Characterization of Soils A,\?) Saprolites from the Piedmont Region for M7aste Disposal Purposes

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Soils A,\?) Saprolites from the Piedmont Region for M7aste Disposal Purposes CHARACTERIZATION OF SOILS A,\?) SAPROLITES FROM THE PIEDMONT REGION FOR M7ASTE DISPOSAL PURPOSES Aziz Amoozegar, Philip J. Schoeneberger , and Michael J. Vepraskas Soil Science Department Agricultural Research Service College of Agriculture and Life Sciences North Carolina State University Raleigh, North Carolina 27695-7619 The activities on which this report is based were financed in part by the United States Department of the Interior, U. S. Geological Survey, through the Water Resources Research Institute of the University of North Carolina. Contents of this publication do not necessarily reflect the views and policies of the United States Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement by the United States Government. Also, the use of trade names does not imply endorsement by the North Carolina Agricultural Research Service of the products named nor criticism of similar ones not mentioned. Agreement No. 14-08-0001-G1580 UWProject Number 70091 USGS Project No. 02(FY88) ACKNOWLEDGMENT Special recognition should be given to Ms. Barbara Pitman, former Agricultural Research Technician, Soil Science Department, who devoted long hours conducting the laboratory solute flow experiments and assisted with other field and laboratory investigations in this project. Thanks to Mr. Stewart J. Starr, College of Agriculture and Life Sciences, for providing land on Unit 1 Research Farm and for his patience with our research program. Appreciation is extended to Mr. Kevin Martin, president of Soil and Environmental Consultants, for his assistance in locating research sites, and to Mr. J. B. Hunt (Oak City Realty) and Mr. S. Dorsett (Dorsett and Associates) for allowing our research team to collect soil samples and conduct research on properties located in Franklin and Orange Counties, respectively. We acknowledge the assistance of Mr. Barrett Richards for construction of observation pits and soil sample collection, Ms. Angela Barnes, for laboratory analyses of samples, Mr. Atwell Cook for assisting with field experiments and sample collection, Mr. Mark Carpenter and Ms. Beth Haines for preparing thin sections, and Ms. Betty Ayers for assisting with the mineralogical analyses of samples. Undergraduate students Mitch Dawes and Mark Kleiss also assisted with the projects and their efforts are appreciated. Our appreciation is also extended to Drs. S. B. Weed, S. W. Buol, D. K. Cassel and M. T. Hoover for their cooperation in the project. Finally, we would like to take the opportunity to thank the secretarial staff of the Soil Science Department, the Water Resources Research Institute staff, and all those individuals not named here who directly or indirectly assisted us with this project. ABSTRACT There is great interest in using saprolite for on-site wastewater disposal purposes in the Piedmont and Mountain regions of North Carolina. However, information regarding hydraulic properties and attenuation capacity of various saprolites for pollutants found in domestic wastewater is limited. Field and laboratory studies were initiated to assess characteristics of a number of soil-saprolite sequences in the Piedmont region. A laboratory soil column experiment was conducted to evaluate movement of five inorganic constituents of domestic wastewater through three different soils and their associated saprolites that were collected from Franklin, Orange and Wake Counties. Directional saturated hydraulic conductivities (K,) and other physical and mineralogical properties of Bt (soil), B/C (transitional) and C (saprolite) horizons were measured at three different landscape positions (a ridge top, shoulder and ridge nose) over a Cecil soil mapping unit in Wake County (referred to as site #I). In addition, the macropore network of the three horizons at each landscape position was assessed in the field. Samples collected from four different color zones around Mn oxide coated fractures (a type of macropore) at the shoulder position were also analyzed, and profiles for vertical K, were obtained for the three landscape positions. At a second site in Wake County (referred to as site #2), contributions of different types of water-conducting pores to water flow under saturated and unsaturated conditions were evaluated through thin section analysis. In the laboratory miscible displacement experiment all five ions appeared in the outflow of undisturbed soil cores faster than they appeared in the outflow of the repacked soil material. The overall rate of movement of each ion through intact soil material, however, was slow. No appreciable differences were observed between attenuation and movement of various solutes through disturbed and undisturbed saprolites. For the primary site in Wake County (site #I), saturated hydraulic conductivity at each of the three landscape positions was largest on top of the Bt horizon, reached a minimum value in the B/C horizon, and increased with depth in the upper 2-m part of the C horizon. No statistically significant differences were observed among the directional K, values at any horizonllandscape position. Analyses of various color zones around fractures indicated sharp differences in the chemical compositions of the material. The results show different degrees of oxidation/reduction around the fractures, which is indicative of water flow between the fractures and the saprolite matrix. At site #2 in Wake County, macropores (root channels 0.1 to 0.5 mm in diameter) comprised approximately 2% of the saprolite body, but accounted for 95% of the water flow through saprolite under saturated condition. At a soil water potential of -10 cm, 50% of the flow was through the saprolite matrix. TABLE OF CONTENTS ACKNOWLEDGMENT ................................... ABSTRACT ........................................... LIST OF FIGURES ...................................... LISTOF TABLES ....................................... SUMMARY AND CONCLUSIONS .......................... xvii RECOMMENDATIONS .................................. xxi INTRODUCTION ....................................... Defmition of Saprolite .................................. Role of Saprolite in Groundwater Protection ................. Properties of Saprolite .................................. Objectives ........................................... MATERIALS AND METHODS ............................. Wake County Sites .................................... Franklin County Site ................................... Orange County Site .................................... Solute Flow Study ..................................... Laboratory Study .................................... Simple Solute Flow Model ............................. Field Study ........................................ RESULTS AND DISCUSSION ............................. Solute Movement Through Soil and Saprolite .................. Laboratory Study .................................... Simple Error Function Model ........................... Potassium Bromide Field Study ......................... vii Macroporosity of Soil Profile and Color Zones within Saprolite ..... Macroporosity ...................................... Color Zones Within Saprolite ........................... Multi-Element Scans and Analyses ........................ X-Ray Diffraction .................................... SEM and EDAX Spectra Analyses ....................... Mossbaur Spectra .................................... Vertical K.. Particle Size Distribution. and Bulk Density .......... Directional Saturated Hydraulic Conductivity .................. In Situ Saturated Hydraulic Conductivity ..................... Soil Water Retention ................................... Thin-Section Analyses of Macroporosity and Hydraulic Conductivity . REFERENCES ......................................... GLOSSARY ........................................... PUBLICATIONS ........................................ APPENDIX ............................................ ... Vlll LIST OF FIGURES Figure Page 1. Map of North Carolina showing the relative locations of the study sites in Franklin County (F), Orange County (O),and Wake County 0. ........................................ 2. Key soils and their associated soil series from felsic (Appling, Cecil, Helena, Hiwassee, Madison, Pacolet , Vance, and Wedowee) and mafic (Coronaca, Davidson, Enon, Iredell, Mecklenburg , Sedgefield, and Wilkes) crystalline rocks in the Piedmont region (after Daniels et al., 1984). ............................. 3. Topographic map of the study area at the Wake County site #1 showing the locations of the observation pits at (1) ridge top, (2) shoulder, and (3) ridge nose landscape positions. Contour line elevations are in ft. ................................ 4. Orientations of the undisturbed cores collected from the Wake County site #1 for directional saturated hydraulic conductivity. ... 5. Schematic diagram of the cross sectional area of the soil column assembly for determination of saturated hydraulic conductivity. ... 6. The upper part of a block carved in situ from saprolite at a depth of 1.9 to 2.7 m with two distinct Mn oxide coated fractures. ..... 7. Areal view of the Wake County site #2 with relative locations of sampling pits. ....................................... 8. Shear plane (horizontal in core) produced a displacement of approximately 2 mm in the mineral bands of saprolite. The pores shown are coated with Fe/Mn oxides and are < 0.2-mm wide. Bar length represents 3 mm. ............................ 9. Key soils and their
Recommended publications
  • Paxton Soil Series Is Named for the Town of Paxton in Worcester County Massachusetts Where It Was First Described
    Paxton Massachusetts State Soil Soil Science Society of America Introduction Many states have a designated state bird, flower, fish, tree, rock, etc. And, many states also have a state soil – one that has significance or is important to the state. The Paxton is the offi- cial state soil of Massachusetts. Let’s explore how the Paxton is important to Massachusetts. History The Paxton soil series is named for the town of Paxton in Worcester County Massachusetts where it was first described. The series was established in 1922, described in the Soil Survey of Worcester County in 1927, and then in 1991 it was designated as the official state soil of Massachusetts. Created by the movement of glaciers thousands of years ago, Paxton soils can be found throughout New England and are exemplified by scenic rolling hills dotted with dairy farms. It is considered one of the most productive soils for agricul- ture in New England. What is Paxton Soil? Paxton soil is made of well drained loamy soils formed on wind deposited material that sits on top of rock deposited by glaciers. Classified as a coarse-loamy soil, Paxton soils possess soil particles that are at the larger end of the textural spectrum. Being composed of material scraped from the surface of the landscape over which glaciers traveled, its mineral composi- tion is varied. The rocks contributing to Paxton soils include schist, gneiss, and granite. The clays in its composition have good cation-exchange ca- pacity, although the pH of these soils is low. A cation is a positively charged ion (such as an atom or molecule) which influences the soil’s ability to hold onto essential nutrients and provides a buf- fer against soil acidification.
    [Show full text]
  • The Soil Survey
    The Soil Survey The soil survey delineates the basal soil pattern of an area and characterises each kind of soil so that the response to changes can be assessed and used as a basis for prediction. Although in an economic climate it is necessarily made for some practical purpose, it is not subordinated to the parti­ cular need of the moment, but is conducted in a scientific way that provides basal information of general application and eliminates the necessity for a resurvey whenever a new problem arises. It supplies information that can be combined, analysed, or amplified for many practical purposes, but the purpose should not be allowed to modify the method of survey in any fundamental way. According to the degree of detail required, soil surveys in New Zealand are classed as general, . district, or detailed. General surveys produce sufficient detail for a final map on the scale of 4 miles to an inch (1 :253440); they show the main sets of soils and their general relation to land forms; they are an aid to investigations and planning on the regional or national scale. District surveys, for maps, on the scale of 2 miles to an inch (1: 126720), show soil types or, where the pattern is detailed, combinations of types; they are designed to show the soil pattern in sufficient detail to allow the study of local soil problems and to provide a basis for assembling and distributing information in many fields such as agriculture, forestry, and engineering. Detailed surveys, mostiy for maps on the scale of 40 chains to an inch (1 :31680), delineate soil types and land-use phases, and show the soil pattern in relation to farm boundaries and subdivisional fences.
    [Show full text]
  • A Guide to Potential Soil Carbon Sequestration Land-Use Management for Mitigation of Greenhouse Gas Emissions
    A Guide to Potential Soil Carbon Sequestration Land-Use Management for Mitigation of Greenhouse Gas Emissions By H.W. Markewich and G.R. Buell Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) “map” carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon. Ongoing efforts of the USGS to achieve these objectives are: • compilation and synthesis of site-specific data needed to estimate carbon storage and inventory in soils, reservoir sediments, wetlands, and lakes of the conterminous United States; • characterization of present-day carbon storage by Black Mountain Range, western North Carolina—an area landscape feature and environment; and of high carbon soils—looking north from summit of Mount Mitchell, highest peak in eastern United States.
    [Show full text]
  • Appendix D Soil Series Descriptions
    Appendix D Soil Series Descriptions Soil Series Descriptions Soil Orders Mollisols — This order covers a considerable land area of western and southern Minnesota and is the basis for the state's productive agricultural base. The formative syllable, oll, is derived from the Latin word mollis, or soft. Its most distinguishing feature is a thick, dark-colored surface layer that is high in nutrients. It occurs throughout the former prairie areas of Minnesota. The Latin term for soft in its name is descriptive in that most of these soils usually have a rather loose, low-density surface. Three suborders of mollisols occur in Minnesota: Aquolls, Udolls, and Ustolls. Alfisols — This order covers a large land area in Minnesota, part of which is now cultivated and part forested. Alf is the formative element and is coined from a soil term, pedalfer. Pedalfers were identified in the 1930s as soils of the eastern part of the United States with an accumulation of aluminum and iron. The alf refers to the chemical symbols for aluminum (Al) and iron (Fe). Alfisols are primarily fertile soils of the forest, formed in loamy or clayey material. The surface layer of soil, usually light gray or brown, has less clay in it than does the subsoil. These soils are usually moist during the summer, although they may dry during occasional droughts. Two suborders of alfisols occur in Minnesota: Aqualfs and Udalfs. Histosols — The formative element in the name is ist and comes from the Greek word histos, which means tissue. This is an appropriate association because these soils are formed from plant remains in wet environments like marshes and bogs.
    [Show full text]
  • Drummer Illinois State Soil
    Drummer Illinois State Soil Soil Science Society of America Introduction Many states have designated state symbols such as bird, flower, fish, tree, rock, and more. Many states also have a state soil – one that has significance or is important to the state. As there are many types of birds, flowers, and trees, there are hundreds of soil types in our state but Drummer is the official state soil of Illinois. How important is the Drummer soil to Illinois? History Drummer was first established as a type of soil in Ford County in 1929. It was named after Drummer Creek in Drummer Township. 1n 1987, Drummer was selected as the state soil by the Illinois Soil Classifiers Association over other soils such as Cisne, Flanagan, Hoyleton, Ipava, Sable, and Saybrook. Since then, Drummer has been repeatedly chosen by other as- sociations who work with soil. In 1992, the Illinois Association of Vocational Agriculture Teachers sponsored a state soil election in their classrooms and Drummer won by a margin of 2 to 1. In 1993, the statewide 4H Youth Conference also selected Drummer out of 6 nomi- nees. Also in 1993 at the FFA state convention, Drummer and Ipava were tied in the contest. Finally, in 2001, after many attempts, it was finally passed by the Illinois Legislature and signed into law by Governor George Ryan. What is Drummer Soil? It is the most common among the dark colored soils or “black dirt” of Illinois. The dark color is due to the high amount of organic matter inherited from the decomposition of the prairie vegetation that is growing on the soil.
    [Show full text]
  • Soil-Water, Chemical and Physical Characteristics of Eight Soil Series in Maine
    SOIL-WATER, CHEMICAL AND PHYSICAL CHARACTERISTICS OF EIGHT SOIL SERIES IN MAINE R. V. Rourke and C. Beek SPECIFIC INFORMATION FOR HIGHWAY ENGINEERING URBAN DEVELOPMENT PLANNING WATERSHED MANAGEMENT AGRICULTURAL SOIL AND WATER MANAGEMENT TECHNICAL BULLETIN 2 9 FEBRUARY 1968 MAINE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF MAINE ORONO ACKNOWLEDGEMENTS This research was supported in part by funds provided by the United States Department of Interior as authorized under the Water Resources Research Act of 1964, Public Law 88-379. The authors are most appreciative for the aid given them by Walter Steputis, Bryce McEwen, Kenneth LaFlamme, R. B. Willey, John Arno, Glendon Jordan, soil scientists of the Soil Conser­ vation service in the selecting of sites and writing the profile descriptions. We recognize the support of the Water Resources Center, University of Maine and of Dr. Warren Viessman, Jr. for their aid and encouragement during these investigations. They also acknowledge the efforts of Mrs. Donna Sailor and Mrs. Catherine Bradbury in typing the manuscript. TABLE OF CONTENTS SUMMARY II INTRODUCTION 1 FIELD PROCEDURE 2 LABORATORY PROCEDURE 2 RESULTS 5 Adams Soil Series 5 Berkshire Soil Series 6 Buxton Soil Series 7 Colbath Soil Series 8 Creasey Soil Series 9 Hartland Soil Series 10 Peru Soil Series 11 Winooski Soil Series 12 LITERATURE CITED 14 APPENDIX TABLES Percolation Rates 15 Adams Soil Series 16 Berkshire Soil Series 26 Buxton Soil Series 36 Colbath Soil Series 46 Creasey Soil Series 56 Hartland Soil Series 66 Peru Soil Series 76 Winooski Soil Series 86 I SUMMARY Eight soil series were sampled, each at five locations, The soil was sampled and analyzed on a horizon basis.
    [Show full text]
  • Sheet Erosion Studies on Cecil Clay
    BULLETIN 245 NOVEMBER 1936 Sheet Erosion Studies on Cecil Clay By E. G. DISEKER and R. E. YODER AGRICULTURAL EXPERIMENT STATION OF THE ALABAMA POLYTECHNIC INSTITUTE M. J. FUNCHESS, Director AUBURN, ALABAMA AGRICULTURAL EXPERIMENT STATION STAFFt President Luther Noble Duncan, M.S., LL.D. M. J. Funches, M.S., Director of Extieriment Station W. I. Weidenbach, B.S., Executive Secretary P. 0. Davis. B.S., Agricultural Editor Mary E. Martin, Librarian Sara Willeford, B.S., Agricultural Librarian Agronomy and Soils: J. W. Tidmore, Ph.D.- Head, Agronomy and Soils Anna I. Sommer, Ph.D. Associate Sail Chenist G. D. Scarseth, Ph.D.__ Associtate Soil Chemtist N. J. Volk, Ph.D. Associate Soil Cheniust J. A. Naftel, Ph.D. _-Assistant Soil Chemist H. 13. Tisdale, M.S. __Associate Plant Bretler j. T. Willianson, .IlS. Associate Agroiomist H. R. Albrecht. 'h.D Assistant Agrinomist J. B. Dick, B.S. ------------- Associate Agronomist (Coop. U. S. B. A.) . U. Siurkie, l'h.D. Associate Agronomist E. L. Mayton, M.S. Assistant Agronomist J. W. Richardson, B1.S. (Brewton) _. Assistant in Agrotiomy -J. R. Taylor, M.S. .. Assistant in Agronony T. H. Ro"ers. 11.8. Gratuate Assistant Animal Husbandry, Dairying, and Poultry: J. C. (rims, M.S. Head, Animal Husbandry, Dairying, and Poultry W. D. salinon, 11. Animal Nutrititnist C. J. [Koehn, Jr., Ph.D. Xssociate Animal Nutritionist C. 0. Prickett, B.. \.__ _ -- _ Associate Animal Nutrititnist G. A. Schrader, Ih.). Associate Animal Nutrittorist W. C. Sherman. I'h . Associate Animal Nutritionist W. E. Sewell, M.S. Assistant Animal Husbailttin D.
    [Show full text]
  • The Current Status of Iron Minerals in Indonesia
    THE CURRENT STATUS OF IRON MINERALS IN INDONESIA Siti Rochani, Pramusanto, Sariman and Rezky Iriansyah Anugrah R&D Centre for Mineral and Coal Technology Jalan Jenderal Sudirman 623, ph. 022-6030483, fax. 022-6003373, Bandung 40211 email : [email protected], [email protected] [email protected], [email protected] Received : 24 October 2007, first revision : 06 February 2008, second revision : 26 May 2008, accepted : June 2008 ABSTRACT Indonesia has great iron mineral resources, comprising primary iron ore (17 %), iron sand (8 %) and lateritic iron ore (75 %). Nowadays, Indonesia’s primary iron (hematite, magnetite) has not been em- powered yet, due to the scattered area of the resources location. Meanwhile, national iron sand is commonly used for cement industries and its potency has not supported national steel industries yet because of low iron content (45-48 %). However there is an opportunity to be processed by using Ausmelt process technology. At present, lateritic iron ore is being used as coal liquefaction catalyst in the form of limonite, but hydrometallurgy would be a promising solution to beneficiate lateritic iron ore for steel industries. Keywords: primary iron ore, iron sand, lateritic iron ore. potency, resources, reserves. zine; private and government-owned company web 1. INTRODUCTION site; and scientific handbook or literature. Based on the data collected, the next step is arranging Indonesia has great iron mineral resources, com- and analyzing the data to convey the mindset of prising primary iron ore (17 %), iron sand (8 %) Indonesia current iron minerals potency and sug- and lateritic iron ore (75 %).
    [Show full text]
  • Chemical Mass Balance of Calcrete Genesis on the Toledo Granite (Spain)
    CHEMICAL GEOLOGY i\mirise ISOTOPE GEOSCIE.\'CE Chemical Geology 170 (2000) 19-35 \vww.elsevirr.coni/locate/chemgeo Chemical mass balance of calcrete genesis on the Toledo granite (Spain) Arnaud Chiquet a. * , Fabric olili b, Bruno Hamelin a, Annie Michard a, miel Nahon a UP O.!+ CEREGE. UiWR 6536. CiYRS/ UttiivrsiiG Ai.r-n-lor.veillr111, SO. 13535 Ai.r-c~ti-Pivi.eiice,cet le.^ Frotlce " CEREGE, UAIR 6336. ORSTOM/ UiiiLw.yi/8 Ai.r-Mntrri/lr 111. BI' SO. 135-35Ai.r-etr-Plvi~rricc~. Cedes 0-3, France Received 15 April 199s; acceptcd 12 Slay I999 Abstract The chernical mass balance of cnlcrete genesis is studied on a typical sequence developed in granite, in the Toledo mountains. Central Spain. Field evidence and petrographic observations indicate that the texture and the bulk volume of the parent rock are strictly preserved all along the studied cnlcrete profile. hlicroscopic observations indicate that the calcitizatinn process starts within the saprolite, superimposed on the usual nieclianisnis of granite weathering: the fresh rock is first weathered to secondary clays. mainly smectites, \vhicli are then pseudoniorphically replaced by calcite. Based on this evidence. chemical inass tiansfers are calculated. assuming ¡so-volume transformation from the parent rock to the calcrete. The mass balance results show the increasing loss of matter due to weathering of the primary phases, from the saprolite towards the calcrete layers higher in the sequence. Zr, Ti or Th, which are classically considered as immobile during weuthering, are also depleted along the profile, especially in the calcrete layer. This results from the prevailing highly alkaline conditions, which could account for the simultaneous precipitation of CaCO, and silicate dissolution.
    [Show full text]
  • Use of Agricultural Soil Maps in Making Soil Surveys
    108 USE OF AGRICULTURAL SOIL MAPS IN MAKING SOIL SURVEYS L. D HICKS, Chief Soils Engineer North Oil 'lina State Highway and Pubi Works Commission SYNOPSIS Soil surveys are made to obtain information relative to the type, extent of occurrence, and characteristics of the soils in a given area. The use of the pedological system of classification permits easy identification of the soils as to type, and knowledge of the characteristics of various soil types and previous experience with them can be utilized in planning and design. A large portion of many states has been surveyed by the Department of Agri• culture and maps are available showing the location of the various soil types. These maps may be used as guides in making soil surveys, and in many instances they contain all of the information desired. When agricultural soil maps are not available or when extreme accuracy is necessary, a soil survey must be made. The pedological system of classification can be used in making the survey by anyone with some knowledge of the system, assisted by a soil identification "key". This paper describes the use of agricultural soil maps by the North Carolina State Highway Department and a soil identification key used in making soil sur• veys IS included. The use of the key is described. The first soil surveys in the United suitability for various crops given. In• States were made m 1899 by the Depart• cluded in each report is a map of the ment of Agriculture for agricultural pur• area surveyed, usually a county, showing poses.
    [Show full text]
  • Weathering Profiles and Clay Mineralogical Developments, Bornholm, Denmark
    Weathering profiles and clay mineralogical developments, Bornholm, Denmark Pingchuan Tan1, 2, Nikolas Oberhardt1, Henning Dypvik1,2, Lars Riber1, Ray E. Ferrell Jr3. 1 Department of Geoscience, University of Oslo, P.O.BOX 1047, Blindern, NO-0316 Oslo, Norway 2 Centre for Earth Evolution and Dynamics, University of Oslo, P.O.BOX 1028, Blindern, NO-0315 Oslo, Norway 3 Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA, 70803, USA Corresponding author – Pingchuan Tan: [email protected] ABSTRACT Saprock-saprolite associations were studied by field and laboratory methods (optical microscopy, X-ray powder diffraction, scanning electron microscopy, electron microprobe) in order to describe regolith development in the crystalline rocks of the Nygård kaolin pit (Bornholm, Denmark). The clay sequences and stages of porosity development are similar to those observed for reservoir rocks from the Utsira High (Riber, L., Dypvik, H., Sørlie, R. and Ferrell, R. (2016) Clay minerals in deeply buried paleoregolith profiles, Norwegian North Sea. Clays and Clay Minerals, in press). The weathering of the parent granite began before the end of the Mesozoic. Two stages of syn- /pre-burial alteration, followed by diagenesis during burial, and then post-uplift weathering have been recognized. In stage Ι, plagioclase and some biotite (biotite-vermiculite-kaolinite) reacted to form elongate booklets of highly-ordered kaolinite or smaller, blocky pseudohexagonal crystals. Stage II represented more extreme weathering developed along local fracture systems. The higher potential for fluid flow in the fractures caused highly-ordered kaolinite to alter to halloysitic, poorly- ordered kaolinite. Plagioclase, biotite, and K-feldspar continued to interact with formation water and formed additional quantities of secondary clay minerals.
    [Show full text]
  • Chemical and Physical Properties of Certain Soils Developed from Granitic Materials in New England and the Piedmont, and of Their Colloids
    1.0 i;~ ""'2.8 11111 2.5 ~;.; 111[/3~ 2.2 it I~~~ :: ~i.i.10 1- .~,a:'P . I t ... :: 111111.8 II' - 111111.8 1I1I/!·25 IIIIP .4 11111 1.6 1111/1.25 111111.4 '"" 1.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RlSOLUTION TEST CHART u.. ~ ~ ~\ 5ta.l,dr:s i!ii5~~~~~: ti §ii~!§~!!ii!ii••••u • •,~ ••••••_.......-IU'.................,. TECHNICAL BULLETIN No. 609 June 1938 CHEMICAL AND PHYSICAL PROPERTIES OF CERTAIN SOILS DEVELOPED FROM GRANITIC MATERIALS IN NEW ENGLAND AND THE PIEDMONT, AND OF THEIR COLLOIDS By IRVIN C. BROWN Associate CIWl1list nnd HORACE G. BYERS Principal Chemist Soil C/zc'lI;stry a"tl P/ly.des Rc.f'!Orcll Di.,;s;on Durellu oj C1H!tnistrY arId Sails UNITED STATES DEPARTMENT OF AGRICULTURE, \VASHlNGTON, D. C. For Bale by the Superintenuent of Document', Wnahington, D. C. - - - - - - - • - - - - - • Price 10 cents Technical Bulletin No. 609 June 1938 UNITED STATES DEPARTNlliNT OF AGRICULTURE WASHINGTON, D. C. CHEMICAL AND PHYSICAL PROPERTIES OF CER­ TAIN SOILS DEVELOPED FROM GRANITIC 11ATERIALS 1 IN NEW ENGLAND AND THE PIEDMONT, AND OF THEIR COLLOIDS 1 By IRVlN O. Bll.OWN, as.~ociatc cit(;{nist, und HOltACE G. BYERS,principal chemist, Soil Chemistry and Physics Uesearch Division, B!treau oj Chemistry and Soils CONTENTS Pnge l'll~o I Introduction._•..•. I Aualytical results-Continued. Descrlptiouofthosoii'<. .................. a UIDuco,tcr sandy hmlll ___ .. Brossu:L ::o:rie:;. ~ ~_ :)1 (·I.W~lUrlonUl~ __ ~._ -~ llermun sorh\~ . .j I Milnor loam...... G ~OUl'cster scrie:-,_ fi I ('(wi! sandy clay loum_ .. Chesler sorie' t1 ' AfJpli[)~ suudy l ...
    [Show full text]