WATER MANAGEMENT TECHNICAL BULLETIN 2 9 FEBRUARY 1968 MAINE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF MAINE ORONO ACKNOWLEDGEMENTS This research was supported in part by funds provided by the United States Department of Interior as authorized under the Water Resources Research Act of 1964, Public Law 88-379. The authors are most appreciative for the aid given them by Walter Steputis, Bryce McEwen, Kenneth LaFlamme, R. B. Willey, John Arno, Glendon Jordan, soil scientists of the Soil Conser vation service in the selecting of sites and writing the profile descriptions. We recognize the support of the Water Resources Center, University of Maine and of Dr. Warren Viessman, Jr. for their aid and encouragement during these investigations. They also acknowledge the efforts of Mrs. Donna Sailor and Mrs. Catherine Bradbury in typing the manuscript. TABLE OF CONTENTS SUMMARY II INTRODUCTION 1 FIELD PROCEDURE 2 LABORATORY PROCEDURE 2 RESULTS 5 Adams Soil Series 5 Berkshire Soil Series 6 Buxton Soil Series 7 Colbath Soil Series 8 Creasey Soil Series 9 Hartland Soil Series 10 Peru Soil Series 11 Winooski Soil Series 12 LITERATURE CITED 14 APPENDIX TABLES Percolation Rates 15 Adams Soil Series 16 Berkshire Soil Series 26 Buxton Soil Series 36 Colbath Soil Series 46 Creasey Soil Series 56 Hartland Soil Series 66 Peru Soil Series 76 Winooski Soil Series 86 I SUMMARY Eight soil series were sampled, each at five locations, The soil was sampled and analyzed on a horizon basis. -
DE LA SCIENCE DES SOLS Anglais - Frangais Franiais - Anglais
GLOSSAIRE DE LA SCIENCE DES SOLS Anglais - Frangais Franiais - Anglais Compild par CARL E. FERGUSON Ph. D. Conseiller en Pddologie de I'A.I.D. Publidt par REGIONAL TECHNICAL AIDS CENTER American Embassy - Paris-France qui relive du DEPARTMENT OF STATE Agency for International Development Washington D.C. -- m . ILo INTRODUCTION TM.7,JE DES MATIERES L'auteur a pr~par6 le present glossaire durant une p6riode de deux ans, au cours de laquelle il a servi en qualit de conseiller p~dologue de i'Agency for International Development (AID) L Rabat, Maroc. INTRODUCTION .............................. 3 L'auteurLe glossaire, bien qu'assez iiche, n'est pas exhaustif. s'est efforc6 de choisir le ou les termes GLOSSAIRE ANGLAIS-FRANAIS ................ 5 6quivalents les plus couramment empl.cy~s et acceptes GLOSSAIRE FRANAIS-ANCLAIS ................ 81 par ies p~dologues et les sp~cialistes de la science du sol. Certains termes 61mentaires y ont 6t6 incorpor6s LISTE DE 200 VERBES ANGLAIS FRAQUEMMENT A l'iniention des 6tudiants peu vers6s dans l'une des EMPLOYtS EN P&DOLOGIE ...................... 157 deux Jangues. LISTE DE 200 Vf.PBES FRAN9AIS FROQUEMMENT L'auteur tient A remercier les personnalit6s ci-apr~s EMPLOYfS EN P DOLOGM ....................... 165 des suggestions et observations formuler au cours de qu'elles ont bien voulu BIBLIOGRAPHIE ]a preparation du glossaire : .............................. 173 M. Georges Bryssine, Chef de Ia Station d'eclogie, Service des recherches agronomiques, Ministare de 'Agriculture; M. J. Wilber , p~dologue et M. Claude Michel, agronome du mame service ; et M. Paul Avril, Conseiller p~dologue de la FAO au Maroc. L'auteur exprime 6galement sa gratitude au Service de traduction de !a Mission de I'AID ARabat, qui a bien voulu reviser le manuscrit et formiler des suggestions utiles concer nant la disposition du xat~riel. -
Soils of Iowa: an Examination of Three Pedological Assumptions Jenny Richter Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Soils of Iowa: An examination of three pedological assumptions Jenny Richter Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Soil Science Commons Recommended Citation Richter, Jenny, "Soils of Iowa: An examination of three pedological assumptions" (2016). Graduate Theses and Dissertations. 16003. https://lib.dr.iastate.edu/etd/16003 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Soils of Iowa: An examination of three pedological assumptions by Jenny L. Richter A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Soil Science (Soil Morphology and Genesis); Environmental Science Program of Study Committee: C. Lee Burras, Major Professor Tom Loynachan Tom Sauer Janette Thompson Richard Cruse Iowa State University Ames, Iowa 2016 Copyright © Jenny L. Richter, 2016. All rights reserved. ii TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................... v LIST OF FIGURES ................................................................................................ -
Section C – Soil Information
SECTION C │ Soil Information SECTION C - SOIL INFORMATION 1) Preface Soil information and its proper application can contribute to the solution of many waste disposal problems in Georgia. It can effectively be combined with geology, engineering and ecology to yield an integrated approach to environmental improvement. This Manual concentrates primarily on evaluating the suitability of soils for disposal of liquid waste from individual homes through septic tanks and subsurface soil absorption systems. It is hoped that the following information will help to point out how to avoid the mistakes frequently made in choosing suitable development sites where the soil is to be used for treatment and disposal of liquid waste. Such mistakes can result in increased land use conflict, environmental degradation and a waste of time and money. Although these sections of the Manual were developed to provide information to all people interested in solving relevant waste disposal problems where soil characteristics are contributing factors, the majority of the material will probably be most useful to environmental health specialists and other environmental health workers, surveyors, engineers, developers and other persons and groups frequently confronted with making significant land use decisions. 2) Introduction A. Soil and Environmental Health - Soil is a term that means different things to different people. To some it is a material in which plants grow in a yard or a field. To some, the color of the soil is important and they speak of red soil, yellow soil or blue clay. To others, the soil texture is important and they speak of sandy soil, clay soil, light soil or heavy soil. -
Use of Agricultural Soil Maps in Making Soil Surveys
108 USE OF AGRICULTURAL SOIL MAPS IN MAKING SOIL SURVEYS L. D HICKS, Chief Soils Engineer North Oil 'lina State Highway and Pubi Works Commission SYNOPSIS Soil surveys are made to obtain information relative to the type, extent of occurrence, and characteristics of the soils in a given area. The use of the pedological system of classification permits easy identification of the soils as to type, and knowledge of the characteristics of various soil types and previous experience with them can be utilized in planning and design. A large portion of many states has been surveyed by the Department of Agri• culture and maps are available showing the location of the various soil types. These maps may be used as guides in making soil surveys, and in many instances they contain all of the information desired. When agricultural soil maps are not available or when extreme accuracy is necessary, a soil survey must be made. The pedological system of classification can be used in making the survey by anyone with some knowledge of the system, assisted by a soil identification "key". This paper describes the use of agricultural soil maps by the North Carolina State Highway Department and a soil identification key used in making soil sur• veys IS included. The use of the key is described. The first soil surveys in the United suitability for various crops given. In• States were made m 1899 by the Depart• cluded in each report is a map of the ment of Agriculture for agricultural pur• area surveyed, usually a county, showing poses. -
Patterns and Trends of Soil Climate Regimes and Drought Events in the Northern Great Plains
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering, Department CSE Conference and Workshop Papers of 2003 PATTERNS AND TRENDS OF SOIL CLIMATE REGIMES AND DROUGHT EVENTS IN THE NORTHERN GREAT PLAINS William J. Waltman University of Nebraska – Lincoln, [email protected] Stephen M. Goddard University of Nebraska-Lincoln, [email protected] S. E. Reichenbach University of Nebraska-Lincoln, [email protected] Mark Svoboda University of Nebraska-Lincoln, [email protected] Michael Hayes University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork Part of the Computer Sciences Commons Waltman, William J.; Goddard, Stephen M.; Reichenbach, S. E.; Svoboda, Mark; Hayes, Michael; and Peake, J. S., "PATTERNS AND TRENDS OF SOIL CLIMATE REGIMES AND DROUGHT EVENTS IN THE NORTHERN GREAT PLAINS" (2003). CSE Conference and Workshop Papers. 158. https://digitalcommons.unl.edu/cseconfwork/158 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors William J. Waltman, Stephen M. Goddard, S. E. Reichenbach, Mark Svoboda, Michael Hayes, and J. S. Peake This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ cseconfwork/158 Presented at Applied Geography Conference, 2003. PATTERNS AND TRENDS OF SOIL CLIMATE REGIMES AND DROUGHT EVENTS IN THE NORTHERN GREAT PLAINS W.J. Waltman, S. -
Pedodiversity in the United States of America
Geoderma 117 (2003) 99–115 www.elsevier.com/locate/geoderma Pedodiversity in the United States of America Yinyan Guo, Peng Gong, Ronald Amundson* Division of Ecosystem Sciences and Center for Assessment and Monitoring of Forest and Environmental Resources (CAMFER), 151 Hilgard Hall, College of Natural Resources, University of California, Berkeley, CA 94720-3110, USA Received 8 July 2002; accepted 17 March 2003 Abstract Little attention has been paid to analyses of pedodiversity. In this study, quantitative aspects of pedodiversity were explored for the USA based on the State Soil Geographic database (STATSGO). First, pedodiversity indices for the conterminous USA were estimated. Second, taxa–area relationships were investigated in each soil taxonomic category. Thirdly, differences in pedodiversity between the USDA-NRCS geographical regions were compared. Fourth, the possible mechanisms underlying the observed relative abundance of soil taxa were explored. Results show that as the taxonomic category decreases from order to series, Shannon’s diversity index increases because taxa richness increased dramatically. The relationship between the number of taxa (S) and area (A) is formulated as S=cAz. The exponent z reflects the taxa-richness of soil ‘communities’ and increases constantly as taxonomic categories decrease from order to series. The ‘‘West’’ USDA-NRCS geographical region has the highest soil taxa richness, followed by the ‘‘Northern Plains’’ region. The ‘‘South Central’’ region has the highest taxa evenness, while taxa evenness in the ‘‘West’’ region is the lowest. The ‘‘West’’ or the ‘‘South Central’’ regions have the highest overall soil diversity in the four highest taxonomic categories, while the ‘‘West’’ or ‘‘Northern Plains’’ regions have the highest diversity in the two lowest taxonomic levels.